Introduction to Robotics Toolbox for MATLAB

Yang Shen

Ph.D. Candidate, Bionics Lab, UCLA

MAE 263B

Overview of today's lecture

- Robotics Toolbox for MATLAB: overview, online resources, basic operations, installation, built-in demo
- Serial-link manipulator example Puma560: DH parameters, forward & inverse kinematics
- How to better use RTB manual
- Bugs example, possible solutions
- Simulink intro, RTB library for Simulink, RTB examples for Simulink

Overview of Robotics ToolBox

 Several releases of RTB could be found online. For this course, we will use the latest 10th release

(<u>http://petercorke.com/wordpress/toolboxes/r</u> <u>obotics-toolbox</u>)

- The reference book by the same author could be found here: <u>http://petercorke.com/wordpress/rvc/</u>
- You should be able to download both of them from the website, if you are using your UCLA VPN or connecting to a campus network.

Why RTB?

- The mathematical and visual expression of robots like serial-link robotic manipulator could be encapsulated as a reusable class/object. We do no need to spend time rebuilding these wheels and could focus on more complicated designs, either mechanical or algorithmic.
- Introduction to Robotics (3rd edition) used an earlier version of the Toolbox, you may find the difference in syntax and do some coding exercise on your own.

Basic operations

- Homogeneous transformation 2D/3D
- Differential motion
- Trajectory generation
- Pose representation
- Serial-link manipulator
- Classic robot models (e.g., Puma 560)
- Kinematics
- Dynamics
- Mobile robot
- Localization
- Path planning
- Graphics

Contents You are encouraged to read the first chapter of this manual <u>pdf</u> file!

	Prefa	ace	2
	Func	ctions by category	5
1	Intro	oduction	8
	1.1	Changes in RTB 10	8
		1.1.1 Incompatible changes	8
		1.1.2 New features	9
		1.1.3 Enhancements	10
	1.2	How to obtain the Toolbox	12
		1.2.1 From .mltbx file	12
		1.2.2 From .zip file	12
		1.2.3 MATLAB Online TM \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	13
		1.2.4 Simulink [®] \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	13
		1.2.5 Documentation	14
	1.3	Compatible MATLAB versions	14
	1.4	Use in teaching	14
	1.5	Use in research	14
	1.6	Support	15
	1.7	Related software	15
		1.7.1 Robotics System Toolbox TM	15
		1.7.2 Octave	15
		1.7.3 Machine Vision toolbox	16
	1.8	Contributing to the Toolboxes	16
	1.9	Acknowledgements	16
2	Fun	ctions and classes	17
	abou	ıt	17
	angd	liff	17
	angv	/ec2r	18
	angv	vec2tr	19
	Arbo	otix	19
	Bicy	cle	28
	brese	enham	33
	Bug	2	33
	chi2i	inv_rtb	35
	circl	e	36
	colno	orm	36
	ctraj		37

Installation

• My platform: Windows 8.1 (64 bit)

Robotics Toolbox for MATLAB version 10.2.1 by Peter Corke

• My MATLAB version: R2016b, R2016a, R2015a. RTB installed via .mltbx

Open Folder

Foolbox

Learn More -

Uninstall

After installation – check via rtbdemo

• R2015a (RTB not detected)

C	ommand	windo	w		
	>> rtbdemo	b			
	Undefined	function	or	variable	'rtbdemo'
fx	>>				

• R2016a (RTB installed)

Command Wi	indow			
>> rtbdemo				
Many of the	ese demos print	tutorial text and M	MATLAB commmands	
in the cor on to the		rtbde	emo -	_ 🗆 🗙
choose the window.				
fx;	R	obotics Tool	lbox for	
	Gener	Robot	Mobile	
	Rotations	Create a model	Bug navigation	
	Transformat	Animation	D* navigation	
	Trajectory	Forward kine	PRM navigation	
	Hajootory		SLAM demo	
		Inverse kinem	Particle filter localiz	
		Jacobians	Pose graph SLAM	
	V-REP SIII	Inverse dyna	Driving to a pose	
	Joystick de	E	Quadrotor flying	
		Forward dyna	Braitenberg vehicle	
			Simuli	n <mark>k -</mark>

• R2016b (RTB installed)

Command Window

>> rtbdemo Many of these demos print tutorial text and MATLAB commmands in the console window. Read the text and press <enter> to move on to the next command. At the end of the tutorial you can choose the next one from the graphical menu, or close the menu window. rtbdemo -**Robotics Toolbox for** Gener Robot Mobile Rotations Create a model Bug navigation D* navigation Animation Transformat.. PRM navigation Forward kine. Trajectory SLAM demo Inverse kinem. Particle filter localiz... Pose graph SLAM Jacobians V-REP sim.. Driving to a pose Inverse dyna.. Joystick de .. Quadrotor flying Forward dyna... Braitenberg vehicle

Warning

• Be careful when you copy and test MATLAB codes directly from the manual – the quotation mark (') is not in the correct format that MATLAB could read.

Examples

Create a 2-link robot

L(1) = Link([0 0 a1 pi/2], 'standard'); L(2) = Link([0 0 a2 0], 'standard'); twolink = SerialLink(L, 'name', 'two link');

```
L(1) = Link([ 0 0 a1 pi/2], 'standard');
L(2) = Link([ 0 0 a2 0], 'standard');
twolink = SerialLink(L, 'name', 'two link');
```

L(1) = Link([0 0 a1 pi/2], 'standard'); L(2) = Link([0 0 a2 0], 'standard'); twolink = SerialLink(L, 'name', 'two link');

Serial-link manipulator example – Puma560

clear

```
mdl_puma560 % load puma560 model
p = [0.8 0 0]; % target position in task space ([x y z])
T = transl(p) * troty(pi/2); % transformation matrix
qr(1) = -pi/2; % initial position in joint space
qqr = p560.ikine6s(T, 'ru'); % target position in joint space
qrt = jtraj(qr, qqr, 50); % compute the joint space trajectory
ae = [138 8] % view angle
p560.plot3d(qrt, 'view', ae);
```

>> help mdl_puma560

mdl_puma560 Create model of Puma 560 manipulator

mdl_puma560 is a script that creates the workspace variable p560 which describes the kinematic and dynamic characteristics of a Unimation Puma 560 manipulator using standard DH conventions.

https://youtu.be/4ddfhcbIr1Y

DH parameters

🛃 Variables - p5	560 🐨 🕄	 Workspace 	
∎p560 ×		Name 🔺	Value
1x1 SerialLink		🕂 deg	0.0175
Property 🔺	Value	p 560	1x1 SerialLink
🕩 name	'Puma 560'	ar	[0,1.57081.5708.0.0.0]
🛨 gravity	[0;0;9.8100]	as	[0.01.5708.0.0.0]
🤨 base	1x1 SE3	07	[0,0,0,0,0]
🔨 tool	1x1 SE3		[0,0,0,0,0]
🕩 manufacturer	'Unimation'		
h comment	'viscous friction;		
Η plotopt	[]		
🗹 fast	0		
🛨 interface	[]		
🕩 ikineType	'puma'		
🛨 trail	[]		
🛨 movie	[]		
🛨 delay	[]		
🛨 Іоор	[]		
🕩 model3d	'UNIMATE/puma		
🛨 faces	[]		
🛨 points	[]		
🛨 plotopt3d	[]		
🛨 n	6		
🧧 links	1x6 Revolute		
🛨 mdh	0		
🛨 T	[]		
些 config	'RRRRRR'		
📩 offset	[0,0,0,0,0,0]		
🛨 qlim	6x2 double		
🛨 d	[0,0,0.1501,0.431		
🛨 a	[0,0.4318,0.0203,		
🛨 alpha	[1.5708,0,-1.5708		
🛨 theta	[]		

>>	⊳ p560	D				
p5	560 =					
Pu -	uma 50 - viso	60 [Unimatio cous frictio	n]:: 6 axis, n; params of	, RRRRRR, st E 8/95;	dDH, slowRNE	
+- 1	+ ј	+- theta	 d	+a	+ alpha	offset
+-	+	+-	+-	++	+	+
	1	dīl	01	01	1.5/08	01
I	2	q2	0	0.4318	0	0
1	3	q3	0.15005	0.0203	-1.5708	0
I.	4	q4	0.4318	0	1.5708	0
1	5	q5	01	0	-1.5708	0
T	61	q6	01	0	0	0
_						

>> p560.mdh	
ans =	
0	

Properties (read only)

nnumber of jointsconfig joint configuration string, eg. 'RRRRRR'mdhkinematic convention boolean (0=DH, 1=MDH)thetakinematic: joint angles (1xN)dkinematic: link offsets (1xN)akinematic: link lengths (1xN)alphakinematic: link twists (1xN)

DH parameters - review

UCLA

DH parameters – standard vs. modified

• Standard

clear
L(1) = Link([0 0 1 pi/2], 'standard');
L(2) = Link([0 1 2 0], 'standard');
L(3) = Link([0 2 3 pi/3], 'standard');
<pre>std3link = SerialLink(L, 'name', 'two link'</pre>

>> st	td3link					
std3	std3link =					
two :	link:: 3 axis	s, RRR, stdDf	H, slowRNE			
+ j	theta	d	a	 alpha	 offset	
1	 q1	0	1	1.5708	 0	
2	q2	1	2	0	0	
3	q3	2	3	1.0472	0	
+	+		+	+	+	

• Modified

clear

L(1) = Link([0 0 1 pi/2], 'modified'); L(2) = Link([0 1 2 0], 'modified'); L(3) = Link([0 2 3 pi/3], 'modified'); mod3link = SerialLink(L, 'name', 'two link');

>> mod31	link						
mod3lin]	mod3link =						
two lin]	k:: 3 axis, RF	R, modDH, slo	WRNE				
++ j	+ theta	 d	a	+ alpha	offset		
1	q1	+ 0	1	1.5708	+ 0		
2	q2	1	2	0	0		
3	q3	21	3	1.0472	0		

*Note: the built-in Puma 560 model uses standard DH parameters only, but some other built-in models like the Stanford Arm has modified DH parameter option.

DH parameters - more

Z p560 — 🗆 🖄	4	std3link — 🗆 🗡	n 🖌 🖌	nod3link — 🗆 🗙
P V V 🛃 🔒 🔏 🖆 🗢 🛪 🛣	P V V	┙╡┙╱┇С° [╸] ▼	P V V 🛃	
Number Display Format				
Short 🗸 Go Up	No Variable Selected	PLOTS OPTIONS	No Variable Selected	PLOTS OPTIONS
FORMAT WINDOWS	SELECTION		SELECTION	
1x1 SerialLink	1x1 SerialLink		1x1 SerialLink	
Property A Value	Property A	Value	Property 🔺	Value
📫 name 'Puma 560'	📑 name	'two link'	📑 name	'two link'
🛨 gravity [0;0;9.8100]	🛨 gravity	[0;0;9.8100]	🛨 gravity	[0;0;9.8100]
🔟 base 1x1 SE3	🧧 base	1x1 SE3	🧧 base	1x1 SE3
🛍 tool 1x1 SE3	🔨 tool	1x1 SE3	🔨 tool	1x1 SE3
manufacturer 'Unimation'	👍 manufacturer		📫 manufacturer	
👍 comment 'viscous friction;	🕩 comment	н	💶 comment	
📩 plotopt 🛛 []	💼 plotopt	[]	💼 plotopt	[]
🗹 fast 🛛 0	🗹 fast	0	🗹 fast	0
📩 interface []	📩 interface	[]	📩 interface	[]
👍 ikineType 'puma'	🛨 ikineType	[]	🛨 ikineType	[]
🛨 trail 🛛 👔	📩 trail	[]	📩 trail	[]
🛨 movie 🛛 []	🛨 movie	[]	🛨 movie	[]
🔟 delay 0.1000	🛨 delay	[]	🛨 delay	[]
🗹 loop 0	🛨 Іоор	[]	🛨 Іоор	[]
model3d 'UNIMATE/puma	🛨 model3d	[]	🛨 model3d	[]
faces 1x7 cell	🛨 faces	[]	🛨 faces	[]
points 1x7 cell	🛨 points	[]	🛨 points	[]
🛨 plotopt3d 🛛 👔	🛨 plotopt3d	[]	🛨 plotopt3d	[]
🕂 n 6	🕂 n	3	🛨 n	3
🖬 links 1x6 Revolute	📧 links	1x3 Link	🗊 links	1x3 Link
🛨 mdh 0	🛨 mdh	0	🛨 mdh	1
⊥т []	🕂 Т	[]	🕂 Т	[]
config 'RRRRRR'	🕩 config	'RRR'	🔄 config	'RRR'
	🛨 offset	[0,0,0]	🛨 offset	[0,0,0]
🕂 qlim 6x2 double	🛨 qlim	[-3.1416,3.1416;	🕂 qlim	[-3.1416,3.1416;
d [0,0,0.1501,0.431	🛨 d	[0,1,2]	🛨 d	[0,1,2]
Η a [0,0.4318,0.0203,	🛨 a	[1,2,3]	글 a	[1,2,3]
Halpha [1.5708,0,-1.5708	🖶 alpha	[1.5708,0,1.0472]	금 alpha	[1.5708,0,1.0472]
🕂 theta []	🛨 theta	[0,0,0]	🛨 theta	[0,0,0]

A good reference: http://www.petercorke.com/doc/rtb_dh.pdf

Denavit-Hartenberg notation for common robots

Peter Corke

March 2014

1 Introduction

Denavit-Hartenberg parameters are one of the most confusing topics for those new to the study of robotic arms. This note discusses some common robot configurations and the physical meaning of their various Denavit-Hartenberg parameters. Consistent diagrams and tables of Denavit-Hartenberg parameters are used to illustrate the main points.

Fundamentally we wish to describe the pose of each link in the chain relative to the pose of the preceding link. We would expect this to comprise **six parameters**, one of which is the joint variable — the parameter of the joint that connects the two links. However the Denavit-Hartenberg formalism[1, Ch. 7] uses only **four parameters** to describe the spatial relationship between successive link coordinate frames, and this is achieved by introducing two constraints[2, p. 78] to the placement of those frames:

The axis x_j is perpendicular to the axis z_{j-1}.

The axis x_j intersects the axis z_{j-1}.

The result is that link frames are sometimes constrained to be placed in locations that seem non-obvious, perhaps not even on the physical link itself. The choices of coordinates frames are also not unique, different people will derive different, but correct, coordinate frame assignments[2]. These variants will however always lead to the same expression for the pose of the end-effector with respect to the base.

In robot kinematics it is common to partition the joints into two sets

$$\boldsymbol{T}_{6} = \boldsymbol{T}_{p}(q_{1}\cdots q_{3})\boldsymbol{T}_{o}(q_{4}\cdots q_{6}) \tag{1.1}$$

The first transform, a function of the first three joints, controls the position of the origin of the coordinate frame $\{P\}$ and its responsible for setting the position of the frame $\{6\}$.

The second transform, a function of the last three joints, controls the orientation of the frame $\{6\}$ with respect to frame $\{P\}$. This transform is a pure rotation, and on modern

Kinematics

Forward kinematics

- Joint space -> End-effector space
- Useful commands:
 - SerialLink.jtraj
 - SerialLink.fkine
 - ...

Inverse kinematics

- End-effector space -> Joint space
- Useful commands:
 - SerialLink.ikine
 - SerialLink.ikine3
 - SerialLink.ikine6s
 - ...

How to better use the manual

- Get familiar with MATLAB Objects (especially if you have no experience in object-oriented programming): <u>http://petercorke.com/wordpress/a-quick-introduction-to-matlab-objects</u>
- I found some class descriptions in the manual are not self-contained. You may want to work with rtbdemo and example codes first.

What about bugs?

*According to the author, the Toolbox is tested with MATLAB R2016b. I suggest you use the tested version.

If you find any strange bugs and have no clue after spending hours on it, you have several options:

- Although there is no official support, this google group works as a reliable reference and an active online community, try to find the answer there first: <u>https://groups.google.com/forum/#!forum/robotics-tool-box</u>
- You are encouraged to ask for help on our course <u>CCLE forum</u>, hopefully your knowledgeable classmates could give you a hand.
- You may also send emails to the course TA (<u>yangshen@ucla.edu</u>), Yang would try to come up with a brief solution in 1-2 business days.

One bug example

- When you run rtbdemo, click Robot->Forward kinematics
- Everything works fine until...

Easy to find out that all subplots are plotting the x-t relationship.

You may choose to change the code in the demo libraries.

>> subplot(3,1,1)
>> plot(t, p(:,1))
>> xlabel('Time (s)');
>> ylabel('X (m)')
>> subplot(3,1,2)
>> plot(t, p(:,1))
<pre>>> xlabel('Time (s)');</pre>
>> ylabel('Y (m)')
>> subplot(3,1,3)
>> plot(t, p(:,1))
<pre>>> xlabel('Time (s)');</pre>

label('Z

(m)

Another bug example

mdl_cobra600

Create model of Puma 560 manipulator

MDL_PUMA560 is a script that creates the workspace variable p560 which describes the kinematic and dynamic characteristics of a Unimation Puma 560 manipulator using standard DH conventions.

Also define the workspace vectors:

qz	zero joint angle configuration
qr	vertical 'READY' configuration
qstretch	arm is stretched out in the X direction
qn	arm is at a nominal non-singular configuration

Notes

- SI units are used.
- The model includes armature inertia and gear ratios.

Reference

 "A search for consensus among model parameters reported for the PUMA 560 robot", P. Corke and B. Armstrong-Helouvry, Proc. IEEE Int. Conf. Robotics and Automation, (San Diego), pp. 1608-1613, May 1994.

🔏 Variables - c600		🖲 🗙	Workspace	
c600			Name 🔺	Value
1x1 SerialLink			😰 c600	1x1 SerialLink
Property 🔺	Value		🗑 links	1x4 Link
<mark>ch</mark> name	'Cobra600'		4-	[0,0,0,0]
💼 gravity	[0;0;9.8100]			
💆 base	1x1 SE3			
🔟 tool	1x1 SE3			
🖬 manufacturer	'Adept'			
comment				
🚺 plotopt	1x2 cell			
🗹 fast	0			
📩 interface	[]			
🛨 ikineType	[]			
📩 trail	[]			
📩 movie	[]			
🛨 delay	[]			
🛨 Іоор	[]			
🛨 model3d	[]			
🛨 faces	[]			
🛨 points	[]			
🛨 plotopt3d	[]			
🛨 n	4			
🖻 links	1x4 Link			
🛨 mdh	0			
- Т	[]			
💼 config	'RRPR'			
offset	[0,0,0,0]			
🕂 qlim	[-0.8727,0.8727;			
🕂 d	[0.3870,0,0]			
a	[0.3250,0.2750,0,0]			
🛨 alpha	[0,3.1416,0,0]			
+ theta	0			

Intro to Simulink

- Simulink: a graphical programming environment for modeling, simulating and analyzing multidomain dynamical systems
- MathWorks provides videos, examples, and tutorials on getting started with Simulink. You are encouraged to read and practice with following official links.
- <u>https://www.mathworks.com/products/simulink/getting-started.html</u>
- This is a good reference to show what MATLAB and Simulink could do in robotics: <u>https://www.mathworks.com/solutions/robotics.html</u>

Simulink example

Some useful shortcuts: Ctrl, Shift, spacebar, right click

Simulink with RTB – library

rebl	adra
Ð	roblocks
Ð.	Robotics Toolbox for MATLAB (release 10)
A≡ ∕∽	Toolbox functions
	Toolbox
	Robot arms
	Arm
	Vehicles: wheeled, flying
	Vehicles
	Control
	Control
	Vision
	Vision
	Copyright (c) 2002-2017 Peter Corke
01	
5	
»	
ead	y 100%

roblocks: Only works with R2016b

velocity

-

×

Simulink with RTB – example 3 (RVC #4.2) sl quadrotor: Quadrotor control 10 z (height above ground) 8 6 2 12{12] 0 12{12} vehicle 2 desired position roll torque in {0} Send state 12{12} Matrix 1 \wedge [2x2] 0 Ξ velocity* attitude ttitude Multiply 0 xy error state xv error in {0} in {B} -1 {0} --> {B} position pitch torque -2 -2 V х loop Velocity control Quadrotor Attitude control 12{12} yaw cmd 'z Interpreted Quadrotor plot rotor vaw MATLAB Fcn yaw* heading ω rot2(yaw)' Yaw control 12{12} result -4 thrust Control Mixer Height control