Bionics Lab › Education > Classes > MAE 263B - Dynamics of Robotic Systems




Jacob Rosen
Office: Engineering IV Building, Room 37-146
Voice Office: 831.459.5302
Anonymous Email (For the Subject Line use: MAE 263B)

Office Hours: Wed 12:00-2:00
Signup Sheet - (Entry MAE163B/263B - <Your Name>)

Zoom (Presonal Link)


Mianzhi Zhou

MAE 263B

Dynamics of Robotic Systems

Course Summary:
Motion planning and control of articulated dynamic systems: nonlinear joint control, experiments in joint control and multiaxis coordination, multibody dynamics, trajectory planning, motion optimization, dynamic performance and manipulator design, kinematic redundancies, motion planning of manipulators in space, obstacle avoidance.

Recommended preparation: courses 155, 171A, 263A,

Assignments & Grading:

HW Assignments - Problem Sets 20%
Paper Review (HW 0) 5%
Mid Term Exam (Take Home) 30%
Final Exam (Take Home) 40%
Participation 5%


(*) John Craig, Introduction to Robotics: Mechanism & Control, 4ed Edition, Addison Wesley 2018

(*) Lung-Wen Tsai, Robotic Analysis, Wiley 1999,
Ch. 9, Dynamics of Serial Manipulators

(*) Matjaž Mihelj, Tadej Bajd, Aleš Ude, Jadran Lenarčič, Aleš Stanovnik, Marko Munih, Jure Rejc, Sebastjan Šlajpah, Robotics, Springer 2019
Chapter 10: Robot Control

Class Notes

Class 00
: Class Introduction
Class 01
: Introduction & Basic Ideas

Direct & Inverse Kinematics (Review)
Class 02: Special Description & Transformation (Review)
Class Supplement: Equivalent angle axis vector
Class 03: Direct Manipulator Kinematics (Review)
Class 04: Inverse Manipulator Kinematics (Review)

Trajectory Generation
Class 04: Trajectory Generation (1/2)
Class 05: Trajectory Generation (2/2)

Class 06: Advanced Kinematics (Velocities - Linear & Angular)
Class 07: Jacobian - Introduction
Class 08: Jacobian - Velocity Propagation Method - Part 1
Class 09: Jacobian - Velocity Propagation Method - Part 2
Class 10: Jacobian - Force Propagation Method
Class 11: Jacobian - Explicit Method
Class 12: Jacobian - Implications & Applications

Class 13
: Dynamics - Newton-Euler Eqautions - Theory (1/4)
Class 14: Dynamics - Tensor of Inertia (2/4)
Class 15: Dynamics - Newton-Euler Eqautions - 2R Example (3/4)
Class 16: Dynamics - Lagrange Equations - Theory & 2R Example (4/4)

Class 17: Control Design - PID Design
Class 18: Control Design - Bode Design (Lead/Lag)
Class 19: Control Design - Nyquest Design (Gain/Phase Margins)
Class 20 : Intro to Control Systems - Control Scheme 1
Class 21 : Intro to Control Systems - Control Scheme 2

Section Notes (TA)

Section 01: Forward & Inverse Kinematics (Yasukawa Motoman L-3)
Section 02: Robotics - Matlab ToolBox (Matlab Example - XML )
Section 03: Jacobian - Velocity Propagation Direct Diff (SCARA)
Section 04: Jacobian - Force Propagation (SCARA)
Section 05: x
Section 06: x
Section 07: x
Section 08: x
Section 09: x

Projects - Homework

Homwork 0 - Presentataion
Homwork 1 - Design

Homwork 2 - Trajectory  
Homwork 3 - Jacobian Derivation
Homwork 4 - Jacobian - Design Optimization
Homwork 5 - Dynamics


Labs (Denso Robotic Arms)

Lab 0
Lab 1
Lab 2
Lab 3
Lab 4

Exams (Take Home)

Midterm Exam - Take Home - Due Week 6 (Friday Midnigh)

Final Exam - Take Home - Due Week 12 (Friday Midnight)


Robotic Toolbox - Free (by Corke)

Robotics Toolbox (Release 10)

Introduction to Robotics Toolbox for MATLAB (Powerpoint Slides - TA)

The book Robotics, Vision & Control, Second Edition (Corke, 2017) is a detailed introduction to mobile robotics, navigation, localization; and arm robot kinematics, Jacobians and dynamics illustrated using the Robotics Toolbox for MATLAB (Availble on-line to UCLA Students)

Robotics and Control Fundamental Algorithms in MATLAB (Corke, 2022)
Robotic Vision Fundamental Algorithms in MATLAB (Corke, 2022)

Matlab Code (Robotic Toolbox)
Puma 560 (Modified DH) - StdMod_puma560.m

Robotic Toolbox (by Mathworks)


Matlab Demo

Robot Manipulation, Part 1: Kinematics
Robot Manipulation, Part 2: Dynamics and Control
Trajectory Planning for Robot Manipulators

Mathematica Demos (Robotics)

Note: A viewer is required for running the demos off line

Special Description & Transformation

Randomize Motion for Six Degrees of Freedom
Mathematica Demo

Robot Manipulator Workspaces
YouTube Explanation
Mathematica Demo

Denavit-Hartenberg Parameters for a Three-Link Robot
Mathematica Demo

Common Robot Arm Configurations
Mathematica Demo

Three Parametrizations of Rotations Configurations
YouTube Explanation
Mathematica Demo

Forward and Inverse Kinematics

Model of an Industrial Robot Arm
Mathematica Demo

Inverse Kinematics for a Robot Manipulator with 6 DOF
Mathematica Demo

Forward Kinematics
Mathematica Demo

Inverse Kinematics
Mathematica Demo

Forward and Inverse Kinematics of the SCARA Robot
Mathematica Demo

A Model of the SCARA Robott
Mathematica Demo

Kinematics of SCARA Robot in 2D
Mathematica Demo

Kinematics of a Redundant Anthropomorphic Arm with 7 DOF
Mathematica Demo

Inverse Kinematics in Redundant Robot Manipulator (Swivel Angle)
YouTube Explanation
Mathematica Demo


Forward and Inverse Kinematics for Two-Link Arm
Mathematica Demo

Manipulability Ellipsoid of a Robot Arm
Mathematica Demo

Trajectory Planning

Trajectory Planning of Robot for Painting Art
Mathematica Demo



Class Notes: Introduction to Autolev
Class Video (1/2) - Introduction - Example (3R)
Class Video (2/2) - Example - Industrial Robot (6R)

Autolev Code (Zip)

Industrial Robotic Arms - Companies

Expo 21XX - Generic List
Denso Robotics (*,+)
KUKA (*,+)
Motoman (+)
Staubli (*,+)
Adept (*,+)
ABB (*,+)
Mitsubishi (+)
Kawasaki (+)
Epson (*,+)

(*) CAD files are available on-line
(+) Data sheet / Specs / Schematic drawings are available on-line

Videos (YouTube)

General Video

Videos - Modern Robotics Northwestern University
Book - Kevin Lynch, Frank Park, Modern Robotics - Mechanics, Planning, and Control

DH Parameters

Denavit-Hartenberg Reference Frame Layout