Trajectory Generation 1/2

In class: Netuton Euler
@ Howe: Lagrange (SEE NOTES)
(General Form)
(General Form)
(II)

$I=\left[\begin{array}{c}I_{n 0} \\ 0 \\ y_{1} \\ I_{n}\end{array}\right]_{n}$ class : La grange
(1) Home: Newton Euler

- Newton Eviler
- Lagrange

Introduction

Motion Planning

Healthy eye

Eye with cataract

Clear lens

Routine Cataract Surgery

https://youtu.be/Qbel72QmFAU

Motion Planning

Motion Planning

ANTERIOR

A. $1.0 \mathrm{~mm}-1.5 \mathrm{~mm}$ occlusal reduction
B. $\quad 1.0 \mathrm{~mm}$ middle third reduction

POSTERIOR

C. Buccal and lingual walls must be convergent
D. Preparation should be cut in three planes

Motion Planning

Motion Planning

Motion Planning

Problem Defenition

Motion Planning - Hierarchy

- Trajectory planning is a subset of the overall problem that is navigation or motion planning. The typical hierarchy of motion planning is as follows:
- Task planning - Designing a set of high-level goals, such as "go pick up the object in front of you".
- Path planning - Generating a feasible path from a start point to a goal point. A path usually consists of a set of connected waypoints.
\rightarrow - Trajectory planning - Generating a time schedule for how to follow a path given constraints such as position, velocity, and acceleration.
- Trajectory following - Once the entire trajectory is planned, there needs to be a control system that can execute the trajectory in a sufficiently accurate manner.
- Q: What's the difference between path planning and trajectory planning?

- A: A trajectory is a description of how to follow a path over time

Trajectory Generation - Problem Definition

Problem

Given: Manipulator geometry, End Effector
Path (via point)

Compute: The trajectory of each joint such that the end effector move in space from point A to Point B

Solution (Domains)

- Joint space / Task Space

Definitions

- Trajectory (Definition) - Time history of position, velocity, and acceleration for each DOF.

- Trajectory Generation - Methods of computing a trajectory that describes the desired motion of a manipulator in a multidimensional space

Task Space Versus Joint Space

Interpolation Method	Computational Requirements	Accuracy of the End Effector
Join Space	Low (Advantage)	Low (Disadvantage)
Task Space	High (Disadvantage)	High (Advantage)

Task Space Versus Joint Space

- Task space means the waypoints and interpolation are on the Cartesian pose (position and orientation) of a specific location on the manipulator - usually the end effector.
- Joint space means the waypoints and interpolation are directly on the joint positions (angles or displacements, depending on the type of joint)
- Main Difference -
- Smoothness - task-space trajectories tend to look more "natural" than joint-space trajectories because the end effector is moving smoothly with respect to the environment even if the joints are not.
- IK / Computation - The big drawback is that following a task-space trajectory involves solving inverse kinematics (IK) more often than a joint-space trajectory, which means a lot more computation especially if your IK solver is based on optimization.

$$
\text { H } 4
$$

Trajectory Generation - Problem Definition

- Human Machine interface (requirements)
- Human - Specifying trajectories with simple description of the desired motion
- Example - start / end points position and orientation of the end effectors
- System - Designing the details of the trajectory
- Example - Design the exact shape of the path, duration, joint velocity, etc.
- Trajectory Representation
- Representation of trajectory in the computer after they were planned
- Trajectory Generation
- Generation occurs at runtime (real time) where positions, velocities, and accelerations are computed.
- Path update rate $60-2000 \mathrm{~Hz}$

General Consideration

- General approach for the motion of the manipulator
- Specify the path as a motion of the tool frame $\{T\}$ relative to the station frame $\{S\}$. Frame $\{S\}$ may change it position in time (e.g. conveyer belt)
- Advantages
- Decouple the motion description from any particular robot, end effector, or workspace.
- Modularity - Use the same path with:
- Different robot
- Different tool size

Trajectory Generation \& Inverse Kinematics General Approach

Transforming from the task space to the joint space using invers kinamatics

Trajectory Generation \& Inverse Kinematics General Approach

Trajectory Generation \& Inverse Kinematics General Approach

$$
\begin{aligned}
& \text { Giver } 3 \text { intersecting axis 4,5,6 (orignes of 4,56 que at } \\
& \text { the same point) } \\
& \qquad{ }^{6} P_{6}={ }^{6} P_{4} .
\end{aligned}
$$

Trajectory Generation \& Inverse Kinematics General Approach

$$
\begin{aligned}
& { }_{6}^{0} T={ }^{0} T_{2}^{1} T_{3}^{2} T\left|{ }_{4}^{3} T\right|{ }_{5}^{4} T{ }_{6}^{5} T \\
& \text { Problem } 1 \\
& \text { position problem } \\
& \text { orientation problem }
\end{aligned}
$$

Trajectory Generation \& Inverse Kinematics General Approach

$$
\begin{aligned}
& { }^{6} T=\underbrace{{ }_{1}^{0} T_{2}^{1} T_{3}^{2} T, R_{x_{3}}\left(\alpha_{d k}\right) D_{x_{3}}\left(a_{3}\right) \underbrace{}_{z u}\left(\theta_{4}\right) D_{z u}\left(d_{4}\right){ }_{5}^{4} T{ }_{6}^{5} T} \\
& \text { Problem } 1 \\
& \text { Problem } 2 \\
& \text { position problem } \\
& \text { Orientation problem } \\
& { }_{6}^{6} T=\left.{ }_{1}^{0} T{ }_{2}^{1} T{ }_{3}^{2} T{ }_{4}^{3} T\right|_{A_{4}=0}\left|\begin{array}{c}
3 \\
4 \\
4
\end{array}\right|_{\alpha_{3}=0}{ }_{5}^{4} T{ }_{6}^{5} T \\
& \text { set } A_{u}=0 \quad \text { set } \alpha_{3}=0
\end{aligned}
$$

Trajectory Generation \& Inverse Kinematics General Approach

$$
\begin{aligned}
& { }_{6}^{0} R={ }_{3}^{0} R{ }_{4}^{3} R{ }_{6}^{4} R \\
& \downarrow \\
& { }_{6} R={ }_{3}^{0} R\left(R\left(x_{3}\right) I: R\left(\alpha_{4}\right) I\right)_{6}^{4} R \\
& D_{x_{3}}\left(a_{3}\right) \quad D_{24}\left(d_{4}\right) \\
& { }_{6}^{0} R=\left[\begin{array}{ll}
0 \\
3 & R_{x_{3}}\left(\alpha_{3}\right)
\end{array}\right]\left[R_{z_{4}}\left(\partial_{4}\right){ }_{6}^{4} R\right]
\end{aligned}
$$

Solving for A_{4}, A_{5}, A_{6}

$$
R_{24}\left(t_{4}\right)_{6}^{4} R=\left[\begin{array}{l}
0 \\
3 \\
3
\end{array} R_{x_{3}}\left(\alpha_{3}\right)\right]^{-1} 6 R
$$

Solved in Problem 1
known A_{1}, θ_{2}, A_{3}

Desined oriantation given for every point on the trajectory

Trajectory Generation \& Inverse Kinematics General Approach

$$
R_{24}\left(t_{u}\right)^{4} R\left(\theta_{5}\right)_{6}^{5 / R}\left(\theta_{6}\right)=\left[\begin{array}{ccc}
r_{11} \\
r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]
$$

Solve for A_{4}, A_{5}, A_{6} using the $Z-Y-2$ problem

Trajectory Generation \& Inverse Kinematics General Approach

Trajectory Generation \& Inverse Kinematics General Approach

$$
\begin{aligned}
R_{z Y Z}(\alpha, \beta, \gamma) & =R_{Z}(\alpha) R_{Y}(\beta) R_{2}(\gamma)=\left[\begin{array}{ccc}
c \alpha & -s \alpha & 0 \\
s \alpha & c \alpha & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
c \beta & 0 & s \beta \\
0 & 1 & 0 \\
-s \beta & 0 & c \beta
\end{array}\right]\left[\begin{array}{ccc}
c \gamma-s \gamma & 0 \\
s \gamma & c \gamma & 0 \\
0 & 0 & 1
\end{array}\right] \\
b b & \theta_{4} \theta_{5} f_{6} \\
N_{0} t_{e} \cdot \nabla_{0} & =\left[\begin{array}{c|cc|c}
c \alpha c \beta c \gamma-s \alpha s \gamma & -c \alpha c \beta s \gamma-s \alpha c \gamma & c \alpha s \beta \\
\hline s \alpha c \beta c \gamma+c \alpha s \gamma & -s \alpha c \beta s \gamma+c \alpha c \gamma & s \alpha s \beta \\
\hline-s \beta c \gamma & s \beta s \gamma & c \beta
\end{array}\right]
\end{aligned}
$$

General Consideration - Via Points

- Basic Problem - Move the tool frame $\{T\}$
from its initial position / orientation \{T_initial\}
to the final position / orientation \{T_final\}.
- Specific Description
- Via Point - Intermediate points between the initial and the final end- effector locations that the end-effector mast go through and match it position and orientation along the trajectory.
- Each via point is defined by a frame defining the position/orintataion of the tool with respect to the station frame
- Path Points - includes all the via points along with the initial and final points
- Point (Frame) - Every point on the trajectory is define by a frame (spatial description)

- "Smooth" Path or Function
- Continuous path / function with first and second derivatives.
- Add constrains on the spatial and temporal qualities of the path between the via-points
- Implications of non-smooth path
- Increase wear in the mechanism (rough jerky movement)
- Vibration - exciting resonances.
- Example of Smooth Path

Trajectory Generation - Task Space Control

Trajectory Generation - Joint Space Space Control

Precision versus Accuracy

Trajectory Generation - Roadmap Diagram

Trajectory Generation - Roadmap Diagram

Joint Space Schemes

Single Time Interval

Trajectory Generation - Roadmap Diagram

- Joint space Schemes - Path shapes (in space and in time) are described in terms of functions in the joint space.
- General process (Steps) given initial and target P/O

1. Select a path point or via point (desired position and orientation of the tool frame $\{T\}$ with respect to the base frame \{s\})
2. Convert each of the "via point" into a set of joint angles using the invers kinematics
3. Find a smooth function for each of the n joints that pass trough the via points, and end the goal point.

Note 1: The time required to complete each segment is the same for each joint such that the all the joints will reach the via point at the same time. Thus resulting in the position and orientation of the frame $\{T\}$ at the via point.
Note 2: The joints move independently with only one time restriction (Note 1)

- Define a function for each joint such that value at t_{0} is the initial position of the joint and whose value at t_{f} is the desire goal position of the joint
- There are many smooth functions $\theta(t)$ that may be used to interpolate the joint value.

Joint Space Schemes

Single Time Interval
Polynomials
First Order Polynomial

Trajectory Generation - Roadmap Diagram

Joint Space Schemes - Linear Polynomials

- Problem- Define a function for each joint such that, ts Value at
- t_{0} is the ital position of the joint t_{f} is the desired goal position of the joint

$$
\text { - Given - Constrains on } \theta(t)
$$

Joint Space Schemes - Linear Polynomials

- Solution - The two constraints can be satisfied by a first order polynomial

$$
f(t)=a_{0}+a_{1} t
$$

- Combined with the two desired constrains yields two equations in two unknown

$$
\left\{\begin{array} { l }
{ \theta _ { 0 } (0) = a _ { 0 } } \\
{ \theta _ { f } (t) = a _ { 0 } + a _ { 1 } t _ { f } }
\end{array} \Rightarrow \left\{\begin{array}{l}
\theta_{0}=a_{0} \\
a_{1}=\frac{\partial_{1}-t_{0}}{t_{f}} \\
\theta=\theta_{0}+\left(\frac{t_{1}-t_{0}}{t_{+}+}\right) t
\end{array}\right.\right.
$$

Joint Space Schemes

Single Time Interval
Polynomials
Cubic Order Polynomial

Trajectory Generation - Roadmap Diagram

Joint Space Schemes - Order of the Polynomials

$\theta(t)=a_{0}+a_{1} t$

$\partial(t)=a_{0}+a_{1} t+a_{2} t^{2}$

$$
\theta(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}
$$

Joint Space Schemes - Cubic Polynomials - Zero Velocity

- Problem - Define a function for each joint such that it value at
- t_{0} is the initial position of the joint and at
- $\quad t_{f}$ is the desired goal position of the joint
- Given - Constrains on $\theta(t)$

$$
\left\{\begin{array}{l}
\left\{\begin{array}{l}
\theta(0)=\theta_{0} \\
\theta\left(t_{f}\right)=\theta_{f}
\end{array}\right. \\
\left\{\begin{array}{l}
\dot{\theta}(0)=0 \\
\dot{\theta}\left(t_{f}\right)=0
\end{array}\right.
\end{array}\right.
$$

- What should be the order of the polynomial function to meet these constrains?

Joint Space Schemes - Cubic Polynomials - Zero Velocity

- Solution - The four constraints can be satisfied by a polynomial of at least third degree

$$
\theta(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}
$$

- The joint velocity and acceleration

$$
\begin{aligned}
& \dot{\theta}(t)=a_{1}+2 a_{2} t+3 a_{3} t^{2} \\
& \ddot{\theta}(t)=2 a_{2}+6 a_{3} t
\end{aligned}
$$

- Combined with the four desired constraints yields four equations in four unknowns

$$
\begin{aligned}
& \theta(0)=\theta_{0} \\
& \theta\left(t_{f}\right)=\theta_{f} \\
& \dot{\theta}(0)=0 \\
& \dot{\theta}\left(t_{f}\right)=0
\end{aligned}
$$

$$
\theta_{0}=a_{0}
$$

$$
\theta_{f}=a_{0}+a_{1} t_{f}+a_{2} t_{f}^{2}+a_{3} t_{f}^{3}
$$

$$
0=a_{1}
$$

$$
0=a_{1}+2 a_{2} t_{f}+3 a_{3} t_{f}^{2}
$$

Joint Space Schemes - Cubic Polynomials - Zero Velocity

Joint Space Schemes - Cubic Polynomials - Zero Velocity

$$
\begin{aligned}
& \left\{\begin{array}{l}
\theta_{f}=t_{0}+a_{2} t_{f}^{2}+a_{3} t_{f}^{3} \\
0=2 a_{2} t_{f}+3 a_{3} t_{f}^{2}
\end{array}\right. \\
& \left\{\begin{array}{l}
a_{2}\left[t_{f}^{2}\right]+a_{3}\left[t_{f}^{3}\right]=\theta_{f}-\theta_{0} \\
a_{2}\left[2 t_{f}\right]+a_{3}\left[3 t_{f}^{2}\right]=0
\end{array}\right. \\
& \Delta=\left|\begin{array}{ll}
t_{f}^{2} & t_{f}^{3} \\
2 t_{f} & 3 t_{f}^{2}
\end{array}\right|=3 t_{f}^{4}-2 t_{f}^{4}=t_{f}^{4} \\
& \begin{aligned}
a_{z} & =\frac{\left|\begin{array}{cc}
t_{f}-t_{0} & t_{f}^{3} \\
0 & 3 t_{f}^{2}
\end{array}\right|}{\Delta}=\frac{3 t_{f}^{2}\left(t_{f}-t_{0}\right)}{t_{f}^{4}} \\
& =\frac{3\left(t_{f}-t_{0}\right)}{t_{f}^{2}}
\end{aligned} \\
& a_{3}=\frac{\left|\begin{array}{cc}
t_{f}^{2} & A_{f}-A_{0} \\
2 t_{f} & 0
\end{array}\right|}{\Delta}=\frac{-2 t_{f}\left(t_{f}-A_{0}\right)}{t_{f}^{4}} \\
& =\frac{-2\left(\theta_{f}-\theta_{0}\right)}{t_{f}{ }^{3}}
\end{aligned}
$$

Joint Space Schemes - Cubic Polynomials - Zero Velocity

- Solving these equations for the a_{i} we obtain

$$
\begin{aligned}
& a_{0}=\theta_{0} \\
& a_{1}=0 \\
& a_{2}=\frac{3}{t_{f}^{2}}\left(\theta_{f}-\theta_{0}\right) \\
& a_{3}=-\frac{2}{t_{f}^{3}}\left(\theta_{f}-\theta_{0}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \dot{\theta}_{\text {max }}-M_{\text {ax }} \text { angular veloc } y \text { at } t_{f} / 2 \\
& \dot{\dot{\theta}} \text { max }\left(t=t_{f / 2}\right)=\frac{6}{t_{f}^{2}}\left(\theta_{f}-\theta_{0}\right)\left[\frac{t_{f}}{2}\right]-\frac{6}{t_{f}^{3}}\left(\theta_{f}-\theta_{0}\left[\frac{t_{f}}{2}\right]^{2}\right. \\
&=\frac{3\left(\theta_{f}-\theta_{0}\right)}{t_{f}}-\frac{6}{4} \frac{\left(\theta_{f}-\theta_{0}\right)}{t_{f}} \\
&=\frac{3}{2} \frac{\theta_{f}-\theta_{0}}{t_{f}}
\end{aligned}
$$

$\ddot{\theta}_{\text {max }}$ - Max angular acceleration at $t=0$ and $t=t_{f}$

$$
\ddot{\theta}_{\max }=\frac{6}{t_{f}^{2}}\left(\theta_{f}-A_{0}\right)
$$

Joint Space Schemes - Cubic Polynomials - Zero Velocity

Joint Space Schemes - Cubic Polynomials - Zero Velocity

- Example - A single-link robot with a rotary joint is motionless at $\theta_{0}=15$ degrees. It is desired to move the joint in a smooth manner to $\theta_{f}=75$ degrees in 3 seconds. Find the coefficient of the cubic polynomial that accomplish this motion and brings the manipulator to rest at the goal

$$
\begin{aligned}
& \theta(0)=15 \\
& \theta\left(t_{f}\right)=75 \\
& \dot{\theta}(0)=0 \\
& \dot{\theta}\left(t_{f}\right)=0
\end{aligned}
$$

$$
a_{0}=\theta_{0}=15
$$

$$
a_{1}=0
$$

$$
a_{2}=\frac{3}{t_{f}^{2}}\left(\theta_{f}-\theta_{0}\right)=\frac{3}{9}(75-15)=20
$$

$$
a_{3}=-\frac{2}{t_{f}^{3}}\left(\theta_{f}-\theta_{0}\right)=-\frac{2}{27}(75-15)=-4.44
$$

$$
\theta(t)=15+20 t^{2}-4.44 t^{3}
$$

$$
\dot{\theta}(t)=40 t-13.33 t^{2}
$$

$$
\ddot{\theta}(t)=40+26.66 t
$$

Joint Space Schemes - Cubic Polynomials - Zero Velocity

- The velocity profile of any cubic function is a parabola
- The acceleration profile of any cubic function is linear

ZERO VELOCITY
HIGHEST 4 CLELERATIOX

- Previous Method - The manipulator comes to rest at each via point

- Given - Constrains on $\theta(t)$ such that the velocities at the via points are not zero but rather some known velocities

Joint Space Schemes - Cubic Polynomials - Non Zero Velocity

- Solution - The four constraints can be satisfied by a polynomial

$$
\begin{aligned}
& \theta(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3} \\
& \dot{\theta}(t)=a_{1}+2 a_{2} t+3 a_{3} t^{2} \\
& \ddot{\theta}(t)=2 a_{2}+6 a_{3} t
\end{aligned}
$$

- Combined with the four desired constraints yields four equations in four unknowns

$$
\begin{array}{ll}
\theta(0)=\theta_{0} & \theta_{0}=a_{0} \\
\theta\left(t_{f}\right)=\theta_{f} & \theta_{f}=a_{0}+a_{1} t_{f}+a_{2} t_{f}^{2}+a_{3} t_{f}^{3} \\
\hline \dot{\theta}(0)=\dot{\theta}_{0} & \dot{\theta}_{0}=a_{1} \\
\dot{\theta}\left(t_{f}\right)=\dot{\theta}_{f} & \dot{\theta}_{f}=a_{1} t_{f}+2 a_{2} t_{f}+3 a_{3} t_{f}^{2}
\end{array}
$$

Joint Space Schemes - Cubic Polynomials - Non Zero Velocity

$$
\left[\begin{array}{c}
\theta_{0} \\
\theta_{f} \\
\dot{\theta}_{0} \\
\dot{\theta}_{f}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & t_{f} & t_{f}^{2} & t_{f}^{3} \\
0 & 1 & 0 & 0 \\
0 & t_{f} & 2 t_{f} & 3 t_{f}^{2}
\end{array}\right]\left[\begin{array}{l}
a_{p} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]
$$

Joint Space Schemes - Cubic Polynomials - Non Zero Velocity

$$
\begin{aligned}
& \int \theta_{f}=A_{0}+\dot{f}_{0} t_{f}+a_{2} t_{f}^{2}+a_{3} t_{f}^{3} \\
& \dot{\theta}_{f}=\dot{\theta}_{0}+2 a_{2} t_{f}+3 a_{3} t_{f}^{2} \\
& a_{2}\left[t_{f}^{2}\right]+a_{3}\left[t_{f}^{3}\right]=\left(\partial_{f}-\theta_{0}\right)-\dot{\theta}_{0} t_{f} \\
& a_{2}\left[2 t_{f}\right]+a_{3}\left[3 t_{f}^{2}\right]=\left(\dot{\theta}_{f}-\dot{j}_{0}\right) \\
& \Delta=\left|\begin{array}{cc}
t_{f}^{2} & t_{f}^{3} \\
2 t_{f} & 3 t_{f}^{2}
\end{array}\right|=3 t_{f}^{4}-2 t_{f}^{4}=t_{f}^{4}
\end{aligned}
$$

Joint Space Schemes - Cubic Polynomials - Non Zero Velocity

- Solving these equations for the a_{i} we obtain

$$
\begin{aligned}
& a_{0}=\theta_{0} \\
& a_{1}=\dot{\theta}_{0} \\
& a_{2}=\frac{3}{t_{f}^{2}}\left(\theta_{f}-\theta_{0}\right)-\frac{2}{t_{f}} \dot{\theta}_{0}-\frac{1}{t_{f}} \dot{\theta}_{f} \\
& a_{3}=-\frac{2}{t_{f}^{3}}\left(\theta_{f}-\theta_{0}\right)+\frac{2}{t_{f}^{2}}\left(\dot{\theta}_{f}+\dot{\theta}_{0}\right)
\end{aligned}
$$

- Given - velocities at each via point are
- Solution - Apply these equations for each segment of the trajectory.
- Note: The Cubic polynomials ensures the continuity of velocity but not the acceleration. Practically, the industrial manipulators are sufficiently rigid so this this continuity in acceleration

Joint Space Schemes - Cubic Polynomials - Non Zero Velocity

- Note:
- The Cubic polynomials ensures the continuity of velocity but not the acceleration.
- Practically, the industrial manipulators are sufficiently rigid so this discontinuity in acceleration is filtered by the mechanical structure
- Therefore this trajectory is generally satisfactory for most applications

Joint Space Schemes

Single Time Interval
Polynomials
Quantic Order Polynomial

Trajectory Generation - Roadmap Diagram

Joint Space Schemes - Quantic Polynomials

- Rational for Quantic Polynomials (high order)
- High Speed Robot
- Robot Carrying heavy/delicate load
- Non Rigid links
- For high speed robots or when the robot is handling heavy or delicate loads. It is worth insuring the continuity of accelerations as well as avoid excitation of the resonance modes of the mechanism

Joint Space Schemes - Quantic Polynomials - Non Zero Acceleration

- Problem - Define a function for each joint such that it value at
- t_{0} is the time at the initial position

CASES

- $\quad t_{f}$ is the time at the desired goal position
- Given - Constrains on the position velocity and acceleration at the beginning and the end of the path segment

$$
\begin{aligned}
& \theta(0)=\theta_{0} \\
& \theta\left(t_{f}\right)=\theta_{f} \\
& \dot{\theta}(0)=\dot{\theta}_{0} \\
& \dot{\theta}\left(t_{f}\right)=\dot{\theta}_{f} \\
& \ddot{\theta}(0)=\ddot{\theta}_{0} \\
& \ddot{\theta}\left(t_{f}\right)=\ddot{\theta}_{f}
\end{aligned}
$$

- What should be the order of the polynomial function to meet these constrains?

Joint Space Schemes - Quantic Polynomials - Non Zero Acceleration

- Solution - The six constraints can be satisfied by a polynomial of at least fifth
order

$$
\begin{array}{ll}
\theta(t) & =a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}+a_{5} t^{5} \\
\dot{\theta}(t) & =a_{1}+2 a_{2} t+3 a_{3} t^{2}+4 a_{4} t^{3}+5 a_{5} t^{4} \\
\ddot{\theta}(t) & = \\
2 a_{2}+6 a_{3} t+12 a_{4} t^{2}+20 a_{5} t^{3}
\end{array}
$$

- Combined with the six desired constraints yields six equations with six unknowns

$$
\begin{array}{ll}
\text { (1) } \theta(0)=\theta_{0} & \theta_{0}=a_{0} \\
\text { (2) } \theta\left(t_{f}\right)=\theta_{f} & \theta_{f}=a_{0}+a_{1} t_{f}+a_{2} t_{f}^{2}+a_{3} t_{f}^{3}+a_{4} t_{f}^{4}+a_{5} t_{f}^{5} \\
\text { (3) } \dot{\theta}(0)=\dot{\theta}_{0} & \dot{\theta}_{0}=a_{1} \\
\text { (4) } \dot{\theta}\left(t_{f}\right)=\dot{\theta}_{f} & \dot{\theta}_{f}=a_{1}+2 a_{2} t_{f}+3 a_{3} t_{f}^{2}+4 a_{4} t_{f}^{3}+5 a_{5} t_{f}^{4} \\
\text { (s) } \ddot{\theta}(0)=\ddot{\theta}_{0} & \ddot{\theta}_{0}=2 a_{2} \\
\text { (6) } \ddot{\theta}\left(t_{f}\right)=\ddot{\theta}_{f} & \ddot{\theta}_{f}=2 a_{2}+6 a_{3} t_{f}+12 a_{4} t_{f}^{2}+20 a_{5} t_{f}^{3}
\end{array}
$$

Joint Space Schemes - Quantic Polynomials - Non Zero Acceleration

(2) $\quad \theta_{f}=\theta_{0}+\dot{\theta}_{0} t_{f}+\frac{\ddot{\theta}_{0}}{2} t_{f}^{2}+a_{3} t_{f}^{3}+a_{4} t_{f}^{4}+a_{5} t_{f}^{5}$
(4) $\quad \dot{\theta}_{f}=\dot{\theta}_{0}+2 \frac{\ddot{\Delta}_{0}}{f} t_{f}+3 a_{3} t_{f}^{3}+4 a_{4} t_{f}^{4}+5 a_{5} t_{f}^{4}$
(6) $\quad \ddot{\partial}_{f}=k \ddot{A}_{0} \ddot{H}_{0}+6 a_{3} t_{f}+12 a_{4} t_{f}^{2}+20 a_{5} t_{f}^{3}$

$$
\left[\begin{array}{c|c|c}
\theta_{f}-\theta_{0}-\dot{\theta}_{f}-\ddot{\theta}_{0}^{2} t_{f}^{2} \\
\dot{\partial}_{f}-\dot{\theta}_{0}-\ddot{\theta}_{0} t_{f} \\
\ddot{\theta}_{f}-\ddot{\theta}_{0}-
\end{array}\right]\left[\begin{array}{c|c}
t_{f}^{3} & t_{f}^{4} \\
\hline 3 t_{f}^{3} & 4 t_{f}^{4} \\
\hline 6 t_{f}^{4} & +12 t_{f}^{2} \\
\hline 20 t_{f}^{4} \\
\hline a_{f}^{3}
\end{array}\right]\left[\begin{array}{l}
a_{3} \\
a_{4} \\
a_{5}
\end{array}\right]
$$

- Solving these equations for the a_{i} we obtain

$$
\begin{aligned}
& a_{0}=\theta_{0} \\
& a_{1}=\dot{\theta}_{0} \\
& a_{2}=\frac{\ddot{\theta}_{0}}{2} \\
& a_{3}=\frac{20 \theta_{f}-20 \theta_{0}-\left(8 \theta_{f}+12 \theta_{0}\right) t_{f}-\left(3 \theta_{0}-\theta_{f}\right) t_{f}^{2}}{2 t_{f}^{3}} \\
& a_{4}=\frac{30 \theta_{0}-30 \theta_{f}+\left(14 \theta_{f}+16 \theta_{0}\right) t_{f}+\left(3 \theta_{0}-2 \theta_{f}\right) t_{f}^{2}}{2 t_{f}^{4}} \\
& a_{5}=\frac{12 \theta_{f}-12 \theta_{0}-\left(6 \theta_{f}+6 \theta_{0}\right) t_{f}-\left(\theta_{0}-\theta_{f}\right) t_{f}^{2}}{2 t_{f}^{5}}
\end{aligned}
$$

$$
\begin{aligned}
& I^{\prime}=t_{f}-t_{0} ; h=A_{f}-\theta_{0} \\
& a_{0}=\theta_{0} \\
& a_{1}=\dot{\theta}_{0} \\
& a_{2}=\frac{1}{2} a_{0} \\
& a_{3}=\frac{1}{2 T^{3}}\left[20 h-\left(8 \dot{\theta}_{f}+12 \dot{\theta}_{0}\right) T-\left(3 a_{0}-a_{1}\right) T^{2}\right] \\
& a_{4}=\frac{1}{2 T^{4}}\left[-30 h+\left(14 \dot{\theta}_{f}+16 \dot{\theta}_{0}\right) T+\left(3 a_{0}-2 a_{1}\right) T^{2}\right] \\
& a_{5}=\frac{1}{2 T^{5}}\left[12 h-6\left(\dot{\theta}_{1}-\dot{\theta}_{0}\right) T+\left(a_{1}-a_{0}\right) T^{2}\right]
\end{aligned}
$$

Joint Space Schemes - Quantic Polynomials - Zero Acceleration

- Problem - Define a function for each joint such that it value at
- t_{0} is the time at the initial position
- t_{f} is the time at the desired goal position
- Given - Constrains on the position velocity and acceleration at the beginning and the end of the path segment

$$
\begin{array}{ll}
\theta(0)=\theta_{0} & \dot{\theta}(0)=\dot{\theta}_{0}
\end{array} \begin{aligned}
& \ddot{\theta}(0)=0 \\
& \theta\left(t_{f}\right)=\theta_{f} \\
& \dot{\theta}\left(t_{f}\right)=\dot{\theta}_{f}
\end{aligned} \begin{aligned}
& \ddot{\theta}\left(t_{f}\right)=0
\end{aligned}
$$

- What should be the order of the polynomial function to meet these constrains?

Joint Space Schemes - Quantic Polynomials - Zero Acceleration

- Solution - The six constraints can be satisfied by a polynomial of at least fifth
order

$$
\begin{array}{ll}
\theta(t) & =a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}+a_{5} t^{5} \\
\dot{\theta}(t) & = \\
\theta(t) & =r \\
\theta & a_{1}+2 a_{2} t+3 a_{3} t^{2}+4 a_{4} t^{3}+5 a_{5} t^{4} \\
a_{2}+6 a_{3} t+12 a_{4} t^{2}+20 a_{5} t^{3}
\end{array}
$$

- Combined with the six desired constraints yields six equations with six unknowns

$$
\begin{array}{ll}
\text { (1) } \theta(0)=\theta_{0} & \theta_{0}=a_{0} \\
\text { (2) } \theta\left(t_{f}\right)=\theta_{f} & \theta_{f}=a_{0}+a_{1} t_{f}+a_{2} t_{f}^{2}+a_{3} t_{f}^{3}+a_{4} t_{f}^{4}+a_{5} t_{f}^{5} \\
\text { (3) } \dot{\theta}(0)=\dot{\theta}_{0} & \dot{\theta}_{0}=a_{1} \\
\text { (4) } \dot{\theta}\left(t_{f}\right)=\dot{\theta}_{f} & \dot{\theta}_{f}=a_{1}+2 a_{2} t_{f}+3 a_{3} t_{f}^{2}+4 a_{4} t_{f}^{3}+5 a_{5} t_{f}^{4} \\
\text { (s) } \ddot{\theta}(0)=0 & 0=2 a_{2} \\
\text { (6) } \ddot{\theta}\left(t_{f}\right)=0 & 0=2 a_{2}+6 a_{3} t_{f}+12 a_{4} t_{f}^{2}+20 a_{5} t_{f}^{3}
\end{array}
$$

Joint Space Schemes - Quantic Polynomials - Zero Acceleration

- Solving these equations for the a_{i} we obtain

$$
\begin{aligned}
& a_{0}=\theta_{0} \\
& a_{1}=\dot{\theta}_{0} \\
& a_{2}=\frac{\ddot{\theta}_{0}}{2}=0 \\
& a_{3}=\frac{20 \theta_{f}-20 \theta_{0}-\left(8 \dot{\theta}_{f}+12 \dot{\theta}_{0}\right) t_{f}}{2 t_{f}^{3}} \\
& a_{4}=\frac{30 \theta_{0}-30 \theta_{f}+\left(14 \dot{\theta}_{f}+16 \dot{\theta}_{0}\right) t_{f}}{2 t_{f}^{4}} \\
& a_{5}=\frac{12 \theta_{f}-12 \theta_{0}-\left(6 \dot{\theta}_{f}+6 \dot{\theta}_{0}\right) t_{f}}{2 t_{f}^{5}}
\end{aligned}
$$

- Problem - Define a function for each joint such that it value at
$-t_{0}$ is the time at the initial position
- t_{f} is the time at the desired goal position
- Given - Constrains on the position velocity and acceleration at the beginning and the end of the path segment

$$
\begin{array}{l|l|l|}
\theta(0)=\theta_{0} & \dot{\theta}(0)=0 & \ddot{\theta}(0)=0 \\
\theta\left(t_{f}\right)=\theta_{f} & \dot{\theta}\left(t_{f}\right)=0 & \ddot{\theta}\left(t_{f}\right)=0 \\
\hline
\end{array}
$$

- What should be the order of the polynomial function to meet these constrains?

Joint Space Schemes - Quantic Polynomials - Zero Velocity \& Acceleration

- Solution - The six constraints can be satisfied by a polynomial of at least fifth
order

$$
\begin{array}{ll}
\theta(t) & =a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}+a_{5} t^{5} \\
\dot{\theta}(t) & = \\
\theta(t) & =r \\
\theta & a_{1}+2 a_{2} t+3 a_{3} t^{2}+4 a_{4} t^{3}+5 a_{5} t^{4} \\
a_{2}+6 a_{3} t+12 a_{4} t^{2}+20 a_{5} t^{3}
\end{array}
$$

- Combined with the six desired constraints yields six equations with six unknowns

$$
\begin{array}{ll}
\text { (1) } \theta(0)=\theta_{0} & \theta_{0}=a_{0} \\
\text { (2) } \theta\left(t_{f}\right)=\theta_{f} & \theta_{f}=a_{0}+a_{1} t_{f}+a_{2} t_{f}^{2}+a_{3} t_{f}^{3}+a_{4} t_{f}^{4}+a_{5} t_{f}^{5} \\
\text { (3) } \dot{\theta}(0)=0 & 0=a_{1} \\
\text { (4) } \dot{\theta}\left(t_{f}\right)=0 & 0=a_{1}+2 a_{2} t_{f}+3 a_{3} t_{f}^{2}+4 a_{4} t_{f}^{3}+5 a_{5} t_{f}^{4} \\
\text { (5) } \ddot{\theta}(0)=0 & 0=2 a_{2} \\
\text { (6) } \ddot{\theta}\left(t_{f}\right)=0 & 0=2 a_{2}+6 a_{3} t_{f}+12 a_{4} t_{f}^{2}+20 a_{5} t_{f}^{3}
\end{array}
$$

Joint Space Schemes - Quantic Polynomials - Zero Velocity \& Acceleration

- Solving these equations for the a_{i} we obtain

$$
\begin{aligned}
& a_{0}=\theta_{0} \\
& a_{1}=0 \\
& a_{2}=0 \\
& a_{3}=\frac{20 \theta_{f}-20 \theta_{0}}{2 t_{f}^{3}}=\frac{10 \theta_{f}-10 \theta_{0}}{t_{f}^{3}}=10\left[\frac{\theta_{f}-\theta_{0}}{t_{f}^{3}}\right] \\
& a_{4}=\frac{30 \theta_{0}-30 \theta_{f}}{2 t_{f}^{4}}=-\frac{15 \theta_{f}-15 \theta_{0}}{t_{f}^{4}}=-15\left[\frac{\theta_{f}-\theta_{0}}{t_{f}^{4}}\right] \\
& a_{5}=\frac{12 \theta_{f}-12 \theta_{0}}{2 t_{f}^{5}}=\frac{6 \theta_{f}-6 \theta_{0}}{t_{f}^{5}}=6\left[\frac{\theta_{f}-\theta_{0}}{t_{f}^{5}}\right]
\end{aligned}
$$

Joint Space Schemes - Quantic Polynomials - Zero Velocity \& Acceleration

$\left.\theta=\theta_{0}^{a_{0}}+\begin{array}{c} a_{3} \\ a_{0} \\ \dot{\theta}_{f}-\theta_{0} \\ t_{f}^{3} \end{array}\right) t^{3}-\left(15 \frac{\ddot{\theta}_{4}-\theta_{0}}{t_{f}^{4}}\right) t^{4}+\left(6 \frac{a_{5}}{a_{f}^{5}-\theta_{0}}\right) t^{5}$
$\theta=a_{0}+\quad+a_{3} t^{3}+a_{4} t^{4}+a_{5} t^{5}$
$\dot{\theta}=\quad+3 a_{3} t^{2}+4 a_{4} t^{3}+5 a_{5} t^{4}$
$\ddot{\theta}=\quad 6 a_{3} t+12 a_{4} t^{2}+20 a_{5} t^{3}$
$\theta=A_{0}+10\left[\frac{A_{1}-A_{0}}{t^{3} f}\right] t^{3}-15\left[\frac{\theta_{f}-A_{0}}{t_{f}^{4}}\right] t^{4}+6\left[\frac{\theta_{f}-\theta_{0}}{t_{f}^{5}}\right] t^{5}$
$\begin{aligned} & \dot{\theta}=30\left[\frac{\partial_{1}-\theta_{0}}{t_{+}^{3}}\right] t^{2}-60\left[\frac{\theta_{4}-\theta_{0}}{t_{f^{4}}}\right] t^{3}+30\left[\frac{\theta_{1}-\theta_{0}}{t_{f}^{5}}\right] t^{4} \\ & \dot{\theta}=60\left[\frac{\theta_{1}-\theta_{0}}{t_{5}^{3}}\right] t-190\left[\frac{\theta_{t}-\theta_{0}}{t^{4}}\right] t^{2}+120\left[\frac{\theta_{1}-\theta_{0}}{t_{0}^{5}}\right] t^{3} \end{aligned}$
$\dddot{A}=60\left[\frac{\theta_{f}-\theta_{0}}{t_{f}^{3}}\right]-360\left[\frac{\theta_{f}-\theta_{0}}{t_{f}^{4}}\right] t+360\left[\frac{\theta_{f}-\theta_{0}}{t_{f}^{5}}\right] t^{2}$

$$
\begin{aligned}
& \vec{\theta}_{\text {max }} \Rightarrow \text { at } \quad t=t_{f} / 2
\end{aligned}
$$

$$
\begin{aligned}
& \frac{36}{4}\left[\frac{\left.\theta_{f}-\theta_{0}\right]}{t_{f}}-\frac{66}{\theta_{1}^{\prime}} \frac{\left[\theta_{f}-\theta_{0}\right]}{t_{f}}+\frac{\frac{36}{16}}{2} \frac{\left(\theta_{f}-\theta_{0}\right]}{t_{f}}\right. \\
& =\frac{15}{8} \frac{\theta_{f}-\theta_{0}}{t_{f}}
\end{aligned}
$$

$$
\begin{aligned}
\ddot{A}_{\text {max }} & \rightarrow \quad a t \quad t=t_{f} / 4 \\
\ddot{\theta}_{\text {max }} & =6\left[10 \frac{\theta_{t}-A_{0}}{t^{3} / f}\right] \frac{t f_{f}^{4}}{t_{f}^{2}}-1 x\left[15 \frac{\theta_{f}-\theta_{0}}{t_{f}^{4}}\right] \frac{t_{f}^{2}}{18}+20\left[6 \frac{\theta_{f}-\theta_{0}}{t_{f}^{5}}\right] \frac{t_{f}^{3}}{t_{\cdot} \cdot 16} \\
& =15\left[\frac{\theta_{f}-A_{0}}{t_{f}^{2}}\right]-\frac{45}{4}\left[\frac{\theta_{1}-\theta_{0}}{t^{2}}\right]+\frac{15}{8}\left[\frac{\theta_{f}-\theta_{0}}{t_{f}^{2}}\right]= \\
& =\underbrace{\left.15-\frac{75}{8}\right]}_{5.625} \frac{\theta_{f}-\theta_{0}}{t_{f}^{2}}
\end{aligned}
$$

Joint Space Schemes - Quantic Polynomials - Zero Velocity \& Acceleration

Joint Space Schemes

Single Time Interval
Polynomials
Linear Function with Parabolic Blend (Trapezoid Velocity Method)

Trajectory Generation - Roadmap Diagram

Joint Space Schemes -
Linear Function With Parabolic Blend

Joint Space Schemes -

- Linear interpulation to move from the present jour position $\theta_{0}\left(t=t_{0}\right)$ to the final position $\theta_{f}\left(t=t_{f}\right)$
- Note: Although to motion of each joint is linear the Et in general does not move in a straight time is space

Discontinuous Velocity

- Problem: Linear interpulation would cause the neloaty to be discontinuous at the begining/end
- Solution: Parabolic blend region.

Joint Space Schemes -

- During the blend - Constant Acceleration to chang the velocity smoothly
- Assumptions (1) the parabolic blend segments $\left(\Delta t_{1},-\Delta t_{2}\right)$ have the same duration (c)
(2) The same constant acceleration is used during both blends

Joint Space Schemes -

Point (B)

- Point (B) is at the mile of the segment
(3) $\quad t h=\frac{t}{2}$
(4) $g_{h}=\frac{A_{f}-t_{0}}{2}+\theta_{0}=\frac{t_{f}-t_{0}+2 t_{0}}{2}=\frac{t_{t}+t_{0}}{2}$
plug Eq (4) into Eq (2) and Eq (3) into Eq (2)

$$
\ddot{\partial}_{b}=\frac{\frac{t}{A b}-A b_{b}}{\frac{t_{h}}{1}-t_{b}}=\frac{\left(\frac{\left.\Delta+t_{0}\right)}{2}-t_{b}\right.}{\left[\frac{t}{2}\right]-t_{b}}
$$

Joint Space Schemes Linear Function With Parabolic Blend

$$
\begin{aligned}
& \ddot{\theta} t_{b}\left(\frac{t}{2}-t_{b}\right)=\frac{\theta_{f}+A_{0}}{2}-A_{b} \\
& \ddot{\theta} t_{b}\left(\frac{t-2 t_{b}}{\psi}\right)=\frac{\theta_{f}+A_{0}-2 A_{b}}{2} \\
& \ddot{\theta} t_{b} t-2 \ddot{\theta} t_{b}^{2}=\theta_{f}+A_{0}-2 A_{b} \\
& \ddot{f}\left(t_{b} t\right)-2 \ddot{\theta} t_{b}^{2}-\theta_{f}-A_{0}+2 A_{b}=0 \\
& \text { 上 plug Eq (1) } \\
& \ddot{\theta}\left(t_{b} t\right)-2 \ddot{y} t_{b}^{2}-\theta_{f}-A_{0}+2 \theta_{0}+\ddot{\theta} t_{b}^{2}=0 \\
& \ddot{\theta}\left(t_{b} t\right)-\ddot{\theta} t_{b}^{2}+\theta_{f}+A_{0}=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { coin } 1 \text { - Given: } A_{f}, t_{0}, t_{, t_{b}} \text { (defined duration of motion) } \\
& \text { - Calculate: } \ddot{\theta}(E q, 5) \\
& \text { fine } 2 \text { - Given: } \ddot{\theta} \text { (chosen), } t, A_{f}, A_{0} \\
& \text { - Calculate } t_{b} \\
& t_{b}=\frac{+\vec{y} t \pm \sqrt{\dot{j}^{2} t^{2}-4 \vec{j}\left(t+\theta_{0}\right)}}{2 \ddot{\theta}}=\frac{t}{2} \pm \sqrt{\frac{\dot{\beta}^{2} t^{2}-4 \ddot{\theta}\left(\theta+-\theta_{0}\right)}{2 \ddot{y}}}
\end{aligned}
$$

Joint Space Schemes -

- Constraint on the acceleration used in the bland

$$
\begin{gathered}
\sqrt{\ddot{\theta}^{2}-4 \ddot{\theta}\left(\theta f-\theta_{0}\right)^{r}}>0 \\
\ddot{\theta}^{n}>4 \ddot{\theta}\left(\theta f-t_{0}\right) \\
\ddot{\theta} \geqslant \frac{4\left(\theta f-t_{0}\right)}{t^{2}} \\
\text { If equal } \quad t_{b}=\frac{t}{2} \pm \frac{\sqrt{0}}{2 \ddot{\theta}} \Rightarrow t_{b}=\frac{t}{2}
\end{gathered}
$$

Joint Space Schemes -

- The length of the linear portion and the parabolic portion may vary

High Acceleration $(\ddot{\theta}) \longrightarrow$ Short blend
low Acceleration $(\ddot{\theta}) \rightarrow \operatorname{long}$ BLend

