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CHAPTER 9

DYNAMICS OF SERIAL MANIPULATORS

9.1 INTRODUCTION

In this chapter we extend our study from kinematics and statics to the dy-
namics of serial manipulators. For some applications, such as arc welding
(Fig. 9.1), it is necessary to move the end effector of a manipulator from
point to point rapidly. The dynamics of the manipulator plays an important
role in achieving such high-speed performance. The purpose of this chapter is
to develop a set of equations that describe the dynamical behavior of a manip-
ulator. The development of a dynamical model is important in several ways.
First, a dynamical model can be used for computer simulation of a robotic
system. By examining the behavior of the model under various operating con-
ditions, it is possible to predict how a robotic system will behave when it is
built. Various manufacturing automation tasks can be examined without the
need of a real system. Second, it can be used for the development of suitable
control strategies. A sophisticated controller requires the use of a realistic dy-
namical model to achieve optimal performance under high-speed operations.
Some control schemes rely directly on a dynamic model to compute actuator
torques required to follow a desired trajectory. Third, the dynamics analysis
of a manipulator reveals all the joint reaction forces (and moments) needed
for the design and sizing of links, bearings, and actuators.

There are two types of dynamical problems: direct dynamics and inverse
dynamics. The direct dynamics problem is to find the response of a robot arm
corresponding to some applied torques and/or forces. That is, given a vector
of joint torques or forces, we wish to compute the resulting motion of the
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FIGURE 9.1. Arc welding robot. (Courtesy of Fanuc Robotics North America, Inc.,
Rochester Hills, Michigan.)

manipulator as a function of time. The inverse dynamics problem is to find
the actuator torques and/or forces required to generate a desired trajectory of
the manipulator. The problem can be formulated in the joint space, q(¢), or
the end effector space, x(¢). The two formulations are related by the Jacobian
matrix and its time derivative. In general, the efficiency of computation for
direct dynamics is not as critical since it is used primarily for computer sim-
ulations of a manipulator. On the other hand, an efficient inverse dynamical
model becomes extremely important for real-time- feedforward control of a
manipulator.

The dynamical equations of motion can be formulated by several methods.
One approach is application of the Newton and Euler laws. Writing Newton’s
and Euler’s equations once for each body of a mechanical system results in
a system of equations that contains both the applied forces and the forces
of constraint. The latter can be eliminated by considering the geometric and
kinematic equations describing the nature of constraints. Another approach



374 DYNAMICS OF SERIAL MANIPULATORS MASS PROPERTIES 375

is application of the principle of d’Alembert or Hamilton. Alternatively, one
can apply Lagrange’s equations of motion (Goldstein, 1980; Paul, 1981) or
Kane’s method (Kane and Levinson, 1980, 1985). The advantage of employ-
ing the Lagrangian approach is that it eliminates the forces of constraint at the
outset. However, these forces of constraint must be restored at a later time if
they are to be used for the purpose of design. On the other hand, the Newton-
Euler approach produces a larger system of equations, and these equations
can be solved simultaneously for all the forces, including the forces of con-
straint.

Recently, there has been an increasing interest in the development of
general-purpose computer programs for dynamical analysis of mechanical
systems. For example, the following programs were developed using the
Lagrangian formulation.

9.2 MASS PROPERTIES

In this section, the center of mass, inertia matrix, parallel axis theorem, and
principal moments of inertia of a rigid body are defined.

9.2.1 Center of Mass

Mass is a quantity of matter that forms a body of a certain shape and size.
Referring to Fig. 9.2, A(x, y, z) is a Cartesian reference frame, u and w are
two unit vectors, dV represents a differential volume of the material body
B, p is the material density, and p is the position vector of the differential
mass p dV with respect to the reference frame A. The center of mass of such
a material body is defined as the point C, whose position vector p,. satisfies
the following condition:

* ADAMS: developed by Chace et al. at the University of Michigan and

1 .
marketed by Mechanical Dynamics, Inc. (1981). pc = p f pedV, 9.1
v

* DADS: developed by Haug et al. (Haug, 1989) at the University of Iowa

and marketed by Computer Aided Design Software, Inc. (1995). where m = [, pdV is the total mass of the material body B.

* DYMAC: developed by Paul et al. (Paul, 1979) at the University of Penn-
sylvania.

9.2.2 Inertia Matrix

The second moment, 1, of a rigid body B relative to a line L, that passes

* IMP: developed by Uicker et al. (Uicker, 1965; Sheth and Uicker, 1972) through a reference point O and is parallel to a unit vector u is defined as

at the University of Wisconsin.

Other computer programs, such as NBOD2 developed at NASA Goddard
Space Flight Center (Frisch, 1974) and SD-EXACT developed by Rosenthal
and Sherman (1983), are based on Eulerian approach and Kane’s method.
General-purpose computer programs are great for computer simulations.
However, they are not necessarily suitable for real-time control of a robot ma-
nipulator. Thus, more efficient methodologies specifically tailored for robotic
systems have been proposed. These include the recursive Lagrangian equa-
tions (Hollerbach, 1980), the recursive Newton—Euler equations (Armstrong,
1979; Luh et al., 1980; Orin et al., 1979), and the generalized d’ Alembert
equations (Fu et al., 1987, Lee et al., 1983).

Dynamics is a huge subject by itself. Obviously, we will not be able to
cover the subject in great detail. In what follows, we review some fundamen-
tal laws associated with the dynamics of a rigid body and present the recursive
Newton—Euler and Lagrangian methods of analysis. In addition, the effects
of rotor inertias are discussed. Several examples are used to demonstrate the
principles.

Frame A

FIGURE 9.2. Moments of mass about a refercnce point.
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(Roberson and Schwertassek, 1988)

10 = / px uxp)pdV, ‘ 9.2)
v
where the trailing superscript O denotes the reference point and the trailing

subscript u denotes the direction of the reference line. Expanding the triple
product in Eq. (9.2) yields

12 = [ - @wplodv. R
\

The scalar product of I9 with a unit vector w is called the product of inertia
of B relative to O for u and w,

Lo =10 w= [ (@TWP — @@ WIPdV. 04
v
It follows from the definition above that 1,, = I,. In particular, when u

and w represent the same vector, the corresponding product of inertia, I,,, is
called the moment of inertia of B about L,:

Ly = / p> — @ w)?pdV = mr2, 9.5)
v
where r, = p* — (pTu)? = (u x p)? is a nonnegative real quantity called the

radius of gyration of B with respectto L,.
Equation (9.3) can be written in matrix form as

I° =12y, (9.6)
where
Ixx Ixy Ixz
12=|1x Iy, Iy 9.7
I Iy I

is called the inertia matrix or inertia tensor of B about O, and
Ly = f Y +zHpdV,
1
Iy = / @ +xHpdV,
v

I, = f &+ y)pdV,
1%
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Lp=1Iy=— /V xzpdV, (9.8)

where x, y, and z are the coordinates of a differential volume of mass pdV
with respect to a reference frame A whose origin is located at 0. Note that
each element of IS represents either a moment of inertia or a product of
inertia of B about the coordinate axes of the reference frame A.

The inertia matrix is symmetric. Its elements depend on the choice of a
reference point and a reference frame. For brevity, we often omit the trailing
superscript whenever the reference point is clearly understood or is the center
of mass of a rigid body. For a rigid body of simple geometry, the inertia ma-
trix can be computed by using the volumetric integration given by Eq. (9.8).
For objects of irregular shape, the inertia matrix is often determined experi-
mentally.

9.2.3 Parallel Axis Theorem

Let C(x, ye, zc) be a Cartesian coordinate frame attached to the center of
mass C of a rigid body B with its coordinate axes parallel to those of A, as
shown in Fig. 9.2. Then it can be shown that

15 =I5 +mO? +20),

Iyoy = chy + m(z? +x62),

12 = IS+ m(x2 +yD),

19 = IS, + mxcy,

I = I, + mycz.,

13 = IXCZ + mz.x., (9.9)
where x., ¥, and z. are the coordinates of the center of mass in frame A.

Equation (9.9) is called the parallel axes theorem.

9.2.4 Principal Moments of Inertia

We have shown that the inertia matrix depends on the choice of a reference
point and the orientation of a reference frame. It turns out that for a certain
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orientation of a reference frame, the products of inertia will vanish. These m b+ ¢? 0 0
special coordinate axes are called the principal axes, and the corresponding I g = — 0 2 +a? 0 . %.12)
moments of inertia are called the principal moments of inertia. 12 0 0 a? + b?

Let 1 BO be the inertia matrix of a rigid body B about a point O expressed
in a reference frame A. Also, let L, be a principal axis that passes through
the origin O and points in the direction of u. By definition, u is parallel to the
vector of the second moment of B about L,. That is,

For a slender rod, a and b are much smaller than ¢. The inertia matrix can be
approximated by

00

1 . 1
19 u = u. (9.10) 0 8 9.13)
Equation (9.10) contains three linear homogeneous equations in three un-

knowns: uy, Uy, and u,. The condition for existence of nontrivial solutions
is

9.3 MOMENTUM

In this section the linear and angular momentum of a rigid body are defined.

Ixx —A Ixy Ixz
Iy ILy—A I, |=0. 9.11)
I Iy I,— A : 9.3.1 Linear Momentum

The linear momentum of a mass element p dV about a point O, expressed in

. . . . . 0
Hence the eigenvalues and eigenvectors of the inertia matrix I correspond a reference frame A, as shown in Fig. 9.2, is defined as

to the principal moments of inertia and the directions of principal axes, re-
spectively. In general, corresponding to each reference point there exists at
least one set of three mutually perpendicular principal axes of inertia (Kane
and Levinson, 1985).

_9

d1° =
dt

pdV. (9.14)

Hence the total linear momentum of the material body B about O is given by

Example 9.2.1 Inertia Matrix of a Rectangular Bar  Consider a rectangu-
lar bar of cross section a x b and length ¢ as shown in Fig. 9.3. Assuming
that the material of the bar is homogeneous, the mass m of the bar is equal to
pabc. It can be shown that the axes of the center-of-mass coordinate system
shown in Fig. 9.3 are already aligned with the principal axes of the bar. Hence
the products of inertia are all zero, and the resulting inertia matrix is

dp
19= | —=pdV. )
/V - P (9.15)

With reference to the center of mass, the position vector p of the mass element
o dV can be written as

p=PpPc+r, (9.16)

where r = 4R¢ Cr denotes the position of the mass element with respect
to the center of mass C and expressed in the reference frame A. Here the
rotation matrix “Rc is used to transform the vector “r from frame C to A.

b | i Substituting Eq. (9.16) into (9.15), we obtain
dp. ar
————— = = — T 1° = dv —pdV. 1
. //L /CM 7 /V —p +[vdtp 9.17)

For a rigid body of constant mass, it can be shown that the integral and the
time derivative in the second term on the right-hand side of Eq. (9.17) can be

FIGURE 9.3. Rectangular bar. interchanged. Hence following the definition of a center of mass, the second
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term vanishes and Eq. (9.17) reduces to denotes the angular momentum of motion about the center of mass, wp is the
angular velocity of B, and v, denotes the linear velocity of the center of mass
with respect to the reference frame A.

Equation (9.22) states that the total angular momentum of B about the
origin O is equal to the angular momentum of a point mass with mass m
concentrated at the center of mass, plus the angular momentum of rotation
about the center of mass. Since Eq. (9.23) takes the same form as Eq. (9.2), it
follows from Eq. (9.6) that h® can be written as

dp.
1° = d‘; fpdV:mvc, (9.18)
1%

where v, = dp./dt denotes the linear velocity of the center of mass with
respect to the reference frame A. Equation (9.18) implies that the total linear
momentum of a rigid body is equal to the linear momentum of a point mass
with mass m located at the center of mass.

h¢ = I§ ws, (9.24)
9.3.2 Angular Momentum
where I§ denotes the inertia matrix of B about the center of mass C and
expressed in the reference frame A. In this book, unless otherwise specified,
the center of mass is taken as the reference point and the trailing superscript
is omitted. ' '

Referring to Fig. 9.2, the angular momentum dh® of a mass element p dV
about a reference point O and expressed in a reference frame A is defined as
the moment of its linear momentum about O:

d
dn° = <p x ;l-ltf) pdV. (9.19)

Therefore, the total angular momentum of B about O is 9.4 TRANSFORMATION OF INERTIA MATRIX

he = / <p x %’-) pdV. (9.20)
\4

Substituting Eq. (9.16) into (9.20), we obtain

dp. dr
h? = | p. av — ) pdv
(pxdt)/vp +/v(rxdt>p
d dp.
— \% . 9.21
+pcx<dt/;rpd )+/Vrpde(dt> 9.21)

The last two terms in the expression above vanish since both contain the factor

/rpdV = 0.
v

Hence the total angular momentum about O is given by

The angular momentum given in Eq. (9.24) can be expressed in any reference
frame. Expressing Eq. (9.24) in the fixed reference frame A and dropping the
trailing superscript C, we obtain

Ah = 415 4wp, (9.25)

where a leading superscript denotes the frame in which a vector or an inertia
matrix is expressed. Expressing Eq. (9.24) in a body-fixed, center-of-mass,
coordinate frame C, we have

“h = I “wp, (9.26)

where ‘%@ denotes the angular velocity of body B relative to the fixed frame
A and expressed in the body frame C. That is, “wp = “R(. “wp, where “Rc is

a rotation matrix describing the orientation of C relative to A.
Since h is a vector, its transformation follows that of a vector. Specifically,
h® = x v¢) +h¢, 9.22)
m(Pe X Vo) + ( Ah = “Re¢ Ch. (9.27)

where o
Substituting Eqs. (9.25) and (9.26) into (9.27), we obtain

dr
hC=/ (rxm) dV=/rx(w xr)pdV (9.23)
v ar )’ v ? AIs “wp = *R¢ €I “wp. (9.28)
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In words, the kinetic energy of a rigid body B is equal to the kinetic energy of
a point mass of mass m located at the center of mass, plus the kinetic energy
of rotation about the center of mass.

Substituting ‘@ = 4R “wp into Eq. (9.28) results in

4Ip = 4Rc ‘I *R. 9.29)

Equation (9.29) transforms an inertia matrix expressed in one reference frame
into another. Both inertia matrices are taken about the center of mass C. The
elements of €I are constant since they are expressed in the body-fixed co-
ordinate frame C. However, the elements of 4/z are not because they are
expressed in the fixed frame A and the orientation of B relative to A may be
time dependent. The dependence of Al arises from the rotation matrix “Rc.

9.6 NEWTON-EULER LAWS

In this section the Newton—Euler laws of motion are reviewed. Based on these
laws, a recursive method of analysis is developed in the next section.

9.6.1 General Reference Point

We assume that there exists an inertia frame with respect to which the
Newton—Euler laws can be applied. As shown in Fig. 9.4, let A(x, y, z) be an
inertia frame, 19 the linear momentum of a rigid body B about the origin O
and expressed in A, and hO the corresponding angular momentum. Also let
£ and n be the resultants of forces and moments exerted on the rigid body

9.5 KINETIC ENERGY

Referring to Fig. 9.2, the kinetic energy dK of a mass element p dV with
respect to a reference frame A is defined as

dK = % vivpdV, (9.30) B about the origin O. Then the Newton—Euler laws can be stated as
where v denotes the velocity of a mass element p dV. Therefore, the total ¥ = o (9.35)
kinetic energy of B is given by ey
O e
n” = T (9.36)

| .
K = ~/ vivpdV. 9.31)
2Jy

We can express v in terms of the linear velocity of the center of mass and
the angular velocity of the moving body as

V=V,+wp XTI. (9.32)

Substituting Eq. (9.32) into (9.31), we obtain

1
K = -v’fvcf pdV + (v, ow)Tf rpdV
2 \%4 \%

+ —;—wg (/ rXx (wg XT)p dV) ) (9.33)
v

The second term in Eq. (9.33) vanishes because it follows the definition of
the center of mass. The integrand in the third term represents the angular
momentum of B about the center of mass. Hence Eq. (9.33) reduces to

\ Inertia
frame A

X fO

K = lVTWLVC + %(A)};IB(OB. (9.34)

AL FIGURE 9.4. Resultant force and moment acting on a rigid body.
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Equations (9.35) into (9.36) are two fundamental dynamical equations of Because of Egs. (9.38) and (9.40), Eq. (9.42) reduces further to
motion. The main difference between dynamical and kinematical equations is
that dynamical equations apply only in an inertia frame, whereas kinematical
equations are valid in any frame of reference. For engineering applications,
any frame that is fixed to the ground can be considered as an inertia frame. In
this book we use the terms inertia frame, base frame, and fixed frame inter-
changeably. Any vector that is described in a fixed frame is called absolute as

opposed to relative.

n¢ = ih—c
dt

In words, the rate of change of angular momentum of B about its center of
mass C is equal to the resulting moment exerted at the same point.

The derivative of h® can be developed most conveniently in the body-
fixed, center-of-mass, coordinate frame C because the inertia components of
B are constant in C. Substituting Eq. (9.26) into (9.43), dropping the trailing
superscript C, and expressing the resulting equation in frame C yields

(9.43)

9.6.2 Center of Mass as the Reference Point

When an arbitrary point is taken as the reference point, it may be inconvenient
to apply the basic laws of motion. In what follows, we show that when the
center of mass is used as the reference point, the motion of a rigid body can
naturally be split into two parts: a linear motion of its center of mass plus a
rotational motion of the rigid body about the center of mass.

Referring to Fig. 9.4, let C be the center of mass of a rigid body B. First,
we apply Newton’s law. Substituting Eq. (9.18) into (9.35) gives

d(“I “wp)

c

= ——— 9.44
n o (9.44)
Note that the differentiation of h® in Eq. (9.44) is taken with respect to the

inertia frame A. Applying Eq. (4.19) to (9.44) yields
“n= s “@p + “wp x Iz “@s). (9.45)

Equation (9.45) is called Euler’s equation of motion for the center-of-mass

0 — d (mvc). coordinate frame.

dt ©-37) Euler’s equation of motion can also be written in the fixed frame A. Mul-
For a body of constant mass, Eq. (9.37) reduces to gglyngt;;’gthA:j:‘?nngii Sj}g% 2‘3;:’]3@ eaggt:ilzking use of the relationships
£ = ’"CZV,C- (©.38) An = (“Rc I “RY) %5 + ‘w5 x [(“Rc CTs *RY) “wpl,  (9.46)

Equation (9.38) is called Newton’s equation of motion for the center of mass. or simply
Next, we consider the rotational motion of the rigid body B. Differentiating A= AL Aop 4+ fop x (s “wp). ©0.47)

Eq. (9.22) with respect to time yields

dh®  dhC dv, Equation (9.47) is called Euler’s equation of motion for a nonbody fixed

—_— =t m <pc X ) . (9.39) frame, a coordinate frame that is located instantaneously at the center of mass
with its coordinate axes parallel to those of the inertia frame A. Although
Egs. (9.45) and (9.47) have similar form, they are fundamentally different.
The inertia elements in Eq. (9.45) are constant, whereas those in Eq. (9.47)
are time dependent. Hence we often use Eq. (9.45) instead of (9.47) to avoid
any possible confusion.
For the direct dynamics problem, the resulting forces are given and the mo-
tion of a rigid body is obtained by integrating the differential equations (9.38)
and (9.45). For the inverse dynamics problem, the motion of a rigid body is
prescribed as a function of time, and the forces required to produce that mo-
tion are obtained by substituting the position, velocity, and acceleration of the
rigid body directly into Egs. (9.38) and (9.45) or (9.47).

dt dt dt

Let £f€ and n€ be the resultants of forces and moments exerted at the center
of mass C as shown in Fig. 9.4. Then it can be shown that

0 = €, (9.40)
n® = n® 4 p. x f€. (9.41)

Substituting Eqs. (9.39) and (9.41) into (9.36), we obtain

dh® dv
nc+chfC=“67t‘+m<ch dtc).
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Special Case When the axes of the center-of-mass coordinate frame coin-
cide with the principal axes of B, Eq. (9.45) reduces further to

ny = Iexx — wywz(lyy — 1),
Ry = yyd’y — Wy (Iy; — Liy),
n, = I, — Wy Wy (Iex — Iyy)a (9.48)

where I, I,,, and I,, are the principal moments of inertia about the center-
of-mass coordinate frame.

9.7 RECURSIVE NEWTON-EULER FORMULATION

In this section we present a recursive Newton—Euler formulation for the dy-
namical analysis of serial manipulators. The Newton—-Euler formulation in-
corporates all the forces acting on the individual links of a robot arm. Hence
the resulting dynamical equations include all the forces of constraint between
two adjacent links. These forces of constraint are useful for sizing the links
and bearings during the design stage. The method consists of a forward com-
putation of the velocities and accelerations of each link, followed by a back-
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Z

Jointi+ 1
A4

ward computation of the forces and moments in each joints.
The forces and moments acting on a typical link i of a serial manipulator
are shown in Fig. 9.5. For the purpose of analysis, the following notations are

employed:
f;;_1: resulting force exerted on link i by link i — 1 at point 0,-,.{.
f*: inertia force exerted at the center of mass of link i.
i;: inertia matrix of link i about its center of mass and expressed in the
ith link frame.
n; ;. resulting moment exerted on link i by link i — 1 at point O;_;.
n’: inertia moment exerted at the center of mass of link i.
pi: position vector of the origin of the ith link frame with respect to
the base link frame, p; = 0y O;.
p.i: position vector of the center of mass of the ith link with respect to
the base link frame, p,; = 0oC;.
r;: position vector of the origin of the ith link frame with respect to
the (i — Dth link frame, r; = 0;_0;.
r.;: position vector of the_c_ggter of mass of link i with respect to the
ith link frame, r.; = O;C;.
v;: absolute linear velocity of the origin O;.

Xo

FIGURE 9.5. Forces and moments exerted on link i.

v.;: absolute linear velocity of the center of mass of link i.

v;: absolute linear acceleration of the origin O;.

v;: absolute linear acceleration of the center of mass of link i.
;. unit vector pointing along the z;-axis.

w;: absolute angular velocity of link i.

;. absolute angular acceleration of link i.

9.7.1 Forward Computation

We first compute the angular velocity, angular acceleration, linear velocity,
and linear acceleration of each link in terms of its preceding link. These ve-
locities can be computed in a recursive manner, starting at the first moving
link and ending at the end-effector link. The initial conditions for the base
link are vg = Vg = wg = @wg = 0.

(a) Angular Velocity Propagation. Due to the serial construction of a
manipulator, the angular velocity of link i relative to link i — 1 is equal to
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2;_16; for a revolute joint and O for a prismatic joint, where z;_; denotes a
unit vector pointing along the ith joint axis. Hence the angular velocity of
link i can be written as

0 = { w;_1 +2;_16; for arevolute joint,
;=

9.4
@ for a prismatic joint. (949

Expressing Eq. (9.49) in the ith link frame, we obtain

iy = ’:Ri_l( i~1g;_1 +i712;_16;) for arevolute joint, 9.50)
! Ry lw;_, for a prismatic joint,
where
091' S@i 0
iRi_l = —C(X,'SQ,' CO[,'CH,' SK; , (951)
SOliSGi ——soz,c@,- Co;

and ~'z;_; = [0, 0, 117 is a unit vector pointing along the ith joint axis and
expressed in the (i — 1)th link coordinate system.

(b) Angular Acceleration Propagation. The angular acceleration of
link i is obtained by differentiating Eq. (9.49) with respect to time:

o = @1 +2i_10; + w;—y x 2;16; for a revolute joint, (9.52)
T @i for a prismatic joint. '

Expressing Eq. (9.52) in the ith link frame, we obtain

‘ iRi—l(i—ld)i—l + f'_lzi—léi
‘o; = +~lw;_; x 7'z;_16;) for arevolute joint, (9.53)
Ry e, for a prismatic joint.

Equation (9.53) provides a recursive formula for computing the angular ac-
celeration of link ¢ in terms of link i — 1.

(c) Linear Velocity Propagation. Referring to Fig. 9.5, we observe that
(1) if the ith joint is a revolute joint, link i does not translate along the ith
joint axis, and (2) if the ith joint is a prismatic joint, there is a translational
velocity of d; along the ith joint axis. Hence the velocity of O; can be written
in terms of O;_; as follows:

vi = { Vil + @ X1 for a revolute joint, 9.54)

Vi1 +@; X r; +17;_1d; for aprismatic joint.
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We may express Eq. (9.54) in the ith link frame as

iy, — | Riza ly i + o x 1y for a revolute joint,
;=1 - i A . yOIULE Joi
Ri—1 (Tl + lz;_1dy) + 'w; x fr;  for a prismatic joint,

(9.55)
where
. ai
‘= | disa; | (9.56)
d;co;

The vector 'r; is a constant vector for a revolute joint and a variable for a pris-
matic joint. Equation (9.55) is a recursive formula for computing the linear
velocity of the origin of link i in terms of link i — 1.

(d) Linear Acceleration Propagation. Linear acceleration of the origin
O; of frame i can be obtained by differentiating Eq. (9.54) with respect to
time:

Viet +@; X 15 +w; X (0; X 1)

"'i = ‘.’,'-1 +Z,'_IJ,' +(¢), X r; .
+ @i X (@; X 1)+ 20; X (z;-1d;) for a prismatic joint.

9.57)

for a revolute joint,

Expressing Eq. (9.57) in the ith link frame, we obtain

Rict TWisi 4+ x ry
+w; x (‘o x ')
i = iRi—x(i“I"’i—1 + 71z d) + o x Ty
+'(0i X (I(t)i X ll',')
+2%w; x (Riy 'z1d))

for a revolute joint,

for a prismatic joint.
(9.58)

Equation (9.5¢) is a recursive formula for computing the linear acceleration
of link i in terms of link i — 1.

(e) Linear Acceleration of the Center of Mass. The linear acceleration
of the center of mass is computed by:

i

Vi =i+ 0 X g 4 o x (lop x Trg). (9.59)
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(f) Acceleration of Gravity. Finally, we transform the acceleration of
gravity from the (i — 1) link frame to the ith link frame as follows:

ii—1
i—lf;["i_l i—1

(9.69)

i=InT i=lz. , for arevolute joint,
T = o
7;_, for a prismatic joint.

g =IR,_; g 9.60 .
g -1 8 ( ) If there are viscous forces in the joints, the actuator torques or forces are

computed as follows:
9.7.2 Backward Computation

Once the velocities and accelerations of the links are found, the joint forces hi—l
can be computed one link at a time starting from the end-effector link and
ending at the base link. We first apply Egs. (9.38) and (9.45) to compute the

inertia force and inertia moment exerted at the center of mass of link i:

i—1fT (9.70)

i=InT. =1z, + b;6; for arevolute joint,
Tl
ii—1

i-lg, 1+ b;d; for a prismatic joint.

where b; is the damping coefficient for joint i.

Given the desired joint velocities and joint accelerations, we compute the
velocities and accelerations of the links followed by the forces of constraint,
recursively. The instantaneous velocities and accelerations of link i are com-
puted from those of link i — 1 by Egs. (9.50), (9.53), (9.58), and (9.59).
The process starts with the first moving link and ends at the end-effector
link. Once the velocities and accelerations of the links are found, the reac-
tion forces between two adjacent links are solved by a backward procedure.
Namely, the forces of constraint at joint i are calculated from those of joint
i + 1 by Egs. (9.65) and (9.66), and the process begins with the end-effector
link and ends at the first moving link. '

if;-k = —m; ii’ci, (961)
Y= iy — Y x (T ') (9.62)

‘n

Next, we write the force and moment balance equations about the center of
mass of link i. Referring to Fig. 9.5, we have

if;k + ifi,i—l - ifi+1,i +m; ig =0, (9.63)
4 g — i — O+ rg) x i1+ re x g = 0. (9.64)

Writing the Egs. (9.63) and (9.64) in recursive forms, we obtain
. , . . Example 9.7.1 Newton—FEuler Dynamics of a Planar 2-DOF Manipula-
i ="ty —mi'g— T, (9.65) tor Let us consider the planar 2-dof manipulator shown in Fig. 6.4 as an
example. The D-H transformation matrices are

i

i ="M+ O+ rg) x i~ Tt x i — g (9.66)

Once the reaction force and moment are computed in the ith link frame, they cdp —s6 0 aich; chy —s6, 0 axcHh,
are converted into the (i — 1)th link frame by the following transformations: o, _ | 861 cB 0 ais6 1, _ | s62 cb 0 axsh,
Al = , A=
' . 0 0 1 0 0 0 1 0
o =R i, 9.67) 0 0 0 1 0 0 0 1 ‘
=R (9.68) (9.71)

Equations (9.65) through (9.68) can be used to solve for if; ;1 and ‘m;;_1
recursively, starting from the end-effector link. For the end-effector link,
"f, .1, and "N, . represent the end-effector output force and moment and
are considered as known.

Assuming that the links are homogeneous, the vectors ‘r; and ‘r; are given
by

A a; ‘ —a; /2
'rp=10 and ‘ry = 0 fori =1,2. (9.72)

9.7.3 Joint Torque Equations 0 0
Actuator torques or forces, 7;, are obtained by projecting the forces of con-

Let the two links be square beams of relatively small cross-sectional area.
straint onto their corresponding joint axes; that is,

Then the inertia matrix of link i about its center of mass coordinate frame is
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given by " ay (6156, — 62¢62) — ay(6) + 6)*

Vo= a;(ficO + 6256,) + ar(Br + &) |

moa 0 0090 0
L =—2]10 1 0| fori=1,2. _ : .
12 19 01 a1 (6136, — 62¢6;) — 1ax (61 + 62)?

Vi = | ai(fict; + 62562) + Lay (61 + 62)
0
L

Assuming that the acceleration of gravity points in the —yop-direction, Og —
[0, —gc, O]T. We now apply the Newton—Euler method to calculate the link
velocities and accelerations, and then forces and moments, recursively.
(a) Forward computation (i = 1, 2). First, we compute the velocities and
accelerations of link 1. Substituting %wy = ° % 0

The acceleration of gravity expressed in the second link frame is

vo = Wy = "V = 0into

20 = 2R, 'g = [—g.s0 — g,y 01T,
Egs. (9.50), (9.53), (9.58), and (9.59), we obtain g= Ri'g=I[-gs0 —gcbn 0]

393

T 0 (b) Backward computation (i = 2, 1). For the backward computation, we
R first compute the forces exerted on link 2 and then link 1. Assuming that
! p ’ there are no externally applied forces, 2f3 5 = 2n3 ; = 0. Substituting 2f3 ; =
- ! - n; , = 0 along with the velocities and accelerations of link 2 obtained from
0 the forward computation into Egs. (9.61), (9.62), (9.65), and (9.66) fori = 2,
Loy = O , we obtain
0
LY . o IR -
9-2 a1(91502 91 092) 2a2(01 + 02)
- 2 .- - . -
Yi=q 511 , f; =—my| a,(61c6, + 91289%) + %a2(91 +6) |,
0
: 0
1 a -912 ZH; — __mza%
Vet = 2 901 12 6, + 6,

a1 (8158, — 67chy) — 1ar (61 + 62)* + geshia
2f2,1 =mz | a(6ico + 912892) + %02(91 +63) +g.c61p |
0

The acceleration of gravity expressed in the first link frame is

lg= R Og = [—gs01 — gt O

0
Next, we compute the velocities and accelerations of link 2. Substituting the 2n,, = 0
velocities and accelerations of link 1 into Egs. (9.50), (9.53), (9.58), and

(9.59), we obtain

%mza%(él +8) + %mzalaz(él ) + 62s56,) + %mchaZCel'z

-0 T Substituting the foregoing forces and moments obtained for link 2 along with
2 0 the velocities and accelerations of link 1 into Egs. (9.61), (9.62), (9.65), and
w2 = b + 6 ’ (9.66) for i = 1, and making use of Egs. (9.67) and (9.68), we obtain
- 0 T L 12
B 61+ 6, B 0
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0
ny 6112

12 51

1.,%
m

+mi(—3a107 + g.s6r)

Yi0=| malaifh — Lar(61 + 62)*s0; + Lar (@) + Gr)ch, + g.cO1]
+m (3161 + g.cor)

0
0o -

0

nio= .
(%mla% + tmaal + maat + mya1axc6,)0,

+(%m2a% + %mzalaﬂ@z)éz — maaya;50, (616 + %ézz)
+%m1gca1€91 + magcarctdy + %ngcazcelz i

(c) Joint torques computation. Finally, we apply Eq. (9.69) to compute the

required joint torques. This results in two dynamical equations:

71 = [(§m1 + ma) a} + maaraxc6s + ymaa3] 6y

+ (%mzalazc% -+ %mzag) éz — Moa1d;88 (é]ég + %922)

+ & [(%m1 + mz) aco + %mzazceu] , (9.73)

1 AW 1 24 1 32
T = (%mzalazcez -+ gmzaz) 0 + §m2a292 + 5"’”01&280291

+ 3magcaschiy. (9.74)

As expected, the dynamical equation for the second joint is simpler than
that for first joint. The various dynamical effects, including the Coriolis
and centrifugal velocity coupling, and gravitational effects are demonstrated
clearly in this example. It can be seen from Egs. (9.73) and (9.74) that the
dynamical model is fairly complex even for such a simple 2-dof manipulator.
Using the Newton—Euler recursive method, all the joint reaction forces are

also found.

[ mal—a10? — 1ax (61 + 62)%c6, — 1ar(B) + )30, + gc561] i
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9.8 LAGRANGIAN FORMULATION

The Newton—Euler equations of motion contain all the forces of constraint be-
tween adjacent links as variables. Therefore, additional operations are needed
to eliminate these forces of constraint in order to obtain closed-form equa-
tions. The Lagrangian method, on the other hand, formulates the equations
of motion by using a set of generalized coordinates. It eliminates all or some
of the forces of constraint at the outset. The following notations are used
throughout this section:

G: vector of gravitational forces.

. inertia matrix of link i about its center of mass and expressed in the

base link frame.

: link i Jacobian matrix.
: Jacobian submatrix associated with the linear velocity of the center

of mass of link i.

: Jacobian submatrix associated with the angular velocity vector of

link i.

kinetic energy of a mechanical system.
Lagrange function, L = K — U.
manipulator inertia matrix.

: (i, j) element of M.

number of generalized coordinates.

. position vector of the center of mass of the ith link with respect to

the kth link frame and expressed in the fixed base frame.

;. generalized active force corresponding to the ith generalized coordi-

nate.

: vector of generalized forces, Q = [Q1, O3, ..., Q.]".
i. ith generalized coordinate.
. vector of generalized coordinates, q = [g1, ¢, .. ., ga]"-

potential energy of a mechanical system.
velocity coupling vector.

. virtual work.

The Lagrangian function is defined as the difference between the kinetic

and potential energy of a mechanical system:

L=K-U. (9.75)
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Note that the kinetic energy depends on both location and velocity of the links
of a manipulator system, whereas the potential energy depends only on the
location of the links. Lagrange’s equations of motion are formulated in terms
of the Lagrangian function as (Goldstein, 1980)

A (LN _OL _ 45 ii2,..n (9.76)
dt \ 9g; ag;

may use these constraints to eliminate ¢ of the 6m coordinates. Hence we
are left with n = 6m — ¢ independent coordinates and the system is said
to have n degrees of freedom. The elimination of dependent coordinates can
also be accomplished by the introduction of # new independent variables, say
q1- 92 - - - » qn, such that the 6m old coordinates can be expressed in terms of
the n new independent variables. We call these n new independent variables a
set of independent generalized coordinates. Thus the number of independent
generalized coordinates is equal to the number of degrees of freedom of a
multibody mechanical system. We observe that given a mechanical system,
the generalized coordinates can be defined in several different ways.
Lagrangian equations of motion formulated in terms of a set of indepen-
dent generalized coordinates and generalized forces are called Lagrangian
equations of the second type. Using the second type of formulation, all the
forces of constraint in the joints do not appear in the equations, and the num-
ber of equations is exactly equal to the number of degrees of freedom. In
formulating the equations of motion, however, it is sometimes more conve-
pient to employ more coordinates than the number of degrees of freedom.
Under such a situation, the coordinates are no longer independent and the re-
sulting equations of motion must be solved along with an appropriate set of
constraint equations using, for example, the method of Lagrangian multipli-
ers. We call such a set of nonindependent coordinates redundant Lagrangian
coordinates. Equations of motion formulated in terms of a set of redundant
Lagrangian coordinates are called Lagrangian equations of the first type. The
first type of formulation will contain some unknown forces of constraint as
the Lagrange multipliers.

Lagrange’s equations of the first type are applicable to mechanical sys-
tems with either holonomic or nonholonomic constraints. The equations of
constraint and their first and second derivatives must be adjoined to the equa-
tions of motion to produce a number of equations that is equal to the number
of unknowns. In this regard, Lagrange’s equations of the first type are more
suitable for modeling the dynamics of parallel manipulators, where there are
numerous kinematical constraints due to the presence of several closed loops.

Although Lagrange’s equations of the second type are only applicable to
mechanical systems with holonomic constraints, they are particularly suitable
for modeling the dynamics of serial manipulators. For a serial manipulator, it
turns out that the number of joints is equal to the number of degrees of free-
dom. Therefore, the joint variables, q = [g1, g2, - . ., g»]", constitute a set of
independent generalized coordinates. Each component of q represents either
the joint angle of a revolute joint or the translational distance of a prismatic
joint. Consequently, a generalized coordinate g; does not necessarily have the
dimension of length, and the corresponding generalized force, Q;, does not

In what follows, we first define the generalized coordinates. Then we for-
mulate expressions for the kinetic energy, potential energy, and generalized
force of a robot manipulator.

9.8.1 Generalized Coordinates

Various constraints exist in a mechanical system. A kinematic constraint im-
poses some conditions on the relative motion between a pair of bodies. Per-
haps the most frequently encountered constraints are those provided by the
joints that physically connect several links to form a mechanical system.
Constraints can be classified into holonomic and nonholonomic con-
straints. A kinematic constraint is said to be holonomic if the conditions
of constraint can be expressed as algebraic equations of their coordinates,
and possibly the time, of the form

f(x1,%2,...,1) =0, 9.77)

where x; denotes the coordinates of a particle or a rigid body. A constraint
that cannot be expressed in the foregoing form is said to be nonholonomic.
The equations of constraint can be derived from the geometry of a joint. For
example, the constraints imposed by a spherical joint can be stated as the
position vector of the center of the sphere of one body always being equal to
that of the enclosing socket of the other. Hence the constraints imposed by a
spherical joint are holonomic. Similarly, the constraints provided by revolute,
prismatic, and cylindrical joints are also holonomic.

The configuration of a mechanical system is known completely if the posi-
tion and orientation of all the bodies in the system with respect to a reference
frame are known. Since a rigid body has 6 degrees of freedom, a mechanical
system with m moving bodies requires 6m coordinates to specify its con-
figuration completely in a three-dimensional space. In a mechanical system
such as a robot arm, however, these bodies are often subject to mechani-
cal constraints imposed by the joints. As a result, these 6m coordinates are
no longer independent. Fortunately, most of the constraints encountered in
a robotic system are holonomic. If there exist ¢ holonomic constraints, we
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necessarily have the dimension of force. However, the product Qg; always

7= { z;_; for arevolute joint,
has the dimension of work. ot

0 for a prismatic joint. (9.82)

where /~1p* is a position vector defined from the origin of the j — 1 link
frame to the center of mass of link i and expressed in the base frame. We note
that J7; and J; denote the partial rate of change of the velocity of the center
of mass and the angular velocity of link / with respect to the jth joint motion.
Since the motion of link i depends only on joints 1 through i, the two column
vectors above are set to zero for j > i. Furthermore, since both z;_; and
i=1p% depend on g, the submatrices J,; and J,,; are configuration dependent.
Using the notations above, J,; and J,,; can be written as

9.8.2 Kinetic Energy

Let us examine the kinetic energy of a typical link as shown in Fig. 9.5. Ap-
plying Eq. (9.34), the kinetic energy of link i can be written as

K,' = %v;fimivci + 'Iiw',‘rliwb (978)

The velocity vectors and the inertia matrix in Eq. (9.78) can be expressed in

any reference frame. Let I; be the inertia matrix of link i about its center of Joi = (I J&, .. T8, 0,0, ..., 0], (9.83)
mass and expressed in the base frame, and ‘I; be the inertia matrix of link i R ]
about its center of mass and expressed in the link frame i. Then following Joi = [T J2in o1 75, 0,0, ..., 0]. (9.84)

Eq. (9.29), we have Substituting Eq. (9.80) into (9.78) and then summing over all links, we

I = %R, 'T,(°R)". (9.79) obtain an expression for the kinetic energy of the system as

We note that ‘I; is time invariant. However, I; depends on the robot arm pos-
ture, because it is expressed in the base frame and the orientation of link i
with respect to the base is a function of joint variables.

The velocity of the center of mass and the angular velocity of link i can
be found by using the recursive method developed in the preceding section.
Alternatively, they can also be found by applying the theory of instantaneous
screw motion. Either way, we can express them in matrix form as

1 n
K =2 3 (hmive + @ o)
i=1

1 n
=5 2 (i@ mi (1) + (i) ()]
i=1

1 - T - T T .
=54 I:;(JvimiJ,,i + JLI; Jwi)} q. (9.85)

X = Jiq, (9.80)

).(c,zl:::jl] and Jl:[:;:;]

Here J; is a 6 x n matrix that maps the instantaneous joint rates into the
instantaneous velocity of the center of mass and the angular velocity of link
i,and J,; and J,; are two 3 x n submatrices of J;. We call J; the link Jacobian
matrix and J,; and J,; the link Jacobian submatrices.

Let ij,. and Jafi be the jth column vectors of J,; and J,;, respectively. Then
applying the theory of instantaneous screw motion for j < i, we obtain

For convenience, we define an n x n manipulator inertia matrix as

h n
where M= (Iimidy + 5L Jui). (9.86)
i=1

In this way, the total kinetic energy of a robot arm can be expressed in terms
of the manipulator inertia matrix and the vector of joint rates:

K =1q"Mq. (9.87)

We note that the manipulator inertia matrix M defined in Eq. (9.86) involves
the link Jacobian submatrices J,; and J,;. Therefore, the manipulator iner-
tia matrix is configuration dependent. Similar to the inertia matrix of a rigid
body, the manipulator inertia matrix is a symmetric, positive-definite matrix.
The quadratic form of the equation indicates that the kinetic energy is always

; : =l f lute joint
i _Jzjimix7p or a revolute joint, ¢ _
Y { “ (9.81) positive unless the system is at rest.

iz for a prismatic joint,
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9.8.3 Potential Energy be modeled by a simple expression: —b;g;. Therefore the virtual work con-

The potential energy stored in link i of a robot arm is defined as the amount of tributed by this type of frictional forces is given by

work required to raise the center of mass of link i from a horizontal reference

T

plane to its present position under the influence of gravity. With reference to 8W = —f; 4q, (992)
the inertia frame, the work required to displace link i to position p,; is given ) ) - . .
by —m;g"p.i. Hence the total potential energy stored in a robot arm is where £, = [b1§1, b2¢2, . .., bngn)’ denotes the frictional torques or forces in

‘ the joints and the minus sign indicates that the direction of frictional torque
n . . o . . . . . .
_ T or force is always opposite to the joint velocity. Adding this contribution to
U= X]: mig Pei- (9.88) the vector of generalized forces in Eq. (9.91), we obtain
1=

. Q=1+ J'F. —f. (9.93)
9.8.4 Generalized Forces °

We notice that in the absence of friction and externally applied force, the
vector of generalized forces and the vector of joint torques are equivalent (i.e.,
Q = 7). In this case, the components of the generalized force vector are the
actuator forces for prismatic joints and torques for revolute joints.

In this section we investigate various contributions to the vector of gen-
eralized forces. Except for gravitational and inertia forces, the generalized
forces account for all the other forces acting on a robot arm that are con-
sistent with the mechanical constraints. The vector of generalized forces,
Q=1[01, 02, ..., 0,17, is defined by the principle of virtual work as

W = QTsq. (9.89) 9.8.5 General Form of Dynamical Equations

Now we are in a position to formulate the dynamical equations of a serial
manipulator. First, we substitute Egs. (9.87) and (9.88) into (9.75) to obtain a
compact expression for the Lagrangian function:

We first consider the case in which actuators exert forces or torques at
the joints and external force and moment are applied at the end effector. Let
T = [11, ..., T,]" be an n-dimensional vector of joint torques generated by
the actuators and F, = [fz, n;r]T be a six-dimensional vector of resultant force
and moment exerted at the end effector. Then the virtual work produced by

these forces and moments is

Lo %
L=-4"Mq+ > mig'pei. (9.94)
=1

T T
§W =17 5q+F, dx, (9.90) Next, we differentiate the Lagrangian function with respect to g;, g;, and ¢

to formulate the dynamical equations of motion. To facilitate the derivation,
we expand the term for the kinetic energy into a sum of scalars. Let M;; be
the (i, j) element of the manipulator inertia matrix M; then Eq. (9.94) can be
written as

where 8x denotes a six-dimensional virtual displacement vector of the end
effector. Substituting the relation §x = J 8q into Eq. (9.90) and then equating
the resulting virtual work to that of Eq. (9.89) yields the vector of generalized
forces as

T n n n
Q=1+ J'F.. (9.91) I — _;_ S5 Mydid; + 3 migTpe (9.95)
The contribution of friction to the generalized force vector can also be for- i=l j=1 i=l
mulated. Frictional force is a highly nonlinear phenomenon that is difficult
to model accurately (Armstrong-Helouvry, 1991), yet it can have significant
effects on system dynamics. In a grease- or oil-lubricated bearing, there are
four regimes of lubrication: static friction, boundary lubrication, partial fluid
lubrication, and full fluid lubrication. In the fourth regime, frictional force

is proportional to the relative velocity between the contacting bodies. It can

Since the poteﬁtial energy does not depend on ¢;, taking the partial deriva-
tive of Eq. (9.95) with respect to g;, we obtain

) A
Py > Mg, (9.96)
ql j=1
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pling between joints. The velocity-squared terms correspond to the centrifu-
gal forces, and the velocity product terms correspond to the Coriolis forces.
The manipulator inertia matrix M is symmetric and positive definite and
therefore is always invertible. The off-diagonal terms of M represent the ac-
celeration coupling effect between joints.

Taking the total derivative of Eq. (9.96) with respect to time yields

(aql> Z Misg +Z (dM;jv Z Mijgj +Z[i o, qzq]

Jj=t j= 1Lk—
(997)
Taking the partial derivative of Eq. (9.95) with respect to g; yields

3 2aq <ZZMijJQk> +Zm,g ( pq>_ (9.98)

j=1 k=

Example 9.8.1 Lagrangian Dynamics of a Planar 2-DOF Manipulator In
this example we formulate Lagrange’s equations of motion for the planar 2-
_ dof manipulator shown in Fig. 6.4. We note that the link coordinate axes are
aligned with the principal axes of each link. The two D-H transformation ma-
trices are given by Eq. (9.71). The center of mass of link i, expressed in link
frame i, is given by Eq. (9.72). Let 6, and 6, be a set of two independent
generalized coordinates. We compute the link inertia matrices, link J acobian
matrices, gravitational effects, and Lagrange’s equations of motion as fol-
lows.

(a) Link inertia matrices. Assuming that the moving links are homoge-
neous with a relatively small cross section, the inertia matrix of link i about
its center of mass and expressed in the ith link frame is

Note that the partial derivative of p.; with respect to g; is equal to the ith
column vector of the link Jacobian submatrix J,;. Hence Eq. (9.98) can be
written as

@ = Z Z aMf"q,qk + Zm,gTJ;'j. (9.99)

jlk

Finally, we substitute Egs. (9. 97) and (9 99) into (9 76) to obtain the dynam-
ical equations of motion: ¥ i

000
n s ST aF, J ; 1 2 )
> MG+ Vi+Gi=Q fori= 1,2,....n. (9.100) P =M 8 (1) (1) fori =1,2. (9.104)

j=1

" \\ ,' . &'}‘ 3 J, i ,"; ) i ] ]
where /[:) 't e 28 TS 14y . The inertia matrices of links 1 and 2 about their respective centers of mass
o 0 on M | oM and expressed in the base frame are obtained by substituting Eq. (9.104) for
V, = iy _ 297k Gk (9.101) i = 1 and 2 into (9.79). As a result, we obtain
j=1 k=1 GQk 2 36]1 !
n 1 i S291 -—891091 0
2 2
Gi=—) mgJl. (9.102) I = —ma} | —s6ich; c*6; 0|, (9.105)
; j 12 |0 0o 1
The first term in Eq. (9.100) accounts for the inertia forces, the second term 1 ) 5201, —892120912 0
represents the Coriolis and centrifugal forces, and the third term gives the I = '1’2"”2“2 —s612¢012 c*O2 01. (9.106)
gravitational effects. The n scalar equations given by Eq. (9.100) can be writ- N 0 0 1

ten in matrix form as ) . . .
(b) Link Jacobian matrices. The position vectors of the centers of mass of

links 1 and 2 with respect to the various link frames and expressed in the base
frame are given by

Mi+V+G=Q, (9.103)

where V = [Vl, e Vn]T, G= [Gl, e, Gn]T, and Q = {Qh ey Qn]T-
Equation (9.103) is called the general form of dynamical equations. The %a1091
vector V is called the velocity coupling vector. The vector G is called the Opr, = % a;so; | (9.107)

vector of gravitational forces. There are two distinct types of velocity cou- 0
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_, ‘T
1 5a,CEE
P = | jas@m ¥x (9.108)
. 0
—a1091 + %020012
Opﬁz =1 a186; + %028912 . (9.109)
i 0

The link Jacobian submatrices, J,; and J,;, are obtained by substituting

Eqgs. (9.107) through (9.109) into (9.83) and (9.84):

_—%alsel 0

Ju=1| faic6; 0|, (9.110)
0 0
[0 0

Jau=10 0], (9.111)
10
- S8
*611591-—%6128912 —%azﬁ

o= | aich +iaxchp  laedm |- (9.112)
i 0 0 “=
[0 0

Jo=10 0 (9.113)
|11

(c) Manipulator inertia matrix. The manipulator inertia matrix is obtained

by substituting Egs. (9.105), (9.106), and (9.110) through (9.113) into (9.86):

M = J,:rlmlfvl + I Ly + JEmadyy + 5 1T

1, 2 2 1.2 1 1,2
_ [ smiay +ma(ai + araxct + 3a3) ma(za1a2¢60; + 303 ]

1 1.2 1 2
ma(5a102¢0; + 3a3) 3maa;

(9.114)

(d) Velocity coupling vector. Taking the partial derivatives of the ma-
nipulator inertia matrix, Eq. (9.114), with respect to # in accordance with
Eq. (9.101) yields
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2
oM, oM\ ; 4
= —_— 66
" Z ( 36, 200, ) 1"

L1,
= —mya,a;56, (9192 + 50%) : (9.115)

2 2
oMy 1My ;1 ,
=3 — 6.6, = ~mpmarsB62.  (9.116
2 Z k=1( 20, 2 08, ) 0% 5M28132566; ( )

(e) Gravitational vector. The gravitational terms are obtained by substitut-
ing Eqgs. (9.110) and (9.112) into (9.102),

G, = %mlgcalcel + mag.aich + %mggcazceu, (9.117)

Gy = %mggcazcglz. (9.118)

(f) Lagrange’s equations of motion. Assuming that there are no exter-
nal forces exerted at the end effector and the joint friction is negligible, the
vector of joint torques and the vector of generalized forces are equivalent.
Lagrange’s equations of motion are obtained by substituting Eqgs. (9.114)
through (9.118) into (9.100). This results in the following two dynamical
equations of motion:

7 = [(§m1 +ma) a} + maaasch, + maad] 6,

+ (Amaaraschy + tmaal) By — maayarst (6,6, + 363)

+ g [(§m1 + ma) arch + smaarchia] (9.119)
v = (Amamiaxcts + tmyad) 6 + tmaal, + jmaaiars0,67

+ 1magearchi,. (9.120)

Hence we have arrived at the same equations obtained by using the recur-
sive Newton—Euler formulation. Using the Lagrangian formulation, forces of
constraint do not appear in the equations of motion.

Example 9.8.2 Langrangian Dynamics of a SCARA Arm  Let us study the
dynamics of a SCARA arm as a second example. The SCARA arm is con-
structed with four parallel joint axes. The first two and the fourth are revolute
joints, and the third is a prismatic joint. To simplify the problem, we consider
the motion of the first three moving links and combine the mass of the fourth
link and the load, if any, with the third link. In this way, we will be dealing
with a pure position problem. Figure 9.6 shows a schematic diagram of the
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X3

Yo

FIGURE 9.6. Schematic diagram of a SCARA arm.

first three moving links in which the coordinate axes of each link frame are
aligned with the principal axes of the link. The Denavit-Hartenberg parame-
ters are listed in Table 2.2, and the D-H transformation matrices are given by
Egs. (2.9) to (2.11). '

Assuming that all links are homogeneous with relatively small cross sec-
tion, the position vectors of the centers of mass are given by

'po = [~a1/2,0,0]",
’pe2 = [—a2/2,0,0]",
3pes = [0,0, —£/2]7,

where £ is the third link length. Let 6,, 6,, and d5 be a set of independent
generalized coordinates. We compute the link inertia matrices, link Jacobian
matrices, and the gravitational effects for the links, and substitute them into
Eq. (9.100) to obtain Lagrange’s equations of motion as follows.

(a) Link inertia matrices. The link inertia matrices about their centers of
mass and expressed in their respective link frames are
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0 0 0]
'y =—maal|0 1 0], 9.121)
2770 o 1)
{ [0 0 0]
%:Emza% 01 0}, (9.122)
[0 0 1
) 1 0 0]
313=—-£m3E2 010 (9.123)
! 10 0 0]

The link inertia matrices about their centers of mass and expressed in the
base frame are obtained by substituting Eqgs. (9.121) through (9.123) along
with their rotation matrices into (9.79):

1 8291 —891(29] 0
11 == -1—21’)11611 ~801C91 C291 0 y (9124)
0 0 1
1 i 829]2 —89]20912 0
Iz——l—imgag ~sOpp¢8y 20, 0, (9.125)
‘ 0 0 1
L 1 0 0
13=Em342 010 (9.126)
(0 00 -

(b) Link Jacobian matrices. The position vectors of the centers of mass of
links 1, 2, and 3 with respect to the various link frames and expressed in the
base frame are

%01091

= | Lasor | (9.127)
L
B %achhz

P = | laxshi | (9.128)
"0
—alcel + %azcelz

% = | @it + Laxsiy | (9.129)
N d
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- 0 M = JymyJor + Jg Iidon + Tfma iy + Ty o Jon + JjymsJus + Jg3 T Jus
Py = 0 , (9.130) 1 2
_d3 - %—E 5(11 00
— = mi 0 00
. 6120212 0 00
Pes _ZS_,_IZLE ’ ©-130) —alz + aa,¢ch; + %a% %alazcez + %a% 0
- 2 +my layaxch, + 3a2 1a3 0
o alcgl + azcglz | 0 0 0
Pes aéls i ;;?_SL}{Z ’ ©.132) —af + 2aia,¢6; + a% aa,ct, + a% 0
- 2 + m3 a1a,c6, + a3 a2 0. (9.139)
0 0 i

The link Jacobian submatrices, J,; and J,;, are obtained by substituting the

equations above into Eqs. (9.83) and (9.84): (d) Velocity coupling vector. Taking the partial derivatives of the manipu-

lator inertia matrix with respect to ¢; in accordance with Eq. (9.101) yields

—iais6; 0 0
Ja=1| lgic0, 0 0], (9.133) 3./0M;;  13M;
2 V. = j = kY . .
L "0 o000 1 ;X;(aqk 35q ) 4
000 . 1.
Ja=10 0 0], (9.134) = —(my + 2m3)aja,6, | 616, + =63 |, (9.140)
100 2
_ 3 3 . .
_alsel - %azselz —%a2S912 0 V2 — Z Z (a;MZJ _ %8M1k> q.ij
Jo=| aicO + iaxchn  faxchy 0|, (9.135) =1 k=1 \ Ok 942
0 0 0 ' 1 .
: = (§m2 +In3) a1a2s92912, (9.141)
000
Jo=10 0 0], (9.136) 3..3 M,  19M;
110 Vs = ( ] )qqk:o. (9.142)
: ];Zl aqk 2 8Q3 J

—a1s01 - 025912 —-a2s912 0

Jy=| @bt achn  axch 0 |, (9.137) (e) Gravitational vector. Assuming that the acceleration of gravity points

B 0 0 -1 | inthe negative zo-direction (i.e., g = [0, 0, —g.]"), the gravitational terms are
"0 0 0 obtained by substituting Eqgs. (9.133), (9.135), and (9.137) into (9.102):
Js=10 0 0]. (9.138) :
[ 11 0
X:mJg.TJ1 0, (9.143)
(c) Manipulator inertia matrix. The manipulator inertia matrix is obtained
by substituting Egs. (9.124) through (9.126) and (9.133) through (9.138) into
(ggG): g Egs. ( ) gh ( ) and ( ) gh ( ) ijgTJZ _ (9.144)
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3
G3 = - ijgT]ij = —ms3g. (9.145)
J=1

(f) Lagrange’s equations of motion. Assuming that there are no external
forces and moments exerted at the end effector and that the joint friction is
negligible, the vector of joint torques and the vector of generalized forces are
equivalent. Substituting Egs. (9.139) through (9.145) into (9.100) yields

1 =[(3m1+ma+ m3) a2 + (my + 2m3)araxcty + (3ma + ms) a%] 6,
+ [(%mz + m3) arasxchs + (%mz + m3) a%] 6>
— (m2 + 2m3)araz862 (6162 + 363), (9.146)
Ty = [(%mz + m3) ayaxch, + (%mg + m3) a%] 51 -+ (%—mz + m3) a%éz
(9.147)
(9.148)

+ (3my + ms3) a1a256:0%,
T3 = m36.i3 — m3gec.

Equations (9.146) through (9.148) are the dynamical equations of motion
for the 3-dof SCARA arm. The model is slightly more complex than the pla-
nar 2-dof manipulator. This is because the construction of first two joint axes
of the SCARA arm is essentially the same as that of the planar 2-dof manipu-
lator. In a SCARA manipulator, the first two joint axes control the horizontal
position of the end effector, while the third prismatic joint controls the verti-
cal position. The gravitational effects do not appear in the first two equations,
because the acceleration of gravity is parallel to the first two joint axes. We
observe that the motion of the third joint is completely independent of the
first two, and the third link merely acts as a load to the motion of the first two
joints.

9.9 INERTIA EFFECTS OF THE ROTORS
In previous sections we have assumed that each joint in a serial manipulator
is driven directly by a motor and that the inertia effects of gears and rotors are
negligible. Strictly speaking, the resulting equations are valid only for direct-
drive manipulators. In a non-direct-drive manipulator, typically each joint is
driven by a motor through a gear reduction unit. Although the inertias of gears
and rotors are relatively small, their effects on the dynamics of a manipulator
can be significant. This is because their inertia effects, when reflected in the
joint space, are functions of the squares or products of the gear ratios (Tsai
and Chang, 1994). Therefore, a more accurate dynamical model should take
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FIGURE 9.7. Schematic diagram of a geared 2-dof robot.

this into consideration. In this section we use a planar 2-dof manipulator as
an example to illustrate the principle.

Figure 9.7 shows a geared planar 2-dof manipulator, where link 1 rotates
with respect to the fixed base about the zp-axis, and link 2 rotates with respect
to link 1 about the z;-axis. For brevity, only a few gears are shown. In practice,
there may be multiple stages of gear reduction in each transmission line. As
shown in the figure, motor 1 drives the first moving link through a gear pair
attached to the shafts of motor 1 and link 1, and motor 2 drives link 2 through
a spur gear pair attached to motor 2 and an intermediate shaft 5 followed by
a bevel gear pair attached to the other end of the intermediate shaft 5 and link
2. Motor 1 is mounted on the fixed base, while motor 2 is mounted on the rear
end of link 1. Assuming that the acceleration of gravity points in the negative
zo-direction, we wish to develop a dynamical model for the manipulator.

9.9.1 Kinematic Analysis

n Chapter 7, we have shown that the kinematic analysis of geared robotic

mechanisms can be achieved in two basic steps. The first step involves the
identification of an equivalent open-loop chain and the derivation of a kine-
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matic relationship between the location of the end effector and the joint angles
of the equivalent open-loop chain. The second step involves the derivation of
a kinematic relationship between the joint angles and the input actuator dis-
placements. The kinematic relation between the end-effector location and the
joint angles has been described in Chapter 2. In this section we apply the the-
ory of fundamental circuits to derive the kinematic relation between the joint
angles and the input actuator displacements. As shown in Fig. 9.7, the equiv-
alent open-loop chain consists of three primary links: base link 0, link 1, and
link 2. All the other links are called secondary links. Link O carries gear 3;
link 1 carries gears 4 and 5; link 2 does not carry any secondary link.

We now apply the theory of fundamental circuits to derive the kinematic
relationship between the joint angles and the input actuator displacements.
There are three gear pairs. Link O serves as the carrier for the 3—1 gear pair;
link 1 serves as the carrier for the 4-5 and 5'-2 gear pairs. Let N;; be the gear
ratio between gears i and j. The fundamental circuit equations can be written

as

F(3,1,0):  6309=—Ni3b10, (9.149)
f@4,51): 641 = —Nsabs 1, (9.150)
f(5,2,1): 651 =—Nasbay, 9.151)

where 6; ; denotes the relative rotation of link i with respect to link j.

Since 6; o and 6, are the joint angles of the equivalent open-loop chain,
we should express all the other angular displacements in terms of these two
joint angles. Substituting Eq. (9.151) into (9.150) gives

04,1 = Ns5aNps62, 1. (9.152)
Combining Egs. (9.149), (9.151), and (9.152), we obtain

0

83,0 ~Ny3 o, 53
041 | = 0 NsqaNos o, | (9.153)
5.1 0 —Nas ‘

For brevity, we have used 6; to replace 6; ;1 fori = 1 and 2 in Eq. (9.1 §3).
Hence, given the joint angles, one can compute the corresponding rotations
of the rotors and the intermediate shaft.

9.9.2 Kinetic Energy of a Revolving Rotor

Before we formulate the dynamical equations of motion, we study the kinetic
energy of a rotor j that is carried by a primary link ¢, as shown in Fig. 9.8. We
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Inertia frame
Xg

FIGURE 9.8. Typical rotor j that is carried by link i.

assume that the mass of the rotor is symmetrically distributed about its axis
of rotation. This is a reasonable assumption, since rotors, gears, and shafts
are all symmetric about their axes of rotation.

Let v,; be the absolute velocity of the center of mass of the rotor, w; the
absolute angular velocity of the rotor, and I; the inertia matrix of the rotor
about its center of mass and expressed in the inertia frame. Then the kinetic
energy of link j can be written as

1T T

Kj =3 [vymve; +o;10;]. (9.154)
The absolute angular velocity of link j can be expressed in terms of the ab-
solute angular velocity of the carrier, @;, and the angular velocity of the rotor
relative to the carrier; that 1s,

w; = w; +0;ej, (9.155)
where €; denotes the direction of the rotor axis and 6;; denotes the relative
rotation of link j with respect to link i.

Substituting Eq. (9.155) into (9.154) and making use of the symmetric
property of the inertia matrix, we obtain

Kj =3 [Vimive + o] ;o + 20] 1;e;6;; + € I;e;67,].  (9.156)
Here eJT.I je; = I; . is called the axial moment of inertia of the rotor j. We
observe that only the last two terms on the right-hand side of Eq. (9.156)
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depend exclusively on the relative rotation of the rotor. For an axisymmetric 0
rotor, the center of mass always lies on its axis of rotation and therefore can be lo) = 0 J
considered as a point fixed on the carrier. Further, due to symmetry, the rotor | 61
inertia matrix, /;, is invariant in the link frame i. Hence the contributions © 0
of the first two terms can conveniently be combined with link i to form an 1 ;

. . ) L . . Ve = | b101 |,
equivalent link. In this way, the inertia effects of a rotor due to its relative 0

rotation with respect to the carrier can be written as

where b, locates the combined center of mass of link 1 along the x;-axis as
shown in Fig. 9.7. Note that the acceleration information is not needed for the
Lagrangian formulation. Therefore, the kinetic energy of link 1 is given by

I%j = %Ij,zéj%i + Ij,z(wiTej)G'j,,-. (9.157)

In general, 6 ;i is a linear function of the joint rates of the equivalent open-
loop chain. For a manipulator with each joint individually driven by an actu-
ator, 9 ;i is related to the joint rate, g;11,;, by a simple gear ratio, N. Substi-
tuting éj,i = Ng;+1,; into Eq. (9.157) gives

K| = % IVZI mq lvcl + % IG)T I11 ]wl = %(mlb% + Il,z)éz’ (9.159)

and the potential energy of link 1 is given by

Kj = %Nzlj,zng-i-l,i + NIj,z(w;rej)QiH,i- (9-158) U; — m1gcd1- . (9.160)
It is worth noting that the common wisdom of simply adding N2I j.z to the
inertia of a robotic system is valid only if the carrier is stationary or its angular
velocity is perpendicular to the rotor axis of rotation, @] e; = 0.

(b) Kinetic and Potential Energies of Link 2. The angular velocity and
the linear velocity of the combined center of mass of link 2 are computed and
expressed in frame 2 as

9.9.3 Dynamic Analysis 0
P
In this section we perform the dynamic analysis of the example manipulator. 2 = p 0 p ’
First, we apply the recursive method to compute the angular velocity, the L 61 +62
velocity of the center of mass, and the potential energy of each link. Then we ™ arsth6;
subs?itutjc these qu‘antit'%es direcFly into I'Jagrange’s equa.tions f)f motion. .We 2y = | a1c6:6; + b6y +62) |,
provide just sufficient information leading to the solution without detailed 0

derivations.

The first equivalent link consists of link 1, rotor 4, intermediate shaft 5,
and the gears attached to them. The second equivalent link consists of link 2
and the bevel gear attached to it. Let m; be the mass of the equivalent link i.
To simplify the analysis, we assume that the inertia matrix of an equivalent
link i about its combined center of mass and expressed in the link i frame
takes the following form:

where b, locates the combined center of mass of link 2 along the x,-axis as
shown in Fig. 9.7. Therefore, the kinetic energy of link 2 is given by

— 12T 2 12 T27 2
Kz—'z' Vo My ch+§ W, I “w;
1
2

mala0? + b2(6) + 62)* + 2a1b2¢0:0; (61 + 62)] + L1, (61 +6,)%,

he 0 0 (9.161)
=10 L, 0 and the potential energy of link 2 is given by
0 0 I,
Uy = mygc(d) + dy). (9.162)

(a) Kinetic and Potential Energies of Link 1. The initial conditions of
the base link are %@y = %vg = 0. The angular velocity and the velocity of the
center of mass of link 1 expressed in link 1 frame are

(c) Kinetic Energies of the Rotors and Gears. We note that @, e; = 0
for both i = 0 and 1. Substituting Eq. (9.153) into (9.157), we obtain the
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(e) Lagrange’s Equations of Motion. Substituting Egs. (9.165), (9.166),
(9.169), and (9.170) into (9.76) produces Lagrange’s equations of motion as

additional kinetic energies contributed by the rotors and gears:

K, = %[N123I3,z9.12 + (N524I4,z + Is,z)Ngzsézzl 9.163) ‘
, . . . M) +V(@,0)+GO) =, 9.171)
(d) Lagrangian Function and Its Derivatives. Substituting Eqgs. (9.159)
through (9.163) into (9.75), we obtain the Lagrangian function where
L =3[k + 2ma1b2c02)0% + 1267 + 2(icq + mayarbach,)6,65] ) 6, ]
—myg.dy — mag.(d; + dp), (9.164) B | 02 ’
where M) = i K1 + 2moai1bychy k4 + mparbycH,
) | ka4 + maarbyct; K ’
=13+ NZ I 2 _ L
Ky K3 K42+ , 1343,z -+ ’Zzal V(g 0) _ ~m2a1b289292(291 e 92)
Ky = K4 + N54N2514,Z =+ N2515,Z7 ’ - L m2a1b2592912 ’
K3 = 11,2 +m1b%, Go) _0]
K4 = 12,2 +m2b§ B _0 .

We note that «3 represents the mass moment of inertia of link 1 about the zg-
axis, and k4 represents the mass moment of inertia of link 2 about the z;-axis.
The effects of rotor and gear inertias are clearly shown as functions of the
squares of their respective gear ratios.

Taking the partial derivatives of L with respect to 6}, 6, 91 and 92 yields

oL

Equation (9.171) is the dynamical model for the two-link manipulator. Al-
though the rotor inertias may be small, their effects can be significant since
they are multiplied by the squares or products of the gear ratios. A gear re-
duction on the order of 50 to 100 is commonly used in an industrial robot.
For example, for a gear ratio of 60, the inertia of a rotor will be multiplied by
3600.

— =0, 9.165

36, ( )

oL = —moa;by86,01 (6, + 6,) (9.166) 9.10 END-EFFECTOR SPACE DYNAMICAL EQUATIONS

36, ’

oL In previous sections we have derived the dynamical equations of motion in

5= (k1 4 2maa1bych)6; + (g + moarbychr)s,  (9.167)

: terms of the joint angles, q, or in the joint space. We assume that a desired

L trajectory of the end effector can be expressed in terms of the joint angles,

— = k20 + (ka4 + maa b2c62)6,. (9.168) velocities, and accelerations. Based on the joint space formulation, various
36, control schemes have been developed. However, in practice, we often wish
eopec. 2 P
Taking the total derivatives of Egs. (9.167) and (9.168) with respect to time to program the end-effector trajectories in the Cartesian space, X, and for the

joint-based control schemes to work these Cartesian space trajectories should
be converted into joint space trajectories. Theoretically, the conversion can be
accomplished by applying

yields

d (3L . ..
7 <£> = (k1 + 2maa1byc6,)0; + (k4 + maa1byc62)6,
1

— iy by 26, + 6, (9.169) qq¢ = inverse kinematics of x,,
qe = J '%4,

d (0L . . . .
—_ — 8,6:6,. (9.170 . s . ..
( ) (k4 + maa1b5¢02)0; + k20, — mpa 1 b56,016; 9 ) s = J‘lxd + J_lxd’ (9172)

dr \ 36,
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where J is the Jacobian matrix and the subscript 4 is used to indicate a desired
quantity.

In reality, it is quite difficult to compute the equations above efficiently for
real-time control purpose. Therefore, usually only the desired joint angles,
q., are computed from the inverse kinematics, and the joint velocities and
accelerations are computed numerically by the first and second differences.
However, for certain control techniques (Khatib, 1983), it may be desirable
to express the dynamical equations in the end-effector space. This can be
accomplished by the following procedure.

The end-effector velocity is related to the joint velocity by

x=Jq. (9.173)

Assuming that J is a nonsingular square matrix, we substitute the inverse
transformation of Eq. (9.173) into (9.87) to obtain an expression for the ki-
netic energy in terms of the end-effector velocity:

K = 1xTMx, (9.174)
where
M= H'Mi ™, (9.175)

is the manipulator inertia matrix expressed in the end-effector space. We refer
to M as the end-effector space inertia matrix or Cartesian inertia matrix.
Taking the derivative of Eq. (9.173) with respect to time yields

x=J4+Jd (9.176)
Multiplying both sides of Eq. (9.176) by J ~! and rearranging yields
q=J"&-J@. 9.177)

Multiplying Eq. (9.103) by J T and then substituting Eqgs. (9.175) and (9.177)
into the resulting equation, we obtain

Mi+V+G=Q, (9.178)
where

V=J7TV-MITJY,

Hence once the dynamical equations are derived in the joint space, they can
be converted into the end-effector space. Although the equations of motion
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above are gxpressed in the end-effector space, some of the terms, such as
v, G, and Q, are still written as functions of the joint variables, q. Due to the
nonlinearity of the inverse kinematics, it is practically impossible to express
everything in terms of the end-effector variables, x. We note that as the robot
arm approaches a singular configuration, the Jacobian matrix is not invertible
and certain quantities in the end-effector space become very large.

9.11 SUMMARY

In this chapter we first reviewed the inertia properties, the momentum, and
the kinetic energy of a rigid body. It was shown that the angular momentum
and the kinetic energy of a rigid body can be divided into two parts: one asso-
ciated with the motion of the center of mass and the other with the motion of
the rigid body about its center of mass. Next, we reviewed the Newton—Euler
laws. Both the Newton and Euler equations of motion were derived. Then
we presented two methods for the dynamical analysis of serial manipulators.
The recursive Newton—Euler formulation consists of a forward computation
followed by a backward computation. In the forward computation, link ve-
locities and accelerations are calculated, one link at a time, from link 1 to
link n, using the kinematical equations derived in Chapter 4. In the back-
ward computation, joint reaction forces are calculated one link at a time from
link n back to link 1 using the Newton—Euler equations of motion. Although
the recursive method is more tedious, it renders all the joint reaction forces
that may be useful for sizing the links and bearings during the design phase.
Lagrange’s method formulates the problem with all the forces of constraint
eliminated at the outset. The link Jacobian submatrices, the manipulator in-
ertia matrix, and the derivation of the generalized forces have been described
and a general matrix form of the dynamical equations of motion was pre-
sented. The effects of rotor inertia were also discussed. It has been shown
that rotor inertias, which have been ignored in most textbooks, may have sig-
nificant effects on the dynamics of a manipulator. Finally, the transformation
of dynamical equations into the end-effector space was described briefly.
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EXERCISES

1. Derive the parallel axis theorem given by Eq. (9.9).

2. The inertia matrix of a rectangular bar about a center-of-mass coordinate
frame, (x., y., 2.), is given by Eq. (9.12). What is the inertia matrix about
O expressed in the (x, y, z) coordinate frame, as shown in Fig. 9.97

A T/é ’;c j 7
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FIGURE 9.9. Inertia matrix of a rectangular bar.

3. The inertia matrix of a rectangular bar about a center-of-mass coordinate
frame, (x., Yc, 2c), 18 given by Eq. (9.12). What is the inertia matrix about
the center of mass and expressed in an (x, y, z) coordinate frame that is
rotated with respect to the (x., y., z.) frame by an angle ¢ about the z-
axis, as shown in Fig. 9.10?

FIGURE 9.10. Inertia matrix of a rectangular bar.
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DYNAMICS OF SERIAL MANIPULATORS

Figure 9.11 shows a 2-dof 2R pointer, in which the first joint axis points
up vertically along the positive zo-axis and the second joint axis inter-
sects the first perpendicularly. Assuming that the second moving link is
a slender homogeneous rod of mass m, what is the inertia matrix of this
link about O expressed in the (xo, Yo, Z0) coordinate frame?

Yo
X
Y4 2
Zy
Q
ap
0,
02
Xo < ‘» X1 ‘
g

FIGURE 9.11. A 2-dof pointer.

. Consider the 2-dof 2R pointer shown in Fig. 9.11. Assuming that the in-

ertia of the first moving link is negligible and that the second moving
link is a slender homogeneous rod of mass m, calculate the angular mo-
mentum of the system about the origin O expressed in the (xg, Yo, 20)
coordinate frame.

Show that when the axes of a center-of-mass coordinate system coin-
cide with the principal axes of a rigid body, Euler’s equations of motion
reduce to Eq. (9.48).

For the 2-dof 2R pointer shown in Fig. 9.11, assume that the inertia of the
first moving link is negligible and that the second moving link is a slender
homogeneous rod of mass m. Develop the dynamical equations of motion
by the recursive Newton-Euler method. Identify the contributions due to
Coriolis, centrifugal, and gravitational effects.

For the planar 3-dof manipulator shown in Fig. 2.3, assume that the ac-
celeration of gravity points in the negative zo-direction and that the three
moving links are slender homogeneous rods of masses mj, m2, and ms3,
respectively. Derive the dynamical equations of motion by the recursive
Newton—Euler method. Express the resulting equations in matrix form.
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9. Figure 9.12 shows a spatial 3-dof, 3R manipulator in which the second

joint axis intersects the first perpendicularly and the third joint axis is
parallel to the second. Assuming that the link inertias are negligible and
that there is a point mass m attached to the end effector at point Q, de-
rive the dynamical equations of motion by the recursive Newton—Euler
method.

FIGURE 9.12. Spatial 3-dof, 3R manipulator.

10. Consider the 2-dof pointer shown in Fig. 9.11. Assuming that the inertia

11.

12.

of the first moving link is negligible and that the second moving link is
a slender homogeneous rod of mass m, derive the dynamical equations
of motion by the Lagrangian method using 6; and 6, as the generalized
coordinates.

Describe two possible sets of generalized coordinates for the spatial 3R
manipulator shown in Fig. 9.12.

Derive the dynamical equations of motion for the spatial 3-dof manipula-
tor shown in Fig. 9.12 by the Lagrangian method, assuming that the link
inertias are negligible and that there is a point mass m attached to the end
effector at point Q.





