Trajectory Generation (1/2)

Introduction

Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical \& Aerospace Engineering - UCLA

Motion Planning

Healthy eye

Eye with cataract

Clear lens

Routine Cataract Surgery

https://youtu.be/Qbel72QmFAU

Motion Planning

Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical \& Aerospace Engineering - UCLA

ANTERIOR

A. $1.0 \mathrm{~mm}-1.5 \mathrm{~mm}$ occlusal reduction
B. $\quad 1.0 \mathrm{~mm}$ middle third reduction

POSTERIOR

C. Buccal and lingual walls must be convergent
D. Preparation should be cut in three planes

Motion Planning

1
Motion Planning

Motion Planning

Motion Planning

Problem Defenition

Motion Planning - Hierarchy

- Trajectory planning is a subset of the overall problem that is navigation or motion planning. The typical hierarchy of motion planning is as follows:
- Task planning - Designing a set of high-level goals, such as "go pick up the object in front of you".
- Path planning - Generating a feasible path from a start point to a goal point. A path usually consists of a set of connected waypoints.
- Trajectory planning - Generating a time schedule for how to follow a path given constraints such as position, velocity, and acceleration.
- Trajectory following - Once the entire trajectory is planned, there is a need for a control system that can execute the trajectory in a sufficiently accurate manner.
- Q: What's the difference between path planning and trajectory planning?
- A: A trajectory is a description of how to follow a path over time

Trajectory Generation - Problem Definition

Problem

Given: Manipulator geometry, End Effector Path (via point)

Compute: The trajectory of each joint such that the end effector move in space from point A to Point B

Solution (Domains)

- Joint space / Task Space

Definitions

- Trajectory (Definition) - Time history of position, velocity, and acceleration for each DOF.

- Trajectory Generation - Methods of computing a trajectory that describes the desired motion of a manipulator in a multidimensional space

H

Join Space Versus Task Space - Comparison

Parameter	Joint Space	Task Space
Interpolation Space intermediate points along the trajectory	Joint Space	Task Space
Tool Trajectory Type / Length	Curved Line / Long	Straight Lines / Short
Invers Kinematics (IK) Usage	Low	High
Computation Expense (IK)	Low (IK for Start/Finish \& Via Points) (Correction by establishing Pseudo Points) Passing through Via Points Po	High (IK for every single point / time steo on the trajectory)
Via Points Defined in the Task Space	Yes	
Path Dependency on a Specific Manipulator	Yes	Yes

General Consideration

- General approach for the motion of the manipulator
- Specify the path as a motion of the tool frame $\{T\}$ relative to the station frame $\{S\}$. Frame $\{G\}$ may change it position in time (e.g. conveyer belt)
- Advantages
- Decouple the motion description from any particular robot, end effector, or workspace.
- Modularity - Use the same path with:
- Different robot
- Different tool size

Trajectory Generation \& Inverse Kinematics Transforming from task space to joint space - General Approach

- There are two pathways from the base frame $\{B\}$ to the wrist frame $\{W\} \quad$ (Path I and Path II)

$$
{ }_{6}^{{ }_{6}^{0} \mathrm{~T}}=\stackrel{{ }_{\mathrm{W}}^{\mathrm{B}} \mathrm{~T}}{\mathrm{I}}=\stackrel{{ }_{S}^{\mathrm{B}_{\mathrm{S}} \mathrm{~T}_{\mathrm{G}}^{\mathrm{S}_{\mathrm{T}} \mathrm{~T}_{\mathrm{T}}^{\mathrm{G}} \mathrm{~T}_{\mathrm{W}}^{\mathrm{T}} \mathrm{~T}}}}{\mathrm{II} \rightarrow \text { Desired position and orientation }}
$$

${ }_{6}^{0} \mathrm{~T}={ }_{\mathrm{W}}^{\mathrm{B}} \mathrm{T}$ - Forward kinematics
${ }_{S}^{B} T$ - Location of the station with respect to the base
${ }_{\mathrm{G}} \mathrm{T}$ - Definition of the trajectory (Goal Location - Known)
${ }_{\mathrm{T}}^{\mathrm{G}} \mathrm{T}=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$ - Full alignment (position, orientation)

${ }_{\mathrm{W}}^{\mathrm{T}} \mathrm{T}$ - Location of the wrist with respect to the tool \rightarrow usually given ${ }_{\mathrm{T}}^{\mathrm{W}} \mathrm{T}$

Trajectory Generation \& Inverse Kinematics

 Transforming from task space to joint space - General Approach

Trajectory Generation \& Inverse Kinematics Transforming from task space to joint space - General Approach

$$
\begin{aligned}
{ }_{6}^{0} \mathrm{~T}= & { }_{1}^{0} \mathrm{~T} \\
{ }_{2}^{1} \mathrm{~T} & { }_{3}^{2} \mathrm{~T}
\end{aligned}{ }_{4}^{3} \mathrm{~T}{ }_{5}^{4} \mathrm{~T}{ }_{6}^{5} \mathrm{~T}=\left[\begin{array}{cccc|}
\hline{ }_{6}^{0} \mathrm{R} & { }^{0} \mathrm{P}_{6} \\
\hline 0 & 1
\end{array}\right]
$$

Given 3 intersecting axis 4,5, 6 (origins of 4,5, 6 are at the same point)

$$
{ }^{0} \mathrm{P}_{6}={ }^{0} \mathrm{P}_{4}
$$

- Solving Problem No. 1 - Solving for $\theta_{1}, \theta_{2}, \theta_{3}$
- Given 3 intersecting axis 4,5,6 (origins of 4,5, 6 are at the same point)

$$
{ }^{0} \mathrm{P}_{6}={ }^{0} \mathrm{P}_{4}
$$

- Note that ${ }^{0} \mathrm{P}_{6}$ and ${ }^{0} \mathrm{P}_{4}$ are a function of $\theta_{1}, \theta_{2}, \theta_{3}$

$$
\begin{gathered}
{ }_{6}^{0} \mathrm{~T}={ }_{1}^{0} \mathrm{~T}{ }_{2}^{1} \mathrm{~T}{ }_{3}^{2} \mathrm{~T}{ }_{4}^{3} \mathrm{~T}{ }_{5}^{4} \mathrm{~T}{ }_{6}^{5} \mathrm{~T}=\left[\begin{array}{cc}
{ }_{6}^{0} \mathrm{R} & { }^{0} \mathrm{P}_{6} \\
0 & 1
\end{array}\right]={ }_{{ }_{\mathrm{S}}^{\mathrm{B}} \mathrm{~T}}^{\mathrm{G}_{\mathrm{G}}^{\mathrm{S}} \mathrm{~T}}{ }_{\mathrm{T}}^{\mathrm{G}} \mathrm{~T}{ }_{\mathrm{W}}^{\mathrm{T}} \mathrm{~T}={ }_{\mathrm{W}}^{\mathrm{B}} \mathrm{~T} \\
{\left[\begin{array}{cc}
{ }_{4}^{0} \mathrm{R} & { }^{0} \mathrm{P}_{4} \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
{ }_{\mathrm{W}}^{\mathrm{B}} \mathrm{R} & { }^{\mathrm{B}} \mathrm{P}_{W} \\
0 & 1
\end{array}\right]}
\end{gathered}
$$

Trajectory Generation \& Inverse Kinematics

 Transforming from task space to joint space - General ApproachProblem No. 1
Position Problem

$$
\{\text { Frame } 3\} \xrightarrow[\rightarrow]{\alpha_{3}}\{\text { Frame }(\mathrm{R})\} \xrightarrow[\rightarrow]{\mathrm{a}_{3}}\{\text { Frame }(\mathrm{Q})\} \xrightarrow{\mathrm{R}_{\mathrm{x} 3}\left(\alpha_{3}\right)}\{\text { Frame }(\mathrm{P})\} \xrightarrow{\left.\mathrm{D}_{3}\right)} \underset{\mathrm{R}_{\mathrm{z} 4}\left(\theta_{4}\right)}{\mathrm{d}_{4}}\{\text { Frame }(4)\}
$$

$$
{ }_{6}^{{ }_{6}^{0} \mathrm{~T}}=\underbrace{{ }_{1}^{0} \mathrm{~T}{ }_{2}^{1} \mathrm{~T}{ }_{3}^{2} \mathrm{TR}_{\mathrm{x} 3}\left(\alpha_{4}\right) \mathrm{D}_{\mathrm{x} 3}\left(\mathrm{a}_{3}\right)}_{\begin{array}{c}
\text { Problem No. 1 } \\
\text { Position Problem }
\end{array}} \underbrace{\mathrm{R}_{\mathrm{z} 4}\left(\theta_{4}\right) \mathrm{D}_{\mathrm{z} 4}\left(\mathrm{~d}_{4}\right){ }_{5}^{4} \mathrm{~T}{ }_{6}^{5} \mathrm{~T}}_{\begin{array}{c}
\text { Problem No. 2 } \\
\text { orientation problem }
\end{array}}
$$

$$
\begin{array}{c|c}
{ }_{6}^{0} \mathrm{~T}={ }_{\left.{ }_{1}^{0} \mathrm{~T}{ }_{2}^{1} \mathrm{~T}{ }_{3}^{2} \mathrm{~T}_{4}^{3} \mathrm{~T}\right|_{\theta_{4}=0}} & \left\lvert\, \begin{array}{c}
\left|{ }_{4}^{3} \mathrm{~T}\right|_{\alpha_{4}=0}{ }_{5}^{4} \mathrm{~T}_{6}^{5} \mathrm{~T} \\
\operatorname{Set}_{\theta_{4}}=0
\end{array}\right. \\
\operatorname{Set} \alpha_{4}=0
\end{array}
$$

Multiply both sides of the equation by $\left[{ }_{6}^{0} \mathrm{RR}_{\mathrm{x} 3}\left(\alpha_{3}\right)\right]^{-1}$ results in

$$
\mathrm{R}_{\mathrm{z} 4}\left(\theta_{4}\right){ }_{6}^{4} \mathrm{R}=\left[{ }_{3}^{0} \mathrm{R} \mathrm{R}_{\mathrm{x} 3}\left(\alpha_{3}\right)\right]^{-1} \quad{ }_{6}^{0} \mathrm{R}
$$

Trajectory Generation \& Inverse Kinematics

 Transforming from task space to joint space - General Approach- Solving Problem No. 2 - Solving for $\theta_{4}, \theta_{5}, \theta_{6}$

$$
\begin{aligned}
& \underbrace{R_{\mathrm{z} 4}\left(\theta_{4}\right){ }_{6}^{4} \mathrm{R}}=\underbrace{\underbrace{\left[{ }_{3}^{0} \mathrm{RR}_{\mathrm{x} 3}\left(\alpha_{3}\right)\right]^{-1}} \quad \begin{array}{l}
\text { Desired orientation given for } \\
\text { every point on the trajectory }
\end{array}}_{\begin{array}{c}
\text { Solved in Problem 1 } \\
\text { Known } \theta_{1}, \theta_{2}, \theta_{3}
\end{array}} \\
& \mathrm{R}_{\mathrm{z} 4}\left(\theta_{4}\right){ }_{5}^{4} \mathrm{R}\left(\theta_{5}\right){ }_{6}^{5} \mathrm{R}\left(\theta_{6}\right)=\overline{\mathrm{R}_{\mathrm{D}}} \rightarrow \quad \text { Desired orientation of the wrist taking into } \\
& \text { account the contribution of the first } 3 \\
& \text { angles to the orientation } \\
& \mathrm{R}_{\mathrm{z4}}\left(\theta_{4}\right){ }_{5}^{4} \mathrm{R}\left(\theta_{5}\right){ }_{6}^{5} \mathrm{R}\left(\theta_{6}\right)=\begin{array}{|ccc|}
\overline{\mathrm{R}_{\mathrm{D}}} \\
{\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]}
\end{array}
\end{aligned}
$$

- Solve for $\theta_{4}, \theta_{5}, \theta_{6}$ using the Z-Y-Z problem

Trajectory Generation \& Inverse Kinematics General Approach

Trajectory Generation \& Inverse Kinematics General Approach

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{ZYZ}}(\alpha, \beta, \gamma)=\mathrm{R}_{\mathrm{Z}}(\alpha) \mathrm{R}_{\mathrm{Y}}(\beta) \mathrm{R}_{\mathrm{Z}}(\gamma)=\left[\begin{array}{ccc}
\mathrm{c}_{\alpha} & -\mathrm{s}_{\alpha} & 0 \\
\mathrm{~s}_{\alpha} & \mathrm{c}_{\alpha} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\mathrm{c}_{\beta} & 0 & \mathrm{~s}_{\beta} \\
0 & 1 & 0 \\
-\mathrm{s}_{\beta} & 0 & \mathrm{c}_{\beta}
\end{array}\right]\left[\begin{array}{ccc}
\mathrm{c}_{\gamma} & -\mathrm{s}_{\gamma} & 0 \\
\mathrm{~s}_{\gamma} & \mathrm{c}_{\gamma} & 0 \\
0 & 0 & 1
\end{array}\right] \\
& \mathrm{R}_{\mathrm{ZYZ}}(\alpha, \beta, \gamma)=\left[\begin{array}{ccc}
\mathrm{c}_{\alpha} c_{\beta} c_{\gamma}-s_{\alpha} s_{\gamma} & -c_{\alpha} c_{\beta} s_{\gamma}-s_{\alpha} c_{\gamma} & \mathrm{c}_{\alpha} \mathrm{s}_{\beta} \\
s_{\alpha} c_{\beta} c_{\gamma}+c_{\alpha} s_{\gamma} & -s_{\alpha} c_{\beta} s_{\gamma}+c_{\alpha} c_{\gamma} & \mathrm{s}_{\alpha} \mathrm{s}_{\beta} \\
-\mathrm{s}_{\beta} \mathrm{c}_{\gamma} & \mathrm{s}_{\beta} \mathrm{s}_{\gamma} & \mathrm{c}_{\beta}
\end{array}\right]=\left[\begin{array}{lll}
\mathrm{r}_{11} & \mathrm{r}_{12} & \mathrm{r}_{13} \\
\mathrm{r}_{21} & \mathrm{r}_{22} & \mathrm{r}_{23} \\
\mathrm{r}_{31} & \mathrm{r}_{32} & \mathrm{r}_{33}
\end{array}\right] \\
& \beta=\operatorname{Atan2}\left(\sqrt{\left.r_{31}^{2}+r_{32}^{2}, \mathrm{r}_{33}\right)}\right. \\
& \alpha=\operatorname{Atan2}\left(r_{23} / s \beta, r_{13} / s \beta\right) \\
& \left.\gamma=\operatorname{Atan} 2\left(r_{32} / s \beta\right),-r_{31} / s \beta\right)
\end{aligned}
$$

General Consideration - Via Points

- Basic Problem - Move the tool frame $\{T\}$ from its initial position / orientation \{T_initial\} to the final position / orientation \{T_final\}.
- Specific Description
- Via Point - Intermediate points between the initial and the final end- effector locations that the end-effector mast go through and match it position and orientation along the trajectory.
- Each via point is defined by a frame defining the position/orientation of the tool with respect to the station frame
- Path Points - includes all the via points along with the initial and final points
- Point (Frame) - Every point on the trajectory is define by a frame (spatial description)

General Consideration - Smooth Path

- "Smooth" Path or Function
- Continuous path / function with first and second derivatives.
- Add constrains on the spatial and temporal qualities of the path between the via-points
- Implications of non-smooth path
- Increase wear in the mechanism (rough jerky movement)
- Vibration - exciting resonances.
- Example of smooth path
- The joint angle (θ), joint velocity $(\dot{\theta})$, and joint acceleration ($\ddot{\theta}$) at the entry and exit of the via point are equal.

Via Point

$$
\begin{aligned}
& \theta_{\mathrm{tvp}-}=\theta_{\mathrm{tvp}+} \\
& \dot{\theta}_{\mathrm{tvp}-}=\dot{\theta}_{\mathrm{tvp}+} \\
& \ddot{\theta}_{\mathrm{tvp}-}=\ddot{\theta}_{\mathrm{tvp}+}
\end{aligned}
$$

Trajectory Generation - Joint Space Control

Trajectory Generation - Task Space Control

Precision / Repeatability versus Accuracy

Repeatability $= \pm \mathbf{r}$

Trajectory Generation - Roadmap Diagram

Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical \& Aerospace Engineering - UCLA

Joint Space Schemes

Single Time Interval

Trajectory Generation - Roadmap Diagram

Joint Space Schemes

- Joint space Schemes - Path shapes (in space and in time) are described in terms of functions in the joint space.
- General process (Steps) given initial and target P/O

1. Select a path point or via point (desired position and orientation of the tool frame $\{T\}$ with respect to the base frame $\{\mathrm{s}\}$)
2. Convert each of the "via point" into a set of joint angles using the invers kinematics
3. Find a smooth function for each of the n joints that pass trough the via points, and end the goal point.

Note 1: The time required to complete each segment is the same for each joint such that the all the joints will reach the via point at the same time. Thus resulting in the position and orientation of the frame $\{T\}$ at the via point.
Note 2: The joints move independently with only one time restriction (Note 1)

- Define a function for each joint such that value at t_{0} is the initial position of the joint and whose value at t_{f} is the desire goal position of the joint
- There are many smooth functions $\theta(t)$ that may be used to interpolate the joint value.

Joint Space Schemes

Single Time Interval

Polynomials
First Order Polynomial

Trajectory Generation - Roadmap Diagram

Joint Space Schemes - Linear Polynomials

- Problem - Define a function for each joint such that its
value at
- t_{0} is the initial position of the joint
- t_{f} is the desired goal position of the joint
- Given - Constrains on $\theta(\mathrm{t})$

$$
\begin{aligned}
& \theta(0)=\theta_{0} \\
& \theta\left(t_{f}\right)=\theta_{f}
\end{aligned}
$$

Joint Space Schemes - Linear Polynomials

- Solution - the two constraints can be satisfied by a first order polynomial

$$
\theta(t)=a_{0}+a_{1} t
$$

- Combined with the two desired constrains yields two equations in two unknown

$$
\begin{array}{ll}
\begin{array}{l}
\theta_{0}(0)=a_{0} \\
\theta_{f}(t)=a_{0}+a_{1} t_{f}
\end{array} & \begin{array}{l}
\theta_{0}=a_{0} \\
a_{1}=\frac{\theta_{f}}{t} \\
\theta=\theta_{0}+\left(\frac{\theta_{f}-\theta_{0}}{t_{f}}\right) t
\end{array}
\end{array}
$$

Joint Space Schemes

Single Time Interval
Polynomials
Cubic Order Polynomial

Trajectory Generation - Roadmap Diagram

Joint Space Schemes - Order of the Polynomials

Joint Space Schemes - Cubic Polynomials - Zero Velocity

- Problem - Define a function for each joint such that it value at
- t_{0} is the initial position of the joint and at
- t_{f} is the desired goal position of the joint
- Given - Constrains on

$$
\begin{aligned}
& \theta(0)=\theta_{0} \\
& \theta\left(t_{f}\right)=\theta_{f} \\
& \dot{\theta}(0)=0 \\
& \dot{\theta}\left(t_{f}\right)=0
\end{aligned}
$$

- What should be the order of the polynomial function to meet these constrains?

Joint Space Schemes - Cubic Polynomials - Zero Velocity

- Solution - The four constraints can be satisfied by a polynomial of at least third degree

$$
\theta(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}
$$

- The joint velocity and acceleration

$$
\begin{aligned}
& \dot{\theta}(t)=a_{1}+2 a_{2} t+3 a_{3} t^{2} \\
& \ddot{\theta}(t)=2 a_{2}+6 a_{3} t
\end{aligned}
$$

- Combined with the four desired constraints yields four equations in four unknowns

$$
\begin{array}{ll}
\theta(0)=\theta_{0} & \theta_{0}=a_{0} \\
\theta\left(t_{f}\right)=\theta_{f} & \theta_{f}=a_{0}+a_{1} t_{f}+a_{2} t_{f}^{2}+a_{3} t_{f}^{3} \\
\dot{\theta}(0)=0 & 0=a_{1} \\
\dot{\theta}\left(t_{f}\right)=0 & 0=a_{1}+2 a_{2} t_{f}+3 a_{3} t_{f}^{2}
\end{array}
$$

Joint Space Schemes - Cubic Polynomials - Zero Velocity

$$
\left.\left.\begin{array}{c}
{\left[\begin{array}{c}
\mathrm{a}_{0} \\
\downarrow \\
\mathrm{a}_{1}
\end{array} \mathrm{a}_{2}\right.} \\
\downarrow \\
\theta_{0} \\
\theta_{\mathrm{f}} \\
0 \\
0
\end{array}\right]=\begin{array}{cccc}
\mathrm{a}_{3} \\
0 & \downarrow & \downarrow \\
1 & 0 & 0 & 0 \\
1 & \mathrm{t}_{\mathrm{f}} & \mathrm{t}_{\mathrm{f}}^{2} & \mathrm{t}_{\mathrm{f}}^{3} \\
0 & 1 & 0 & 0 \\
0 & \mathrm{t}_{\mathrm{f}} & 2 \mathrm{t}_{\mathrm{f}} & 3 \mathrm{t}_{\mathrm{f}}^{2}
\end{array}\right]\left[\begin{array}{c}
\mathrm{a}_{0} \\
\mathrm{a}_{1} \\
\mathrm{a}_{2} \\
\mathrm{a}_{3}
\end{array}\right]
$$

Joint Space Schemes - Cubic Polynomials - Zero Velocity

$$
\begin{aligned}
& \theta_{f}=\theta_{0}+a_{2} t_{f}^{2}+a_{3} t_{f}^{3} \\
& 0=2 a_{2} t_{f}+3 a_{3} t_{f}^{2}
\end{aligned}
$$

$$
a_{2}=\frac{\left|\begin{array}{cc}
\theta_{f}-\theta_{0} & t_{f}^{3} \\
0 & 3 t_{f}^{2}
\end{array}\right|}{\Delta}=\frac{3 t_{f}^{2}\left(\theta_{f}-\theta_{0}\right)}{t_{f}^{4}}=\frac{3\left(\theta_{f}-\theta_{0}\right)}{t_{f}^{2}}
$$

$$
a_{2}\left[t_{f}^{2}\right]+a_{3}\left[t_{f}^{3}\right]=\theta_{f}-\theta_{0}
$$

$$
a_{2}\left[2 t_{f}\right]+a_{3}\left[3 t_{f}^{2}\right]=0
$$

$$
\Delta=\left|\begin{array}{cc}
t_{f}^{2} & t_{f}^{3} \\
2 t_{f} & 3 t_{f}^{2}
\end{array}\right|=3 t_{f}^{4}-2 t_{f}^{4}=t_{f}^{4}
$$

$$
a_{3}=\frac{\left|\begin{array}{cc}
t_{f}^{2} & \theta_{f}-\theta_{0} \\
2 t_{f} & 0
\end{array}\right|}{\Delta}=\frac{-2 t_{f}\left(\theta_{f}-\theta_{0}\right)}{t_{f}^{4}}=\frac{-2\left(\theta_{f}-\theta_{0}\right)}{t_{f}^{3}}
$$

Joint Space Schemes - Cubic Polynomials - Zero Velocity

- Solving these equations for the a_{i} we obtain

$$
\begin{aligned}
& a_{0}=\theta_{0} \\
& a_{1}=0 \\
& a_{2}=\frac{3}{t_{f}^{2}}\left(\theta_{f}-\theta_{0}\right) \\
& a_{3}=-\frac{2}{t_{f}^{3}}\left(\theta_{f}-\theta_{0}\right)
\end{aligned}
$$

Joint Space Schemes - Cubic Polynomials - Zero Velocity

$\dot{\theta}_{\text {max }}$ - max angular velocity at $\frac{t_{f}}{2}$

$$
\dot{\theta}_{\max }\left(t=\frac{t_{f}}{2}\right)=\frac{6}{t_{f}^{2}}\left(\theta_{f}-\theta_{0}\right)\left[\frac{t_{f}}{2}\right]-\frac{6}{t_{f}^{3}}\left(\theta_{f}-\theta_{0}\right)\left[\frac{t_{f}}{2}\right]^{2}=\frac{3\left(\theta_{f}-\theta_{0}\right)}{t_{f}}-\frac{6}{4} \frac{\left(\theta_{f}-\theta_{0}\right)}{t_{f}}=\frac{3}{2} \frac{\theta_{f}-\theta_{0}}{t_{f}}
$$

$\ddot{\theta}_{\text {max }}-$ max angular acceleration at $\mathrm{t}=0$ and $\mathrm{t}=\mathrm{t}_{\mathrm{f}}$

$$
\ddot{\theta}_{\max }=\frac{6}{t_{f}^{2}}\left(\theta_{f}-\theta_{0}\right)
$$

Joint Space Schemes - Cubic Polynomials - Zero Velocity

Joint Space Schemes - Cubic Polynomials - Zero Velocity

- Example - A single-link robot with a rotary joint is motionless at $\theta_{0}=15$ degrees. It is desired to move the joint in a smooth manner to $\theta_{f}=75$ degrees in 3 seconds. Find the coefficient of the cubic polynomial that accomplish this motion and brings the manipulator to rest at the goal

$$
\begin{aligned}
& \theta(0)=15 \\
& \theta\left(t_{f}\right)=75 \\
& \dot{\theta}(0)=0 \\
& \dot{\theta}\left(t_{f}\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& a_{0}=\theta_{0}=15 \\
& a_{1}=0 \\
& a_{2}=\frac{3}{t_{f}^{2}}\left(\theta_{f}-\theta_{0}\right)=\frac{3}{9}(75-15)=20 \\
& a_{3}=-\frac{2}{t_{f}^{3}}\left(\theta_{f}-\theta_{0}\right)=-\frac{2}{27}(75-15)=-4.44 \\
& \theta(t)=15+20 t^{2}-4.44 t^{3} \\
& \dot{\theta}(t)=40 t-13.33 t^{2} \\
& \ddot{\theta}(t)=40+26.66 t
\end{aligned}
$$

Joint Space Schemes - Cubic Polynomials - Zero Velocity

- The velocity profile of any cubic function is a parabola
- The acceleration profile of any cubic function is linear

Joint Space Schemes - Cubic Polynomials - Non Zero Velocity

- Previous Method - The manipulator comes to rest at each via point
- General Requirement - Pass through a point without stopping
- Problem - Define a function for each joint such that it value at
- t_{0} is the initial position of the joint and at
- t_{f} is the desire goal position of the joint
- Given - Constrains on $\theta(t)$ such that the velocities at the via points are not zero but rather some known velocities

$$
\begin{aligned}
& \theta(0)=\theta_{0} \\
& \theta\left(t_{f}\right)=\theta_{f} \\
& \dot{\theta}(0)=\dot{\theta}_{0} \\
& \dot{\theta}\left(t_{f}\right)=\dot{\theta}_{f}
\end{aligned}
$$

Joint Space Schemes - Cubic Polynomials - Non Zero Velocity

- Solution - The four constraints can be satisfied by a polynomial

$$
\begin{aligned}
& \theta(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3} \\
& \dot{\theta}(t)=a_{1}+2 a_{2} t+3 a_{3} t^{2} \\
& \ddot{\theta}(t)=2 a_{2}+6 a_{3} t
\end{aligned}
$$

- Combined with the four desired constraints yields four equations in four unknowns

$$
\begin{array}{ll}
\theta(0)=\theta_{0} & \theta_{0}=a_{0} \\
\theta\left(t_{f}\right)=\theta_{f} & \theta_{f}=a_{0}+a_{1} t_{f}+a_{2} t_{f}^{2}+a_{3} t_{f}^{3} \\
\hline \dot{\theta}(0)=\dot{\theta}_{0} & \dot{\theta}_{0}=a_{1} \\
\dot{\theta}\left(t_{f}\right)=\dot{\theta}_{f} & \dot{\theta}_{f}=a_{1} t_{f}+2 a_{2} t_{f}+3 a_{3} t_{f}^{2}
\end{array}
$$

$$
\left[\begin{array}{c}
\theta_{0} \\
\theta_{f} \\
\dot{\theta}_{0} \\
\dot{\theta}_{f}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & t_{f} & t_{f}^{2} & t_{f}^{3} \\
0 & 1 & 0 & 0 \\
0 & t_{f} & 2 t_{f} & 3 t_{f}^{2}
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]
$$

$$
\begin{array}{l|r}
\\
\begin{array}{ll}
\theta_{f}=\theta_{0}+\dot{\theta}_{0} t_{f}+a_{2} t_{f}^{2}+a_{3} t_{f}^{3} \\
\dot{\theta}_{f}=\dot{\theta}_{0}+2 a_{2} t_{f}+3 a_{3} t_{f}^{2}
\end{array} & a_{2}=\frac{\left|\begin{array}{cc}
\left(\theta_{f}-\theta_{0}\right)-\dot{\theta}_{0} t_{f} & t_{f}^{3} \\
\left(\dot{\theta}_{f}-\dot{\theta}_{0}\right) & 3 t_{f}^{2}
\end{array}\right|}{\Delta} \\
\begin{array}{ll}
a_{2}\left[t_{f}^{2}\right]+a_{3}\left[t_{f}^{3}\right]=\left(\theta_{f}-\theta_{0}\right)-\dot{\theta}_{0} t_{f} \\
a_{2}\left[2 t_{f}\right]+a_{3}\left[3 t_{f}^{2}\right]=\left(\dot{\theta}_{f}-\dot{\theta}_{0}\right)
\end{array} & =\frac{3 t_{f}^{2}\left(\left(\theta_{f}-\theta_{0}\right)-\dot{\theta}_{0} t_{f}\right)-t_{f}^{3}\left(\dot{\theta}_{f}-\dot{\theta}_{0}\right)}{t_{f}^{4}} \\
& =\frac{3}{t_{f}^{2}\left(\theta_{f}-\theta_{0}\right)-\frac{2}{t_{f}} \dot{\theta}_{0}-\frac{1}{t_{f}} \dot{\theta}_{f}} \\
\Delta=\left|\begin{array}{cc}
t_{f}^{2} & t_{f}^{3} \\
2 t_{f} & 3 t_{f}^{2}
\end{array}\right|=3 t_{f}^{4}-2 t_{f}^{4}=t_{f}^{4} & \begin{array}{ll}
a_{3} & =\frac{\left|\begin{array}{cc}
t_{f}^{2} & \left(\theta_{f}-\theta_{0}\right)-\dot{\theta}_{0} t_{f} \\
2 t_{f} & \dot{\theta}_{f}-\dot{\theta}_{0}
\end{array}\right|}{\Delta} \\
& =\frac{t_{f}^{2}\left(\dot{\theta}_{f}-\dot{\theta}_{0}\right)-2 t_{f}\left[\left(\theta_{f}-\theta_{0}\right)-\dot{\theta}_{0} t_{f}\right]}{t_{f}^{4}} \\
& =-\frac{2}{t_{f}^{3}\left(\theta_{f}-\theta_{0}\right)+\frac{2}{t_{f}^{2}}\left(\theta_{f}+\theta_{0}\right)}
\end{array}
\end{array}
$$

Joint Space Schemes - Cubic Polynomials - Non Zero Velocity

- Solving these equations for the a_{i} we obtain

$$
\begin{aligned}
& a_{0}=\theta_{0} \\
& a_{1}=\dot{\theta}_{0} \\
& a_{2}=\frac{3}{t_{f}^{2}}\left(\theta_{f}-\theta_{0}\right)-\frac{2}{t_{f}} \dot{\theta}_{0}-\frac{1}{t_{f}} \dot{\theta}_{f} \\
& a_{3}=-\frac{2}{t_{f}^{3}}\left(\theta_{f}-\theta_{0}\right)+\frac{2}{t_{f}^{2}}\left(\dot{\theta}_{f}+\dot{\theta}_{0}\right)
\end{aligned}
$$

- Given - velocities at each via point are
- Solution - Apply these equations for each segment of the trajectory.

Joint Space Schemes - Cubic Polynomials - Non Zero Velocity

- Note:
- The Cubic polynomials ensures the continuity of velocity but not the acceleration.
- Practically, the industrial manipulators are sufficiently rigid so this discontinuity in acceleration is filtered by the mechanical structure
- Therefore this trajectory is generally satisfactory for most applications

Joint Space Schemes

Single Time Interval
Polynomials
Quantic Order Polynomial

Joint Space Schemes

Trajectory Generation - Roadmap Diagram

Joint Space Schemes - Quantic Polynomials

- Rational for Quantic Polynomials (high order)
- High Speed Robot
- Robot Carrying heavy/delicate load
- Non Rigid links
- For high speed robots or when the robot is handling heavy or delicate loads. It is worth insuring the continuity of accelerations as well as avoid excitation of the resonance modes of the mechanism
- Problem - Define a function for each joint such that it value at
- $\quad t_{0}$ is the time at the initial position
- $\quad t_{f}$ is the time at the desired goal position
- Given - Constrains on the position velocity and acceleration at the beginning and the end of the path segment

$$
\begin{aligned}
& \theta(0)=\theta_{0} \\
& \theta\left(t_{f}\right)=\theta_{f} \\
& \dot{\theta}(0)=\dot{\theta}_{0} \\
& \dot{\theta}\left(t_{f}\right)=\dot{\theta}_{f} \\
& \ddot{\theta}(0)=\ddot{\theta}_{0} \\
& \ddot{\theta}\left(t_{f}\right)=\ddot{\theta}_{f}
\end{aligned}
$$

- What should be the order of the polynomial function to meet these constrains?

Joint Space Schemes - Quantic Polynomials - Non Zero Acceleration

- Solution - The six constraints can be satisfied by a polynomial of at least fifth order

$$
\begin{aligned}
& \theta(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}+a_{5} t^{5} \\
& \dot{\theta}(t)=\quad a_{1}+2 a_{2} t+3 a_{3} t^{2}+4 a_{4} t^{3}+5 a_{5} t^{4} \\
& \ddot{\theta}(t)= \\
& 2 a_{2}+6 a_{3} t+12 a_{4} t^{2}+20 a_{5} t^{3}
\end{aligned}
$$

- Combined with the six desired constraints yields six equations with six unknowns

$$
\begin{array}{ll}
\theta(0)=\theta_{0} & \theta_{0}=a_{0} \\
\theta\left(t_{f}\right)=\theta_{f} & \theta_{f}=a_{0}+a_{1} t_{f}+a_{2} t_{f}^{2}+a_{3} t_{f}^{3}+a_{4} t_{f}^{4}+a_{5} t_{f}^{5} \\
\dot{\theta}(0)=\dot{\theta}_{0} & \dot{\theta}_{0}=a_{1} \\
\dot{\theta}\left(t_{f}\right)=\dot{\theta}_{f} & \dot{\theta}_{f}=a_{1}+2 a_{2} t_{f}+3 a_{3} t_{f}^{2}+4 a_{4} t_{f}^{3}+5 a_{5} t_{f}^{4} \\
\ddot{\theta}(0)=\ddot{\theta}_{0} & \ddot{\theta}_{0}=2 a_{2} \\
\ddot{\theta}\left(t_{f}\right)=\ddot{\theta}_{f} & \ddot{\theta}_{f}=2 a_{2}+6 a_{3} t_{f}+12 a_{4} t_{f}^{2}+20 a_{5} t_{f}^{3}
\end{array}
$$

$$
\begin{gathered}
\\
{\left[\begin{array}{c}
\theta_{0} \\
\theta_{f} \\
\dot{\theta}_{0} \\
\dot{\theta}_{f} \\
\ddot{\theta}_{0} \\
\ddot{\theta}_{f}
\end{array}\right]=\left[\begin{array}{cccccc}
a_{0} & a_{1} & a_{2} & a_{3} & a_{4} & a_{5} \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
1 & 0 & 0 & 0 & 0 & 0 \\
1 & t_{f} & t_{f}^{2} & t_{f}^{3} & t_{f}^{4} & t_{f}^{5} \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 2 t_{f} & 3 t_{f}^{2} & 4 t_{f}^{3} & 5 t_{f}^{4} \\
0 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 2 & 6 t_{f} & 12 t_{f}^{2} & 20 t_{f}^{3}
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5}
\end{array}\right]}
\end{gathered}
$$

(2) $\theta_{f}=\theta_{0}+\dot{\theta}_{0} t_{f}+\frac{\ddot{\theta}_{0}}{2} t_{f}^{2}+a_{3} t_{f}^{3}+a_{4} t_{f}^{4}+a_{5} t_{f}^{5}$
(4) $\dot{\theta}_{f}=\dot{\theta}_{0}+2 \frac{\ddot{\theta}_{2}}{2} t_{f}+3 a_{3} t_{f}^{3}+4 a_{4} t_{f}^{4}+5 a_{5} t_{f}^{4}$
(6) $\ddot{\theta}_{f}=2 \frac{\ddot{\theta}_{0}}{2}+6 a_{3} t_{f}+12 a_{4} t_{f}^{2}+20 a_{5} t_{f}^{3}$

$$
\left[\begin{array}{c}
\theta_{f}-\theta_{0}-\dot{\theta} t_{f}-\frac{\ddot{\theta}_{0}}{2} t_{f}^{2} \\
\dot{\theta}_{f}-\dot{\theta}_{0}-\ddot{\theta}_{0} t_{f} \\
\ddot{\theta}_{f}-\ddot{\theta}_{0}
\end{array}\right]\left[\begin{array}{ccc}
t_{f}^{3} & t_{f}^{4} & t_{f}^{5} \\
3 t_{f}^{3} & 4 t_{f}^{4} & 5 t_{f}^{4} \\
6 t_{f} & 12 t_{f}^{2} & 20 t_{f}^{3}
\end{array}\right]\left[\begin{array}{l}
a_{3} \\
a_{4} \\
a_{5}
\end{array}\right]
$$

Joint Space Schemes - Cubic Polynomials - Non Zero Acceleration

- Solving these equations for the a_{i} we obtain

$$
\begin{aligned}
& a_{0}=\theta_{0} \\
& a_{1}=\dot{\theta}_{0} \\
& a_{2}=\frac{\ddot{\theta}_{0}}{2} \\
& a_{3}=\frac{20 \theta_{f}-20 \theta_{0}-\left(8 \dot{\theta}_{f}+12 \dot{\theta}_{0}\right) t_{f}-\left(3 \ddot{\theta}_{0}-\ddot{\theta}_{f}\right) t_{f}^{2}}{2 t_{f}^{3}} \\
& a_{4}=\frac{30 \theta_{0}-30 \theta_{f}+\left(14 \dot{\theta}_{f}+16 \dot{\theta}_{0}\right) t_{f}+\left(3 \ddot{\theta}_{0}-2 \ddot{\theta}_{f}\right) t_{f}^{2}}{2 t_{f}^{4}} \\
& a_{5}=\frac{12 \theta_{f}-12 \theta_{0}-\left(6 \dot{\theta}_{f}+6 \dot{\theta}_{0}\right) t_{f}-\left(\ddot{\theta}_{0}-\ddot{\theta}_{f}\right) t_{f}^{2}}{2 t_{f}^{5}}
\end{aligned}
$$

For a generalized case where $t_{0} \neq 0$

$$
\begin{aligned}
& T=t_{f}-t_{0} ; h=\theta_{f}-\theta_{0} \\
& a_{0}=\theta_{0} \\
& a_{1}=\dot{\theta}_{0} \\
& a_{2}=\frac{1}{2} a_{0} \\
& a_{3}=\frac{1}{2 T^{3}}\left[20 h-\left(8 \dot{\theta}_{f}+12 \dot{\theta}_{0}\right) T-\left(3 a_{0}-a_{1}\right) T^{2}\right] \\
& a_{4}=\frac{1}{2 T^{4}}\left[-30 h+\left(14 \dot{\theta}_{f}+16 \dot{\theta}_{0}\right) T+\left(3 a_{0}-2 a_{1}\right) T^{2}\right] \\
& a_{5}=\frac{1}{2 T^{5}}\left[12 h-6\left(\dot{\theta}_{1}-\dot{\theta}_{0}\right) T+\left(a_{1}-a_{0}\right) T^{2}\right]
\end{aligned}
$$

Joint Space Schemes - Quantic Polynomials - Zero Acceleration

- Problem - Define a function for each joint such that it value at
- t_{0} is the time at the initial position
- t_{f} is the time at the desired goal position
- Given - Constrains on the position velocity and acceleration at the beginning and the end of the path segment

$$
\begin{array}{ll}
\theta(0)=\theta_{0} & \dot{\theta}(0)=\dot{\theta}_{0}
\end{array} \begin{aligned}
& \ddot{\theta}(0)=0 \\
& \theta\left(t_{f}\right)=\theta_{f} \\
& \dot{\theta}\left(t_{f}\right)=\dot{\theta}_{f}
\end{aligned} \quad \ddot{\theta}\left(t_{f}\right)=0
$$

- What should be the order of the polynomial function to meet these constrains?

Joint Space Schemes - Quantic Polynomials - Zero Acceleration

- Solution - The six constraints can be satisfied by a polynomial of at least fifth
order

$$
\begin{array}{lr}
\theta(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}+a_{5} t^{5} \\
\dot{\theta}(t)= & a_{1}+2 a_{2} t+3 a_{3} t^{2}+4 a_{4} t^{3}+5 a_{5} t^{4} \\
\theta(t)= & 2 a_{2}+6 a_{3} t+12 a_{4} t^{2}+20 a_{5} t^{3}
\end{array}
$$

- Combined with the six desired constraints yields six equations with six unknowns

$$
\begin{array}{ll}
\theta(0)=\theta_{0} & \theta_{0}=a_{0} \\
\theta\left(t_{f}\right)=\theta_{f} & \theta_{f}=a_{0}+a_{1} t_{f}+a_{2} t_{f}^{2}+a_{3} t_{f}^{3}+a_{4} t_{f}^{4}+a_{5} t_{f}^{5} \\
\dot{\theta}(0)=\dot{\theta}_{0} & \dot{\theta}_{0}=a_{1} \\
\dot{\theta}\left(t_{f}\right)=\dot{\theta}_{f} & \dot{\theta}_{f}=a_{1}+2 a_{2} t_{f}+3 a_{3} t_{f}^{2}+4 a_{4} t_{f}^{3}+5 a_{5} t_{f}^{4} \\
\ddot{\theta}(0)=0 & 0=2 a_{2} \\
\ddot{\theta}\left(t_{f}\right)=0 & 0=2 a_{2}+6 a_{3} t_{f}+12 a_{4} t_{f}^{2}+20 a_{5} t_{f}^{3}
\end{array}
$$

Joint Space Schemes - Quantic Polynomials - Zero Acceleration

- Solving these equations for the a_{i} we obtain

$$
\begin{aligned}
& a_{0}=\theta_{0} \\
& a_{1}=\dot{\theta}_{0} \\
& a_{2}=\frac{\ddot{\theta}_{0}}{2}=0 \\
& a_{3}=\frac{20 \theta_{f}-20 \theta_{0}-\left(8 \dot{\theta}_{f}+12 \dot{\theta}_{0}\right) t_{f}}{2 t_{f}^{3}} \\
& a_{4}=\frac{30 \theta_{0}-30 \theta_{f}+\left(14 \dot{\theta}_{f}+16 \dot{\theta}_{0}\right) t_{f}}{2 t_{f}^{4}} \\
& a_{5}=\frac{12 \theta_{f}-12 \theta_{0}-\left(6 \dot{\theta}_{f}+6 \dot{\theta}_{0}\right) t_{f}}{2 t_{f}^{5}}
\end{aligned}
$$

- Problem - Define a function for each joint such that it value at
$-t_{0}$ is the time at the initial position
- t_{f} is the time at the desired goal position
- Given - Constrains on the position velocity and acceleration at the beginning and the end of the path segment

$$
\begin{array}{l|l|l|}
\theta(0)=\theta_{0} & \dot{\theta}(0)=0 & \ddot{\theta}(0)=0 \\
\theta\left(t_{f}\right)=\theta_{f} & \dot{\theta}\left(t_{f}\right)=0 & \ddot{\theta}\left(t_{f}\right)=0 \\
\hline
\end{array}
$$

- What should be the order of the polynomial function to meet these constrains?

Joint Space Schemes - Quantic Polynomials - Zero Velocity \& Acceleration

- Solution - The six constraints can be satisfied by a polynomial of at least fifth
order

$$
\begin{array}{lr}
\theta(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}+a_{5} t^{5} \\
\dot{\theta}(t)= & a_{1}+2 a_{2} t+3 a_{3} t^{2}+4 a_{4} t^{3}+5 a_{5} t^{4} \\
\theta(t)= & 2 a_{2}+6 a_{3} t+12 a_{4} t^{2}+20 a_{5} t^{3}
\end{array}
$$

- Combined with the six desired constraints yields six equations with six unknowns

$$
\begin{array}{ll}
\theta(0)=\theta_{0} & \theta_{0}=a_{0} \\
\theta\left(t_{f}\right)=\theta_{f} & \theta_{f}=a_{0}+a_{1} t_{f}+a_{2} t_{f}^{2}+a_{3} t_{f}^{3}+a_{4} t_{f}^{4}+a_{5} t_{f}^{5} \\
\dot{\theta}(0)=0 & 0=a_{1} \\
\dot{\theta}\left(t_{f}\right)=0 & 0=a_{1}+2 a_{2} t_{f}+3 a_{3} t_{f}^{2}+4 a_{4} t_{f}^{3}+5 a_{5} t_{f}^{4} \\
\ddot{\theta}(0)=0 & 0=2 a_{2} \\
\ddot{\theta}\left(t_{f}\right)=0 & 0=2 a_{2}+6 a_{3} t_{f}+12 a_{4} t_{f}^{2}+20 a_{5} t_{f}^{3}
\end{array}
$$

Joint Space Schemes - Quantic Polynomials - Zero Velocity \& Acceleration

- Solving these equations for the a_{i} we obtain

$$
\begin{aligned}
& a_{0}=\theta_{0} \\
& a_{1}=0 \\
& a_{2}=0 \\
& a_{3}=\frac{20 \theta_{f}-20 \theta_{0}}{2 t_{f}^{3}}=\frac{10 \theta_{f}-10 \theta_{0}}{t_{f}^{3}}=10\left[\frac{\theta_{f}-\theta_{0}}{t_{f}^{3}}\right] \\
& a_{4}=\frac{30 \theta_{0}-30 \theta_{f}}{2 t_{f}^{4}}=-\frac{15 \theta_{f}-15 \theta_{0}}{t_{f}^{4}}=-15\left[\frac{\theta_{f}-\theta_{0}}{t_{f}^{4}}\right] \\
& a_{5}=\frac{12 \theta_{f}-12 \theta_{0}}{2 t_{f}^{5}}=\frac{6 \theta_{f}-6 \theta_{0}}{t_{f}^{5}}=6\left[\frac{\theta_{f}-\theta_{0}}{t_{f}^{5}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \dot{\theta}_{\max } \rightarrow \text { at } t=\frac{t_{f}}{2} \\
& \dot{\theta}_{\max }=\frac{15}{2}\left[\frac{\theta_{f}-\theta_{0}}{t_{f}}\right]-\frac{15}{2}\left[\frac{\theta_{f}-\theta_{0}}{t_{f}}\right]+\frac{15}{8}\left[\frac{\theta_{f}-\theta_{0}}{t_{f}}\right]=\frac{15}{8} \frac{\theta_{f}-\theta_{0}}{t_{f}} \\
& \ddot{\theta}_{\max } \rightarrow \text { at } t=\frac{t_{f}}{4} \\
& \ddot{\theta}_{\max }=15\left[\frac{\theta_{f}-\theta_{0}}{t_{f}^{2}}\right]-\frac{45}{4}\left[\frac{\theta_{f}-\theta_{0}}{t_{f}^{2}}\right]+\frac{15}{8}\left[\frac{\theta_{f}-\theta_{0}}{t_{f}^{2}}\right]=\left[15-\frac{75}{8}\right] \frac{\theta_{f}-\theta_{0}}{t_{f}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \ddot{\theta}_{\max } \rightarrow a t t=\frac{t_{f}}{4} \\
& \ddot{\theta}_{\max }=15\left[\frac{\theta_{f}-\theta_{0}}{t_{f}^{2}}\right]-\frac{45}{4}\left[\frac{\theta_{f}-\theta_{0}}{t_{f}^{2}}\right]+\frac{15}{8}\left[\frac{\theta_{f}-\theta_{0}}{t_{f}^{2}}\right]=\left[15-\frac{75}{8}\right] \frac{\theta_{f}-\theta_{0}}{t_{f}^{2}}
\end{aligned}
$$

Joint Space Schemes

Single Time Interval

Polynomials
Linear Function with Parabolic Blend (Trapezoid Velocity Method)

Trajectory Generation - Roadmap Diagram

- Linear interpolation to move from the present joint position $\theta_{0}\left(t=t_{0}\right)$ to the final position $\theta_{f}\left(t=t_{f}\right)$
- Note: Although the motion at each joint is linear, the end-effector in general does not move in a straight line in task space
- Problem: Linear interpolation would cause the velocity to be discontinuous at the beginning/end
- Solution: Parabolic blend region

piscontinous Velocity
- Challenge
- Find the relationship between the time duration of the parabolic blend and the acceleration

- Key Points

A - Transition point between the paraboloid bland (identical velocity) segment and the linear segment
B - Mid point of the linear segment
C - Stating point of the parabolic section (zero velocity)

- Regions
(C) A
- During the Blending section - Constant acceleration to change the velocity smoothly
- Assumptions:
- The parabolic blend segments $\left(\Delta t_{1}, \Delta t_{2}\right)$ have the same duration $\Delta t_{1}=\Delta t_{2}$
- The same constant acceleration is used during both blends

- Conditions: Point C and Point A and the region (Point C to Point A)
- Constant acceleration during the blend (Point C to A) (I)
- Initial velocity is zero (Point C)
(1) $\theta_{b}=\theta_{0}+v_{0} t+\frac{1}{2} \ddot{\theta} t_{b}^{2} \rightarrow$ constant acceleration (I)
v_{0} initial velocity $=0$ (II)
- The slope at point A must be equal on both sides
(2) $\ddot{\theta} t_{b}=\frac{\theta_{h}-\theta_{b}}{t_{h}-t_{b}}$
$\ddot{\theta} t_{b}$: velocity from the left $v_{\text {in }}$ (time derivative of eq. 1) (III)
$\frac{\theta_{h}-\theta_{b}}{t_{h}-t_{b}}$: velocity from the right $v_{\text {out }}$ (IV)

Joint Space Schemes -

Linear Function With Parabolic Blend

- Conditions at Point (B)
- Point B is at the middle of the segment
- In the time domain (V)
(3) $t_{h}=\frac{t}{2}$
- In the angle domain (VI)
(4) $\theta_{h}=\frac{\theta_{f}-\theta_{0}}{2}+\theta_{0}=\frac{\theta_{f}-\theta_{0}+2 \theta_{0}}{2}=\frac{\theta_{f}+\theta_{0}}{2}$

(V)
- Equation Summary
(1) $\theta_{b}=\theta_{0}+\frac{1}{2} \ddot{\theta} t_{b}^{2}$
(2) $\ddot{\theta} t_{b}=\frac{\theta_{h}-\theta_{b}}{t_{h}-t_{b}}$
(3) $t_{h}=\frac{t}{2}$
(4) $\theta_{h}=\frac{\theta_{f}+\theta_{0}}{2}$
- Plug
- $\operatorname{Eqn}(4) \rightarrow \operatorname{Eqn}(2)$
- $\operatorname{Eqn}(3) \rightarrow \operatorname{Eqn}(2)$
- Resulting in a relationship between the acceleration $(\ddot{\theta})$ at the parabolic bland, the joint angles $\left(\theta_{f}, \theta_{0}\right)$ and the time durations $\left(t, t_{b}\right)$

$$
\ddot{\theta} t_{b}=\frac{\theta_{h}-\theta_{b}}{t_{h}-t_{b}}=\frac{\frac{\theta_{f}+\theta_{0}}{2}-\theta_{b}}{\frac{t}{2}-t_{b}}
$$

Simplifying the expression

$$
\begin{gathered}
\ddot{\theta} t_{b}\left(\frac{t}{2}-t_{b}\right)=\frac{\theta_{f}+\theta_{0}}{2}-\theta_{b} \\
\ddot{\theta} t_{b}\left(\frac{t-2 t_{b}}{2}\right)=\frac{\theta_{f}+\theta_{0}-2 \theta_{b}}{2} \\
\ddot{\theta} t_{b} t-2 \ddot{\theta} t_{b}^{2}=\theta_{f}+\theta_{0}-2 \theta_{b} \\
\ddot{\theta}\left(t_{b} t\right)-2 \ddot{\theta} t_{b}^{2}-\theta_{f}-\theta_{0}+2 \theta_{0}+\ddot{\theta} t_{b}^{2}=0 \\
\ddot{\theta}\left(t_{b} t\right)-\ddot{\theta} t_{b}^{2}+\theta_{f}+\theta_{0}=0
\end{gathered}
$$

(5) $(\ddot{\theta}) t_{b}^{2}+(\ddot{\theta} t) t_{b}+\left(\theta_{f}-\theta_{0}\right)=0$
a b c

- Option 1
- Given: $\theta_{f}, \theta_{0}, t, t_{b}$ (desired duration of motion)
- Calculate: $\ddot{\theta}$ (Eq 5)
- Option 2
- Given: $\ddot{\theta}$ (chosen), $\mathrm{t}, \theta_{f}, \theta_{0}$
- Calculate: t_{b}

$$
t_{b}=\frac{\ddot{\theta} t \pm \sqrt{\ddot{\theta}^{2} t^{2}-4 \ddot{\theta}\left(\theta_{f}-\theta_{0}\right)}}{2 \ddot{\theta}}=\frac{t}{2} \pm \frac{\sqrt{\ddot{\theta}^{2} t^{2}-4 \ddot{\theta}\left(\theta_{f}-\theta_{0}\right)}}{2 \ddot{\theta}}
$$

- Constraint on the acceleration used in the blend

$$
\begin{gathered}
\sqrt{\ddot{\theta}^{2} t^{2}-4 \ddot{\theta}\left(\theta_{f}-\theta_{0}\right)} \geq 0 \\
\ddot{\theta} \geq \frac{4\left(\theta_{f}-\theta_{0}\right)}{t^{2}}
\end{gathered}
$$

If

$$
\sqrt{\ddot{\theta}^{2} t^{2}-4 \ddot{\theta}\left(\theta_{f}-\theta_{0}\right)}=0
$$

The minimal acceleration is defined as $\quad \ddot{\theta}=\frac{4\left(\theta_{f}-\theta_{0}\right)}{t^{2}}$

$$
t_{b}=\frac{t}{2} \pm \frac{\sqrt{0}}{2 \ddot{\theta}} \rightarrow t_{b}=\frac{t}{2}
$$

Meaning - The linear segment is eliminated and we are left with two parabolic blends

Joint Space Schemes -

Linear Function With Parabolic Blend

- The length of the linear portion and the parabolic portion may vary
- High acceleration $\ddot{\theta} \rightarrow$ short blend
- Low acceleration $\ddot{\theta} \rightarrow$ long blend

Joint Space Schemes

Multiple Time Interval

Via Point

Trajectory Generation - Roadmap Diagram

Joint Space Schemes - Multiple Time - Via Points

- Define function for each joints such that:

1. Initial and Final Points - The joint angle value at t_{0} is the initial joint angle θ_{0} and the joint angle at t_{f} is the final joint angle θ_{0}.
2. Via Points - in between the beginning/ending points the user defines via points that each joint must pass through

- Notes:
- Time Sync - All the joints reach the via point at the same time to guarantee specific pose (position and orientation) of the end effector.
- Multiple Solutions - There are multiple smooth functions that may be used to interpolate the joint value

Trajectory Generation - Roadmap Diagram

Joint Space Schemes - Multiple Time - Via Points - Velocity Definition

User Definition - Desired Cartesian linear and angular velocity of the tool frame at each via point.

- Mapping (Cartesian Space to Joint Space) - Cartesian velocities at the via point are "mapped" to desired joint rates by using the inverse Jacobian

$$
\dot{\theta}_{f}=J^{-1} \dot{X}_{f}
$$

- Singularity - If the manipulator is at a singular point at a particular via point then the user is not free to choose an arbitrarily velocity at this point.
- Difficult

Trajectory Generation - Roadmap Diagram

Joint Space Schemes - Multiple Time - Via Points - Velocity Definition

System Definition (Heuristic Approach) - The system automatically chooses the velocities (Cartesian or angular) using a suitable heuristic method given a trajectory .

Heuristic method

- Consider a path defined by via points
- Connect the via points with straight lines
- If the slope change sign
- Set the velocity at the via point to be zero
- If the slope have the same sign

- Calculate the average between the to velocities at the via point.

Trajectory Generation - Roadmap Diagram

Joint Space Schemes - Multiple Time - Via Points - Velocity Definition

System Definition (Continues Accelerations) - The system automatically chooses the velocities (Cartesian or angular) to cause the acceleration at the via point to be continuous.

- Spline - Enforcing the velocity and the acceleration to be continuous at the via point

Joint Space Schemes - Multiple Time - Via Points - Cubic Polynomials

- Solve for the coefficients of two cubic functions that are connected in a two segment spline with a continuous acceleration at the intermediate via point.

$$
\begin{aligned}
& \theta(t)=a_{10}+a_{11} t+a_{12} t^{2}+a_{13} t^{3} \\
& \theta(t)=a_{20}+a_{21} t+a_{22} t^{2}+a_{23} t^{3} \\
& \dot{\theta}(t)=a_{11}+2 a_{12} t+3 a_{13} t^{2} \\
& \dot{\theta}(t)=a_{21}+2 a_{22} t+3 a_{23} t^{2} \\
& \ddot{\theta}(t)=2 a_{12}+6 a_{13} t \\
& \ddot{\theta}(t)=2 a_{22}+6 a_{23} t
\end{aligned}
$$

- The joint angle velocity and acceleration for each segment (8 unknowns)

$$
\begin{aligned}
& \theta(t)=a_{10}+a_{11} t+a_{12} t^{2}+a_{13} t^{3} \\
& \theta(t)=a_{20}+a_{21} t+a_{22} t^{2}+a_{23} t^{3} \\
& \dot{\theta}(t)=a_{11}+2 a_{12} t+3 a_{13} t^{2} \\
& \dot{\theta}(t)=a_{21}+2 a_{22} t+3 a_{23} t^{2} \\
& \ddot{\theta}(t)=2 a_{12}+6 a_{13} t \\
& \ddot{\theta}(t)=2 a_{22}+6 a_{23} t
\end{aligned}
$$

- Position at the beginning and end of each segment
- Segment 1

$$
\begin{aligned}
& \theta_{0}(t=0)=a_{10} \\
& \theta_{\text {via }}\left(t=t_{f_{1}}\right)=a_{10}+a_{11} t_{f_{1}}+a_{12} t_{f_{1}}^{2}+a_{13} t_{f_{1}}^{3}
\end{aligned}
$$

- \quad Segment 2

$$
\begin{aligned}
& \theta_{\text {via }}(t=0)=a_{20} \\
& \theta_{g}\left(t=t_{f_{2}}\right)=a_{20}+a_{21} t_{f_{2}}+a_{22} t_{f_{2}}^{2}+a_{23} t_{f_{2}}^{3}
\end{aligned}
$$

Joint Space Schemes - Multiple Time - Via Points - Cubic Polynomials

- Velocity at the beginning of the interval

$$
\dot{\theta}(t=0)=a_{11}
$$

- Velocity at the end of the interval

$$
\dot{\theta}\left(t=t_{f_{2}}\right)=a_{21}+2 a_{22} t_{f_{2}}+3 a_{23} t_{f_{2}}^{2}
$$

- Velocity at the mid point between the intervals

$$
\begin{gathered}
\dot{\theta}\left[\text { Function } 1\left(t=t_{f_{1}}\right)\right]=\dot{\theta}[\text { Function } 2(t=0)] \\
a_{11}+2 a_{12} t_{f_{1}}+3 a_{13} t_{f_{1}}^{2}=a_{21}
\end{gathered}
$$

Joint Space Schemes - Multiple Time - Via Points - Cubic Polynomials

- Acceleration at the mid point between the intervals

$$
\begin{gathered}
\ddot{\theta}\left[\text { Function } 1\left(t=t_{f_{1}}\right)\right]=\ddot{\theta}[\text { Function } 2(t=0)] \\
2 a_{12}+6 a_{13} t_{f_{1}}=2 a_{22}
\end{gathered}
$$

- Solve 8 equations with 8 unknown

Joint Space Schemes - Multiple Time - Via Points - Cubic Polynomials

- Solution for the 8 equations

$$
\begin{aligned}
& a_{10}=\theta_{0} \\
& a_{11}=0 \\
& a_{12}=\frac{12 \theta_{v}-3 \theta_{g}-9 \theta_{0}}{4 t_{f}^{2}} \\
& a_{13}=\frac{-8 \theta_{v}+3 \theta_{g}+5 \theta_{0}}{4 t_{f}^{3}} \\
& a_{10}=\theta_{v} \\
& a_{21}=\frac{3 \theta_{g}-3 \theta_{0}}{4 t_{f}} \\
& a_{22}=\frac{-12 \theta_{v}+6 \theta_{g}+6 \theta_{0}}{4 t_{f}^{2}} \\
& a_{23}=\frac{8 \theta_{v}-5 \theta_{g}-3 \theta_{0}}{4 t_{f}^{3}}
\end{aligned}
$$

Joint Space Schemes

Multiple Time Intervals
Via Point
System Defined Function - Linear Function With Parabolic Blend

Trajectory Generation - Roadmap Diagram

Joint Space Schemes - Multiple Time Intervals - Via Points Linear Function With Parabolic Blend

- The Need
- Linear path with parabolic blends is used in cases where there are arbitrary number of via points specified
- Method Anatomy
- Linear Functions - Connecting the via points
- Parabolic Blend - Connecting the linear functions around the via points

Joint Space Schemes - Multiple Time Intervals - Via Points Linear Function With Parabolic Blend

(+) Known - Time Duration between Start / Via / End Points
(-) Unknown - Time Duration of the Parabolic Segment
) Unk Ti Segmen
Time - t

Joint Space Schemes - Multiple Time Intervals - Via Points Linear Function With Parabolic Blend

- Tasks No. 1 - Time Intervals
- Calculate the time intervals of the parabolic blending (marked in green)
- Calculate the time intervals of the linear functions (marked in blue)
- Task No. 2 - Functions
- Define the Linear Functions (marked in black)
- Defined the parabolic blend functions (marked in gray)

Joint Space Schemes - Multiple Time Intervals - Via Points Linear Function With Parabolic Blend

- Assumptions
- The velocity at the first and last through point must be zero as well as the transition from one segment to the other.
- The velocity and acceleration of the trajectory must be:

$$
\begin{aligned}
& \left|\dot{\theta}_{j k}\right|<\dot{\theta}_{\max } \\
& \left|\ddot{\theta}_{j k}\right|<\ddot{\theta}_{\max }
\end{aligned}
$$

- Limitations
- Accelerations - Sufficiently large acceleration is required so as to obtain linear portion in the segment.
- The manipulator's velocity must be zero as it passes into waypoints.
- The system should generate two pseudo points so as to make the manipulator passes exactly through a path point without stopping.
- The parabolic portion is assumed to be centered equally in time about through point. This later assumption makes the apex of parabolic part to be shifted away from through point, i.e. For interior path point, the apex of the parabolic portion is not equally centered in time about waypoint.

Joint Space Schemes

Multiple Time Intervals
Via Point
System Defined Function - Linear Function With Parabolic Blend
Time Interval Analysis
Task No. 1 - Time Intervals

Joint Space Schemes - Multiple Time Intervals - Via Points Linear Function With Parabolic Blend

- Tasks No. 1 - Time Intervals
- Calculate the time intervals of the parabolic blending (marked in green)
- Calculate the time intervals of the linear functions (marked in blue)
- Task No. 2 - Functions
- Define the Linear Functions (marked in black)
- Defined the parabolic blend functions (marked in yellow)

Joint Space Schemes - Multiple Time Intervals - Via Points Linear Function With Parabolic Blend - Time Interval Analysis

Joint Space Schemes - Multiple Time Intervals - Via Points Linear Function With Parabolic Blend - Time Interval Analysis

1 Mid Points (j,k,l)

- Calculate
- t_{k} - The time duration during the parabolic bland
- $t_{j k}$ - The time duration during the linear interpolation
- Given
- $\theta_{j}, \theta_{k}, \theta_{l}$ - The angles at points j,k,l $-\theta_{j}, \theta_{k}, \theta_{l}$
- $t_{d j k}, t_{d k l}$ - The time durations from point J to K and from point K to L
- $\left|\ddot{\theta}_{k}\right|$ The desired acceleration during the parabolic blend through point K
- Velocity

$$
\begin{aligned}
& \dot{\theta}_{j k}=\frac{\theta_{k}-\theta_{j}}{t_{d j k}} \\
& \dot{\theta}_{k l}=\frac{\theta_{l}-\theta_{k}}{t_{d k l}}
\end{aligned}
$$

Joint Space Schemes - Multiple Time Intervals - Via Points Linear Function With Parabolic Blend - Time Interval Analysis

1 Acceleration

$$
\begin{aligned}
& a>0 \text { U } \\
& a x^{2}+b x+c \quad a<0 \bigcap \\
& v=a t \\
& t=\frac{v}{a}
\end{aligned}
$$

- Note: First and Last Segments The first and the last segments must be handled slightly differently because the entire bland regeion at one end of the segment must be counted in the total segment's time duration.
- Note the difference between
- Mid Points $t_{d j k} \quad t_{d k l}$
- First Point $t_{d 12}$

- Last Point $t_{d(n-1) n}$ Linear Function With Parabolic Blend - Time Interval Analysis

2 First Segment (1,2)

- Calculate
- t_{1} - The time duration during the parabolic bland
- t_{12} - The time duration during the linear interpolation
- Given
- θ_{1}, θ_{2} - The angles at points 1,2
- $t_{d 12}$ - The time durations from point 1 to 2
- $\left|\ddot{\theta}_{1}\right|$ The desired acceleration during the parabolic blend through point 1
- Velocity
$v=\frac{x}{t}=a t$

$$
\dot{\theta}_{12}=\frac{\theta_{2}-\theta_{1}}{t_{d 12}-\frac{1}{2} t_{1}}=\ddot{\theta}_{1} t_{1}
$$

2 Acceleration

$$
\begin{aligned}
& 2 \text { Acceleration } \\
& a x^{2}+b x+c \\
& a<0
\end{aligned} \quad \boldsymbol{\jmath}
$$

Using the previous velocity equation

$$
\dot{\theta}_{12}=\frac{\theta_{2}-\theta_{1}}{t_{d 12}-\frac{1}{2} t_{1}}=\ddot{\theta}_{1} t_{1}
$$

resulted in

$$
\theta_{2}-\theta_{1}=\ddot{\theta} t_{1}\left(t_{d 12}-\frac{1}{2} t_{1}\right)
$$

rearranging into a quadratic equation

$$
\left(\frac{\ddot{\theta}_{1}}{2}\right) t_{1}^{2}-\left(\ddot{\theta}_{1} t_{d 12}\right) t+\left(\theta_{2}-\theta_{1}\right)=0
$$

2 Solving the quadratic equation

$$
\left(\frac{\ddot{\theta}_{1}}{2}\right) t_{1}^{2}-\left(\ddot{\theta}_{1} t_{d 12}\right) t+\left(\theta_{2}-\theta_{1}\right)=0
$$

Solving the quadratic equation resulted in

$$
t_{1}=\frac{\ddot{\theta}_{1} t_{d 12} \pm \sqrt{\ddot{\theta}_{1}^{2} t_{d 12}^{2}-\frac{4 \ddot{\theta}_{1}}{2}\left(\theta_{2}-\theta_{1}\right)}}{\ddot{\theta}_{1}}
$$

Simplifying the result by eliminating $\ddot{\theta}_{1}$ resulted in the time for the parabolic blending

$$
\mathrm{t}_{1}=\mathrm{t}_{\mathrm{d} 12} \pm \sqrt{\mathrm{t}_{\mathrm{d} 12}^{2}+\frac{2\left(\theta_{1}-\theta_{2}\right)}{\ddot{\theta}_{1}}}
$$

2

$$
t_{1}=t_{d 12} \text { 古 } \sqrt{t_{d 12}^{2}+\frac{2\left(\theta_{1}-\theta_{2}\right)}{\ddot{\theta}_{1}}}
$$

Out of the two solution use the solution for t_{1} including the minus sign (-) Because

$$
\mathrm{t}_{1}<\mathrm{t}_{\mathrm{d} 12}
$$

The time duration of the liner interpolation is than calculated as

$$
t_{12}=t_{d 12}-t_{1}-\frac{1}{2} t_{2}
$$

3 Last Segment $((n-1), n)$

- Calculate
- t_{n} - The time duration during the parabolic bland
- $t_{(n-1) n}$ - The time duration during the linear interpolation
- Given
- θ_{n-1}, θ_{n} - The angles at points $n-1$, and n
- $t_{d(n-1) n}$ - The time durations from $n-1$ to n
- $\left|\ddot{\theta}_{n}\right|$ The desired acceleration during the parabolic blend through point 1
- Velocity
$v=\frac{x}{t}=a t$

$$
\dot{\theta}_{(n-1) n}=\frac{\theta_{n-1}-\theta_{n}}{t_{d(n-1) n}-\frac{1}{2} t_{n}}=\ddot{\theta}_{n} t_{n}
$$

3 Acceleration

$$
a x^{2}+b x+c \quad \begin{aligned}
& a>0 \\
& \\
& a<0
\end{aligned}
$$

Using the previous velocity equation

$$
\dot{\theta}_{(n-1) n}=\frac{\theta_{n-1}-\theta_{n}}{t_{d(n-1) n}-\frac{1}{2} t_{n}}=\ddot{\theta}_{n} t_{n}
$$

resulted in

$$
\theta_{n-1}-\theta_{n}=\ddot{\theta}_{n} t_{n}\left(t_{d(n-1) n}-\frac{1}{2} t_{n}\right)
$$

rearranging into a quadratic equation

$$
\left(\frac{\ddot{\theta}_{n}}{2}\right) t_{n}^{2}-\left(\ddot{\theta}_{n} t_{d(n-1) n}\right) t_{n}+\left(\theta_{n-1}-\theta_{n}\right)=0
$$

3 Solving the quadratic equation

$$
\left(\frac{\ddot{\theta}_{n}}{2}\right) t_{n}^{2}-\left(\ddot{\theta}_{n} t_{d(n-1) n}\right) t_{n}+\left(\theta_{n-1}-\theta_{n}\right)=0
$$

Solving the quadratic equation resulted in

$$
t_{n}=\frac{\ddot{\theta}_{n} t_{d(n-1) n} \pm \sqrt{\ddot{\theta}_{n}^{2} t_{d(n-1) n}^{2}-\frac{4 \ddot{\theta}_{n}}{2}\left(\theta_{n-1}-\theta_{n}\right)}}{\ddot{\theta}_{n}}
$$

Simplifying the result by eliminating $\ddot{\theta}_{n}$ resulted in the time for the parabolic blending

$$
t_{n}=t_{d(n-1) n} \pm \sqrt{t_{d(n-1) n}^{2}-\frac{2\left(\theta_{n-1}-\theta_{n}\right)}{\ddot{\theta}_{n}}}
$$

$$
t_{n}=t_{d(n-1) n}+\sqrt[+]{t_{d(n-1) n}^{2}-\frac{2\left(\theta_{n-1}-\theta_{n}\right)}{\ddot{\theta}_{n}}}
$$

Out of the two solution use the solution for t_{1} including the minus sign (-) Because

$$
t_{n}<t_{d(n-1) n}
$$

The time duration of the liner interpolation is than calculated as

$$
t_{(n-1) n}=t_{d(n-1)}-t_{n}-\frac{1}{2} t_{n-1}
$$

Joint Space Schemes

Multiple Time Intervals
Via Point
System Defined Function - Linear Function With Parabolic Blend
Time Interval Analysis
Task No. 2 - Function (Linear \& Parabolic)

Joint Space Schemes - Multiple Time Intervals - Via Points Linear Function With Parabolic Blend - Interpolation Function Analysis

Joint Space Schemes - Multiple Time Intervals - Via Points Linear Function With Parabolic Blend

- Tasks No. 1 - Time Intervals
- Calculate the time intervals of the parabolic blending (marked in green)
- Calculate the time intervals of the linear functions (marked in blue)
- Task No. 2 - Functions
- Define the Linear Functions (marked in black)
- Defined the parabolic blend functions (marked in yellow)

Joint Space Schemes - Multiple Time Intervals - Via Points Linear Function With Parabolic Blend - Interpolation Function Analysis

Joint Space Schemes - Multiple Time Intervals - Via Points Linear Function With Parabolic Blend - Linear \& Parabolic Spline Analysis

1 Middle Segment Points (j,k)

- Calculate
- Liner Spline
- Parabolic Spine
- Given
- t_{k} - The time duration during the parabolic bland
- $t_{j k}$ - The time duration during the linear interpolation
- $\theta_{j}, \theta_{k}, \theta_{l}$ - The angles at points j,k,l- $\theta_{j}, \theta_{k}, \theta_{l}$
- $t_{d j k}, t_{d k l}$ - The time durations from point J to K and from point K to L
- $\left|\ddot{\theta}_{k}\right|$ The desired acceleration during the parabolic blend through point K

Joint Space Schemes - Multiple Time Intervals - Via Points -

 Linear Function With Parabolic Blend - Linear \& Parabolic Spline Analysis1 Middle Segment (j,k)

- Start measuring time from the via point θ_{j} for the segment (j,k)
- Reset the time to 0 at the parabolic blend
- Reset the time to 0 at θ_{K} for the following segment

Joint Space Schemes - Multiple Time Intervals - Via Points -

 Linear Function With Parabolic Blend - Linear \& Parabolic Spline Analysis1 Middle Segment (j,k)

- LINEAR SPLINE $t \in t_{j k}$

$$
\begin{aligned}
& \theta=\theta_{j}+\dot{\theta}_{j k} t \\
& \dot{\theta}=\dot{\theta}_{j k}=\frac{\theta_{k}-\theta_{j}}{t_{d j k}-\frac{1}{2} t_{j}-\frac{1}{2} t_{k}} \\
& \ddot{\theta}=0
\end{aligned}
$$

Joint Space Schemes - Multiple Time Intervals - Via Points Linear Function With Parabolic Blend - Linear \& Parabolic Spline Analysis

1 Middle Segment ($\boldsymbol{j}, \boldsymbol{k}$)

- PARABOLIC SPLINE $t \in t_{k}$

$$
\begin{gathered}
\theta=a_{2} t_{i n b}^{2}+a_{1} t_{i n b}+a_{0} \\
\text { conditions }\left\{\begin{array}{c}
\theta\left(t_{i n b}=0\right)=\theta_{j}+\dot{\theta}_{j k} t \\
\dot{\theta}\left(t_{i n b}=0\right)=\dot{\theta}_{j k} \\
\ddot{\theta}\left(t_{i n b}=0\right)=\ddot{\theta}_{k}
\end{array}\right.
\end{gathered}
$$

Condition 1: The angle at the beginning of the parabolic spline is equal to the angle of at the end of the linear spline Condition 2: The velocity at the beginning of the parabolic spline is equal to the velocity of the linear spline Condition 3: The acceleration at the beginning of the
 parabolic spline as well as throughout this segment is constant

Joint Space Schemes - Multiple Time Intervals - Via Points -

 Linear Function With Parabolic Blend - Linear \& Parabolic Spline Analysis1 Middle Segment (j,k)

- PARABOLIC SPLINE $t \in t_{k}$

$$
\theta=a_{2} t_{i n b}^{2}+a_{1} t_{\text {inb }}+a_{0}
$$

$$
\text { conditions }\left\{\begin{array}{c}
\theta\left(t_{\text {inb }}=0\right)=\theta_{j}+\dot{\theta}_{j k} t_{A} \\
\dot{\theta}\left(t_{\text {inb }}=0\right)=\dot{\theta}_{j k} \\
\ddot{\theta}\left(t_{i n b}=0\right)=\ddot{\theta}_{k}
\end{array}\right.
$$

Condition 1

$$
\begin{gathered}
\theta\left(t_{\text {inb }}=0\right)=a_{2} 0+a_{1} 0+a_{0}=\theta_{j}+\dot{\theta}_{j k} t_{A} \\
a_{0}=\theta_{j}+\dot{\theta}_{j k} t_{A}
\end{gathered}
$$

Condition 2

$$
\begin{gathered}
\dot{\theta}\left(t_{i n b}=0\right)=\dot{\theta}_{j k}=2 a_{2} 0+a_{1}+\dot{\theta}_{j k}=\dot{\theta}_{j k} \\
a_{1}=0
\end{gathered}
$$

Joint Space Schemes - Multiple Time Intervals - Via Points -

 Linear Function With Parabolic Blend - Linear \& Parabolic Spline Analysis1 Middle Segment (j,k)

- PARABOLIC SPLINE $t \in t_{k}$

$$
\begin{aligned}
& \theta=a_{2} t_{i n b}^{2}+a_{1} t_{i n b}+a_{0} \\
& \text { conditions }\left\{\begin{array}{c}
\theta\left(t_{i n b}=0\right)=\theta_{j}+\dot{\theta}_{j k} t_{A} \\
\dot{\theta}\left(t_{i n b}=0\right)=\dot{\theta}_{j k} \\
\ddot{\theta}\left(t_{i n b}=0\right)=\ddot{\theta}_{k}
\end{array}\right.
\end{aligned}
$$

Condition 3

$$
\begin{gathered}
\theta=a_{2} t_{i n b}^{2}+\theta_{j}+\dot{\theta}_{j k} t_{A} \\
\dot{\theta}=2 a_{2} t_{i n b}+\theta_{j} \\
\ddot{\theta}\left(t_{i n b}=0\right)=2 a_{2}=\ddot{\theta}_{k} \\
a_{2}=\frac{1}{2} \ddot{\theta}_{k}
\end{gathered}
$$

Summary

$$
\theta=\frac{1}{2} \ddot{\theta}_{k} t_{i n b}^{2}+\dot{\theta}_{j k} t_{A}+\theta_{j}
$$

1 Middle Segment (j, k)

- PARABOLIC SPLINE $t \in t_{k}$

At point A the time can be expressed in two different ways

$$
\begin{aligned}
& t_{A} \rightarrow t_{i n b}=0 \\
& t_{A}=\frac{1}{2} t_{J}+t_{j k}
\end{aligned}
$$

The time during the blending can be expressed as

$$
t_{i n b}=t-\left(\frac{1}{2} t_{j}+t_{j k}\right)
$$

Therefore, the following equation describing the joint angle during the parabolic blend

$$
\theta=\frac{1}{2} \ddot{\theta}_{k} t_{i n b}^{2}+\dot{\theta}_{j k} t_{A}+\theta_{j}
$$

Can be rewritten as

$$
\theta=\frac{1}{2} \ddot{\theta}_{k}\left(t-\left(\frac{1}{2} t_{j}+t_{j k}\right)\right)^{2}+\dot{\theta}_{j k}\left(\frac{1}{2} t_{j}+t_{j k}\right)+\theta_{j}
$$

1 Middle Segment ($\boldsymbol{j}, \boldsymbol{k}$)

- PARABOLIC SPLINE $t \in t_{k}$

Therefore, the following equation describing the joint angle during the parabolic blend

$$
\theta=\frac{1}{2} \ddot{\theta}_{k} t_{i n b}^{2}+\dot{\theta}_{j k} t_{A}+\theta_{j}
$$

can be rewritten in two different way the first is as a function of time t starting at point \boldsymbol{j}

$$
\theta=\frac{1}{2} \ddot{\theta}_{k}\left(t-\left(\frac{1}{2} t_{j}+t_{j k}\right)\right)^{2}+\dot{\theta}_{j k}\left(\frac{1}{2} t_{j}+t_{j k}\right)+\theta_{j}
$$

and the second of time $t_{\text {inb }}$ Starting at the beginning of the parabolic blend

$$
\theta=\frac{1}{2} \ddot{\theta}_{k} t_{i n b}^{2}+\dot{\theta}_{j k}\left(\frac{1}{2} t_{J}+t_{j k}\right)+\theta_{j}
$$

Joint Space Schemes - Multiple Time Intervals - Via Points Linear Function With Parabolic Blend - Interpolation Function Analysis

Joint Space Schemes - Multiple Time Intervals - Via Points -

 Linear Function With Parabolic Blend - Linear \& Parabolic Spline Analysis2 First Segment (1,2)

- Linear Spline $t \in t_{d 12}$

$$
\begin{aligned}
& \theta=\theta_{1}+\dot{\theta}_{12} t \\
& \dot{\theta}=\dot{\theta}_{12}=\frac{\theta_{2}-\theta_{1}}{t_{d 12}-\frac{1}{2} t_{1}} \\
& \ddot{\theta}=0
\end{aligned}
$$

- Parabolic Spline $t \in t_{1}$

$$
\begin{gathered}
\theta=a_{0}+a_{1} t+a_{2} t^{2} \\
\text { conditions }\left\{\begin{array}{l}
\theta(t=0)=\theta_{0} \\
\dot{\theta}(t=0)=0 \\
\dot{\theta}\left(t=t_{1}\right)=\dot{\theta}_{12}
\end{array}\right.
\end{gathered}
$$

$t=0$

Joint Space Schemes - Multiple Time Intervals - Via Points -

 Linear Function With Parabolic Blend - Linear \& Parabolic Spline Analysis2

$$
\left\{\begin{array}{c}
\theta=a_{0}+a_{1} t+a_{2} t^{2} \\
\dot{\theta}=a_{1}+2 a_{2} t \\
\ddot{\theta}=2 a_{2}
\end{array}\right.
$$

Plugging the conditions into the various equations and solve for a_{0}, a_{1}, a_{2}

$$
\begin{aligned}
& \theta(t=0)=\theta_{0}=a_{0}+a_{1} 0+a_{2} 0 \rightarrow a_{0}=\theta_{0} \\
& \dot{\theta}(t=0)=0=a_{1}+2 a_{2} 0 \rightarrow a_{1}=0 \\
& \dot{\theta}\left(t=t_{1}\right)=\dot{\theta}_{12}=0+2 a_{2} t_{1} \rightarrow a_{2}=\frac{1}{2} \frac{\dot{\theta}_{12}}{t_{1}}
\end{aligned}
$$

Resulting in the joint angle, angular velocity, and angular acceleration

$$
\begin{aligned}
& \theta=\theta_{0}+\frac{1}{2} \frac{\dot{\theta}_{12}}{t_{1}} t^{2} \\
& \dot{\theta}=\frac{\dot{\theta}_{12}}{t_{1}} t \\
& \ddot{\theta}=\frac{\dot{\theta}_{12}}{t_{1}}
\end{aligned}
$$

Joint Space Schemes - Multiple Time Intervals - Via Points Linear Function With Parabolic Blend - Interpolation Function Analysis

Joint Space Schemes - Multiple Time Intervals - Via Points -

Linear Function With Parabolic Blend - Linear \& Parabolic Spline Analysis

3 Last Segment

- Linear Spline $t \in t(n-1) n$

$$
\left\{\begin{array}{c}
\theta=\theta_{n-1}+\dot{\theta}_{(n-1) n} t \\
\dot{\theta}=\dot{\theta}_{(n-1) n} \\
\ddot{\theta}=0
\end{array}\right.
$$

- Parabolic Bland $t \in t_{n}$

$$
\begin{gathered}
t_{\text {inb }}=t-\left(\frac{1}{2} t_{n-1}+t_{(n-1) n}\right) \\
\theta=a_{0}+a_{1} t_{\text {inb }}+a_{2} t_{\text {inb }}^{2} \\
\text { CONDITIONS }\left\{\begin{array}{c}
\theta\left(t_{i n b}=0\right)=\theta_{n-1}+\dot{\theta}_{(n-1) n} t_{(n-1) n}=\theta_{\text {inb }} \\
\dot{\theta}\left(t_{i n b}=0\right)=\dot{\theta}_{(n-1) n} \\
\dot{\theta}\left(t=t_{i n b}\right)=0
\end{array}\right.
\end{gathered}
$$

$$
\left\{\begin{array}{c}
\theta=a_{0}+a_{1} t+a_{2} t^{2} \\
\dot{\theta}=a_{1}+2 a_{2} t \\
\ddot{\theta}=2 a_{2}
\end{array}\right.
$$

Plugging the conditions into the various equations and solve for a_{0}, a_{1}, a_{2}

$$
\begin{aligned}
& \theta\left(t_{\text {inb }}=0\right)=\theta_{\text {inb }}=a_{0}+a_{1} 0+a 0 \rightarrow a_{0}=\theta_{\text {inb }} \\
& \dot{\theta}\left(t_{\text {inb }}=0\right)=\dot{\theta}_{(n-1) n}=a_{1}+2 a_{2} 0 \rightarrow a_{1}=\dot{\theta}_{(n-1) n} \\
& \dot{\theta}\left(t=t_{i n b}\right)=0=\dot{\theta}_{(n-1) n}+2 a_{2} t_{\text {inb }} \rightarrow a_{2}=-\frac{1}{2} \frac{\dot{\theta}_{(n-1) n}}{t_{\text {inb }}}
\end{aligned}
$$

Resulting in the joint angle

$$
\theta=\theta_{i n b}+\theta_{(n-1) n} t-\frac{1}{2} \frac{\dot{\theta}_{(n-1) n}}{t_{i n b}} t^{2}
$$

Joint Space Schemes - Multiple Time Intervals - Via Points Linear Function With Parabolic Blend - Example

Linear / Parabolic Splines - Summary Reminder First Segment

$$
\begin{aligned}
& \theta=\theta_{1}+\dot{\theta}_{12} t \\
& \theta=\theta_{0}+\frac{1}{2} \frac{\dot{\theta}_{12}}{t_{1}} t^{2} \\
& t_{\text {inb }}=t
\end{aligned}
$$

Mid Segment

$$
\begin{aligned}
& \theta=\theta_{j}+\dot{\theta}_{j k} t \\
& \theta=\theta_{j}+\dot{\theta}_{j k}\left(t-t_{\text {inb }}\right)+\frac{1}{2} \ddot{\theta}_{k}^{2} t_{\text {inb }}= \\
& \qquad \theta_{j}+\dot{\theta}_{j k}\left(\frac{1}{2} t_{j}+t_{j k}\right)+\frac{1}{2} \ddot{\theta}_{k}^{2}\left(t-\left(\frac{1}{2} t_{j}+t_{j k}\right)\right)^{2} \\
& t_{\text {inb }}=t-\left(\frac{1}{2} t_{j}+t_{j k}\right)
\end{aligned}
$$

Last Segment

$$
\begin{aligned}
& \theta=\theta_{n-1}+\dot{\theta}_{(n-1) n} t \\
& \theta=\theta_{\text {inb }}+\theta_{(n-1) n} t-\frac{1}{2} \frac{\dot{\theta}_{(n-1) n}}{t_{\text {inb }}} t^{2}
\end{aligned}
$$

Joint Space Schemes - Multiple Time Intervals - Via Points -

 Linear Function With Parabolic Blend - Calculation Approaches- Calculation Approach No. 1
- User Defines
- Via Points
- Desired time duration of segments
- System Defines
- Use default value of acceleration for each joint
- Calculation Approach No. 2
- System calculate time durations based on default velocities
- Note for both Approaches - At all the blends, sufficiently large acceleration must be used so that the system has sufficient time to get into the linear portion of the segment before the next blend region starts

Joint Space Schemes - Multiple Time Intervals - Via Points Linear Function With Parabolic Blend - Example

The trajectory of a particular joint is specified as follows:

GIUEN:

Joint Space Schemes - Multiple Time Intervals - Via Points Linear Function With Parabolic Blend - Example

- Acceleration - magnitude of the default acceleration to use at all blend points is

$$
|\ddot{\theta}|_{\max }=50 \frac{\circ}{\sec ^{2}}
$$

CALCULATE:

- Segment velocities $\dot{\theta}$
- Blend times $t_{i}\left(t_{1}, t_{2}, t_{3}, t_{4}\right)$
- Linear segments times

Joint Space Schemes - Multiple Time Intervals - Via Points Linear Function With Parabolic Blend - Example

- Solution Step 1 - Time Interval Analysis

First Segment (t: 0 $\mathbf{~} \mathbf{2}$)

$$
\begin{aligned}
& \ddot{\theta}_{1}=50=\operatorname{SGN}\left(\theta_{2}-\theta_{1}\right)\left|\ddot{\theta}_{1}\right|=\operatorname{SGN}(35-10)|50|=+50 \frac{\mathrm{deg}}{\mathrm{~s}} \\
& t_{1}=t_{d 12}-\sqrt{t_{d 12}^{2}-\frac{2\left(\theta_{2}-\theta_{1}\right)}{\ddot{\theta}_{1}}}=2-\sqrt{4-\frac{2(35-10)}{50}}=0.27 \mathrm{sec} \\
& \dot{\theta}_{12}=\frac{\theta_{2}-\theta_{1}}{t_{d 12}-\frac{1}{2} t_{1}}=\frac{35-10}{2-\frac{1}{2}(0.27)}=13.5 \frac{\mathrm{deg}}{\mathrm{~s}}
\end{aligned}
$$

Joint Space Schemes - Multiple Time Intervals - Via Points Linear Function With Parabolic Blend - Example

Second Segment (t: 2 $\rightarrow \mathbf{3}$)

$$
\begin{aligned}
& \dot{\theta}_{j k}=\frac{\theta_{k}-\theta_{j}}{t_{d j k}} \\
& \left\{\begin{array}{l}
j=2 \\
k=3
\end{array} \rightarrow \dot{\theta}_{23}=\frac{\theta_{3}-\theta_{1}}{t_{d 23}}=\frac{25-35}{1}=-10 \frac{\mathrm{deg}}{\mathrm{~s}}\right. \\
& \ddot{\theta}_{k}=\operatorname{SIG}\left(\dot{\theta}_{k l}-\dot{\theta}_{j k}\right)\left|\ddot{\theta}_{k}\right| \\
& \left\{\begin{array}{l}
j=1 \\
k=2 \rightarrow \ddot{\theta}_{2}=\operatorname{SIG}\left(\dot{\theta}_{23}-\dot{\theta}_{12}\right)\left|\ddot{\theta}_{2}\right|=\operatorname{SIG}(-10-13)\left|\ddot{\theta}_{2}\right|=-50 \frac{\mathrm{deg}}{\mathrm{~s}} \\
l=3
\end{array}\right. \\
& t_{k}=\frac{\dot{\theta}_{k l} \dot{\theta}_{j k}}{\ddot{\theta}_{k}} \\
& \left\{\begin{array}{l}
j=1 \\
k=2 \rightarrow t_{2}=\frac{\dot{\theta}_{23}-\dot{\theta}_{12}}{\ddot{\theta}_{2}}=\frac{(-10)-(13.5)}{-50}=0.47 \sec \\
l=3
\end{array}\right. \\
& t_{12}=t_{d 12}-t_{1}-\frac{1}{2} t_{2}=2-0.27-\frac{1}{2}(0.47)=1.5
\end{aligned}
$$

Joint Space Schemes - Multiple Time Intervals - Via Points Linear Function With Parabolic Blend - Example

Third Segment (t: 3 $\boldsymbol{\rightarrow} \mathbf{6}$)

$$
\begin{aligned}
& \ddot{\theta}_{n}=\operatorname{SGN}\left(\theta_{n-1}-\theta_{n}\right)\left|\ddot{\theta}_{n}\right| \\
& \mathrm{n}=4 \rightarrow \ddot{\theta}_{4}=\operatorname{SGN}\left(\theta_{3}-\theta_{4}\right)\left|\ddot{\theta}_{4}\right|=(25-10)|50|=+50 \frac{\operatorname{deg}}{\mathrm{~s}} \\
& t_{n}=t_{d(n-1) n}-\sqrt{t_{d(n-1) n}^{2}-\frac{2\left(\theta_{n-1}-\theta_{n}\right)}{\ddot{\theta}_{n}}} \\
& \mathrm{n}=4 \rightarrow t_{4}=t_{d 34}-\sqrt{t_{d 34}^{2}-\frac{2\left(\theta_{3}-\theta_{4}\right)}{\ddot{\theta}_{4}}}=3-\sqrt{9-\frac{2(25-10)}{50}}=0.102 \mathrm{~s} \\
& \dot{\theta}_{(n-1) n}=\frac{\theta_{n}-\theta_{n-1}}{t_{d(n-1) n}-\frac{1}{2} t_{n}} \\
& n=4 \rightarrow \dot{\theta}_{34}=\frac{\theta_{4}-\theta_{3}}{t_{d 34}-\frac{1}{2} t_{4}}=\frac{10-25}{3-\frac{1}{2} 0.102}=-5.10 \frac{\text { deg }}{\mathrm{s}}
\end{aligned}
$$

Joint Space Schemes - Multiple Time Intervals - Via Points Linear Function With Parabolic Blend - Example

Third Segment (t: 3 ${ }^{\rightarrow 6}$) Cont.
$\ddot{\theta}_{k}=\operatorname{SGN}\left(\dot{\theta}_{k l}-\dot{\theta}_{j k}\right)\left|\ddot{\theta}_{k}\right|$

$$
\left\{\begin{array}{l}
j=2 \\
k=3 \\
l=4
\end{array} \rightarrow \begin{array}{l}
\ddot{\theta}_{3}=\operatorname{SGN}\left(\dot{\theta}_{34}-\dot{\theta}_{23}\right)\left|\ddot{\theta}_{3}\right|=\operatorname{SGN}((-5.1)-(-10))\left|\ddot{\theta}_{3}\right| \\
\ddot{\theta}_{3}=+50 \frac{d e g}{s^{2}}
\end{array}\right.
$$

$$
t_{k}=\frac{\dot{\theta}_{k l}-\dot{\theta}_{j k}}{\ddot{\theta}_{k}}
$$

$$
\left\{\begin{array}{l}
j=2 \\
k=3 \\
l=4
\end{array} \rightarrow t_{3}=\frac{\dot{\theta}_{34}-\dot{\theta}_{23}}{\ddot{\theta}_{3}}=\frac{(-5.1)-(-10)}{50}=0.098 \mathrm{~s}\right.
$$

Joint Space Schemes - Multiple Time Intervals - Via Points -

 Linear Function With Parabolic Blend - ExampleThird Segment (t: 3 $\boldsymbol{\rightarrow} \mathbf{6}$) Cont.

$$
\begin{aligned}
& t_{j k}=t_{d j k}-\frac{1}{2} t_{j}-\frac{1}{2} t_{k} \\
& \left\{\begin{array}{l}
j=2 \\
k=3
\end{array} \rightarrow t_{23}=t_{d 23}-\frac{1}{2} t_{2}-\frac{1}{2} t_{3}=0.716 \mathrm{~s}\right. \\
& t_{(n-1) n}=t_{d(n-1) n}-t_{n}-\frac{1}{2} t_{n-1} \\
& n=4 \rightarrow t_{34}=t_{d 34}-t_{4}-\frac{1}{2} t_{3}=1-0.102-\frac{1}{2} 0.098=2.849 \mathrm{~s}
\end{aligned}
$$

Joint Space Schemes - Multiple Time Intervals - Via Points Linear Function With Parabolic Blend - Example

Joint Space Schemes - Multiple Time Intervals - Via Points Linear Function With Parabolic Blend - Example

Linear Polynomial
LINEAR SEGMENTS

$$
\begin{aligned}
& \text { II: } \theta=10+13.5 t \\
& \text { IV: } \theta=35-10 t \\
& \text { VI: } \theta=25-5.1 t \\
& \quad \theta_{\text {inb }}=25-5.1\left(\frac{0.098}{2}+2.849\right)
\end{aligned}
$$

Joint Space Schemes - Multiple Time Intervals - Via Points Linear Function With Parabolic Blend - Example

Parabolic Blend

$$
\begin{aligned}
& I: \quad \theta=10+\frac{1}{2} \frac{13.5}{0.27} t^{2}(\mathrm{FIRST}) \\
& I I I: \theta=10+13.5\left(t-t_{\text {inb }}\right)+\frac{1}{2}(50)^{2} t_{i n b} \\
& t_{\text {inb }}=t-\left(\frac{1}{2} 0.27+1.5\right) \\
& V: \theta=35-10\left(t-t_{\text {inb }}\right)+\frac{1}{2}(50)^{2} t_{i n b} \\
& t_{\text {inb }}=t-\left(\frac{1}{2} 0.47+0.716\right) \\
& V I I: \theta=10+\frac{1}{2} \frac{13.5}{0.27} t^{2} \\
& t_{\text {inb }}=t-\left(\frac{1}{2} 0.098+2.849\right)
\end{aligned}
$$

Joint Space Schemes

Multiple Time Intervals

Pseudo Via Point

Joint Space Schemes - Multiple Time Intervals Pseudo Via Points

- Problem:
- In the linear parabolic blend spline, note that the via points are not actually reached unless the manipulator come to a stop
- Often when the acceleration is sufficiently high the path will come quite close to the desire via point

Joint Space Schemes - Multiple Time Intervals Pseudo Via Points

- Solution
- Define Pseudo via Points - The system automatically replace the via point through which we wish the manipulator to pass through with two pseudo via points one on each side of the original.
- The original via point will now lie in the linear region of the path connecting the two pseudo via points
- Define Velocity at the original Via Points - In addition to requesting that the manipulator pass exactly through the via point, the user can also request that it pass through with a certain velocity. If the user does not specify this velocity the system chooses it by means of suitable heuristic
- Define Through Point - Through Point rather than via point is used to specify a path through which we force the manipulator to pass exactly through

Joint Space Schemes - High Order Polynomials

Joint Space Schemes - High Order Polynomials

Joint Space Schemes

Multiple Time Intervals
Summary

Joint Space Schemes - Multiple Time Intervals - Via Points Linear Polynomials

(+) Known - Time Duration between Start / Via / End Points (+) Known - Joint Angles

Time - t

Joint Space Schemes - Multiple Time Intervals - Via Points Linear Polynomials

$$
\theta=\theta_{0}+\left(\frac{\theta_{f}-\theta_{0}}{t_{f}}\right) t \quad \begin{array}{ll}
\theta(0)=\theta_{0} \\
\theta\left(t_{f}\right)=\theta_{f}
\end{array}
$$

Joint Space Schemes - Multiple Time Intervals - Via Points -

 Cubic Polynomials - Non Zero Velocity
(+) Known - Time Duration between Start / Via / End Points
(+) Known - Joint Angles (+) Known - Joint Angles

Time - t

Joint Space Schemes - Multiple Time Intervals - Via Points -

 Cubic Polynomials - Non Zero Velocity$$
\begin{aligned}
& \theta(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3} \\
& \dot{\theta}(t)=a_{1}+2 a_{2} t+3 a_{3} t^{2} \\
& \ddot{\theta}(t)=2 a_{2}+6 a_{3} t
\end{aligned}
$$

$$
\theta(0)=\theta_{0}
$$

$$
\theta\left(t_{f}\right)=\theta_{f}
$$

$$
\dot{\theta}(0)=\dot{\theta}_{0}
$$

$$
\dot{\theta}\left(t_{f}\right)=\dot{\theta}_{f}
$$

$$
\begin{aligned}
& a_{0}=\theta_{0} \\
& a_{1}=\dot{\theta}_{0} \\
& a_{2}=\frac{3}{t_{f}^{2}}\left(\theta_{f}-\theta_{0}\right)-\frac{2}{t_{f}} \dot{\theta}_{0}-\frac{1}{t_{f}} \dot{\theta}_{f} \\
& a_{3}=-\frac{2}{t_{f}^{3}}\left(\theta_{f}-\theta_{0}\right)+\frac{2}{t_{f}^{2}}\left(\dot{\theta}_{f}+\dot{\theta}_{0}\right)
\end{aligned}
$$

Joint Space Schemes - Multiple Time Intervals - Via Points -

 Quantic Polynomials - Non Zero Acceleration
(+) Known - Time Duration between Start / Via / End Points
(+) Known - Joint Angles (+) Known - Joint Angles

Time - t
(+) Known - Joint Acceleration
Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical \& Aerospace Engineering - UCLA

Joint Space Schemes - Multiple Time Intervals - Via Points -

 Quantic Polynomials - Non Zero Acceleration$$
\begin{array}{ll}
\theta(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}+a_{5} t^{5} & \theta(0)=\theta_{0} \\
\dot{\theta}(t)=\quad a_{1}+2 a_{2} t+3 a_{3} t^{2}+4 a_{4} t^{3}+5 a_{5} t^{4} & \theta\left(t_{f}\right)=\theta_{f} \\
\ddot{\theta}(t)=\quad 2 a_{2}+6 a_{3} t+12 a_{4} t^{2}+20 a_{5} t^{3} & \begin{array}{l}
\dot{\theta}(0)=\dot{\theta}_{0} \\
\\
a_{0}=\theta_{0} \\
\left.a_{1}=\dot{\theta}_{f}\right)=\dot{\theta}_{f} \\
a_{2}=\frac{\ddot{\theta}}{2} \\
\ddot{\theta}_{0} \\
a_{3}=\frac{20 \theta_{f}-20 \theta_{0}-\left(8 \dot{\theta}_{f}+12 \dot{\theta}_{0}\right) t_{f}-\left(3 \ddot{\theta}_{0}-\ddot{\theta}_{f}\right) t_{f}^{2}}{2 t_{f}^{3}} \\
\ddot{\theta}\left(t_{f}\right)=\ddot{\theta}_{f} \\
a_{4}=\frac{30 \theta_{0}-30 \theta_{f}+\left(14 \dot{\theta}_{f}+16 \dot{\theta}_{0}\right) t_{f}+\left(3 \ddot{\theta}_{0}-2 \ddot{\theta}_{f}\right) t_{f}^{2}}{2 t_{f}^{4}} \\
a_{5}=\frac{12 \theta_{f}-12 \theta_{0}-\left(6 \dot{\theta}_{f}+6 \dot{\theta}_{0}\right) t_{f}-\left(\ddot{\theta}_{0}-\ddot{\theta}_{f}\right) t_{f}^{2}}{2 t_{f}^{5}}
\end{array}
\end{array}
$$

Joint Space Schemes - Multiple Time Intervals - Via Points Linear Function With Parabolic Blend

(+) Known - Time Duration between Start / Via / End Points
(-) Unknown - Time Duration of the Parabolic Segment
) Unk Ti Segmen
Time - t

Joint Space Schemes - Multiple Time Intervals - Via Points Linear Function With Parabolic Blend

- Tasks No. 1 - Time Intervals / Velocity /

Acceleration

- Calculate the time intervals of the parabolic blending (marked in green)
- Calculate the time intervals of the linear functions (marked in blue)
- Calculate the direction of the acceleration during the linear bland
- Calculate the velocity during the linear spline
- Task No. 2 - Functions
- Define the Linear Functions (marked in black)
- Defined the parabolic blend functions (marked in gray)

Assume 4 intervals

- First Interval: $1 \rightarrow 2$
- Intermediate Interval: $2 \rightarrow 3$
- Last Interval: $2 \rightarrow 3$

Joint Space Schemes - Multiple Time Intervals - Via Points Linear Function With Parabolic Blend

- Tasks No. 1
- First Interval - $1 \rightarrow 2$

$$
\begin{gathered}
t_{1}=t_{d 12}-\sqrt{t_{d 12}^{2}-\frac{2\left(\theta_{2}-\theta_{1}\right)}{\ddot{\theta}_{1}}} \\
\ddot{\theta}_{1}=\operatorname{SGN}\left(\theta_{2}-\theta_{1}\right)\left|\ddot{\theta}_{1}\right| \\
\dot{\theta}_{12}=\frac{\theta_{2}-\theta_{1}}{t_{d 12}-\frac{1}{2} t_{1}}
\end{gathered}
$$

Joint Space Schemes - Multiple Time Intervals - Via Points Linear Function With Parabolic Blend

- Tasks No. 1
- Intermediate Interval (Repeat for any intermediate interval) - $2 \rightarrow 3$

$$
\dot{\theta}_{j k}=\frac{\theta_{k}-\theta_{j}}{t_{d j k}}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
j=2 \\
k=3
\end{array} \rightarrow \dot{\theta}_{23}=\frac{\theta_{3}-\theta_{1}}{t_{d 23}}\right. \\
& \qquad \ddot{\theta}_{k}=\operatorname{SIG}\left(\dot{\theta}_{k l}-\dot{\theta}_{j k}\right)\left|\ddot{\theta}_{k}\right| \\
& \left\{\begin{array}{l}
j=1 \\
k=2 \\
l=3
\end{array} \rightarrow \ddot{\theta}_{2}=\operatorname{SIG}\left(\dot{\theta}_{23}-\dot{\theta}_{12}\right)\left|\ddot{\theta}_{2}\right|\right. \\
& t_{k}=\frac{\dot{\theta}_{k l}-\dot{\theta}_{j k}}{\ddot{\theta}_{k}}
\end{aligned}
$$

$$
\left\{\begin{array}{l}
j=1 \\
k=2 \\
l=3
\end{array} \rightarrow t_{2}=\frac{\dot{\theta}_{23}-\dot{\theta}_{12}}{\ddot{\theta}_{2}}, ~\left(t_{d 12}-t_{1}-\frac{1}{2} t_{2}\right.\right.
$$

Joint Space Schemes - Multiple Time Intervals - Via Points Linear Function With Parabolic Blend

- Tasks No. 1
- Final Interval - $3 \rightarrow 4$

$$
\begin{aligned}
& \ddot{\theta}_{n}=\operatorname{SGN}\left(\theta_{n-1}-\theta_{n}\right)\left|\ddot{\theta}_{n}\right| \\
& \mathrm{n}=4 \rightarrow \ddot{\theta}_{4}=\operatorname{SGN}\left(\theta_{3}-\theta_{4}\right)\left|\ddot{\theta}_{4}\right|
\end{aligned}
$$

$$
\begin{aligned}
t_{n} & =t_{d(n-1) n}-\sqrt{t_{d(n-1) n}^{2}-\frac{2\left(\theta_{n-1}-\theta_{n}\right)}{\ddot{\theta}_{n}}} \\
\mathrm{n} & =4 \rightarrow t_{4}=t_{d 34}-\sqrt{t_{d 34}^{2}-\frac{2\left(\theta_{3}-\theta_{4}\right)}{\ddot{\theta}_{4}}}
\end{aligned}
$$

$$
\begin{aligned}
& \dot{\theta}_{(n-1) n}=\frac{\theta_{n}-\theta_{n-1}}{t_{d(n-1) n}-\frac{1}{2} t_{n}} \\
& n=4 \rightarrow \dot{\theta}_{34}=\frac{\theta_{4}-\theta_{3}}{t_{d 34}-\frac{1}{2} t_{4}}
\end{aligned}
$$

Joint Space Schemes - Multiple Time Intervals - Via Points Linear Function With Parabolic Blend

- Tasks No. 1
- Final Interval - 3 $\rightarrow 4$ (Continue)
- (Interval Prior to the final interval)

$$
\ddot{\theta}_{k}=\operatorname{SGN}\left(\dot{\theta}_{k l}-\dot{\theta}_{j k}\right)\left|\ddot{\theta}_{k}\right|
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
j=2 \\
k=3 \\
l=4
\end{array} \rightarrow \ddot{\theta}_{3}=\operatorname{SGN}\left(\dot{\theta}_{34}-\dot{\theta}_{23}\right)\left|\ddot{\theta}_{3}\right|\right. \\
& t_{k}=\frac{\dot{\theta}_{k l}-\dot{\theta}_{j k}}{\ddot{\theta}_{k}} \\
& \left\{\begin{array}{l}
j=2 \\
k=3 \rightarrow t_{3}=\frac{\dot{\theta}_{34} \dot{\theta}_{23}}{\ddot{\theta}_{3}} \\
l=4
\end{array}\right.
\end{aligned}
$$

Joint Space Schemes - Multiple Time Intervals - Via Points Linear Function With Parabolic Blend

- Tasks No. 1
- Final Interval - 3 $\rightarrow 4$ (Continue)
- (Interval Prior to final interval \& Final Inetrval)

$$
t_{j k}=t_{d j k}-\frac{1}{2} t_{j}-\frac{1}{2} t_{k}
$$

$$
\left\{\begin{array}{l}
j=2 \\
k=3
\end{array} \rightarrow t_{23}=t_{d 23}-\frac{1}{2} t_{2}-\frac{1}{2} t_{3}\right.
$$

$$
t_{(n-1) n}=t_{d(n-1) n}-t_{n}-\frac{1}{2} t_{n-1}
$$

$$
n=4 \rightarrow t_{34}=t_{d 34}-t_{4}-\frac{1}{2} t_{3}
$$

Joint Space Schemes - Multiple Time Intervals - Via Points Linear Function With Parabolic Blend - Example

- Tasks No. 2 - Linear \& parabolic functions
- First Segment

$$
\begin{aligned}
& \theta=\theta_{1}+\dot{\theta}_{12} t \\
& \theta=\theta_{0}+\frac{1}{2} \frac{\dot{\theta}_{12}}{t_{1}} t^{2} \\
& t_{i n b}=t
\end{aligned}
$$

- Mid Segment
$\theta=\theta_{j}+\dot{\theta}_{j k} t$
$\theta=\theta_{j}+\dot{\theta}_{j k}\left(t-t_{i n b}\right)+\frac{1}{2} \ddot{\theta}_{k}^{2} t_{i n b}$
$t_{i n b}=t-\left(\frac{1}{2} t_{j}+t_{j k}\right)$
- Last Segment
$\theta=\theta_{n-1}+\dot{\theta}_{(n-1) n} t$
$\theta=\theta_{i n b}+\theta_{(n-1) n} t_{i n b}-\frac{1}{2} \frac{\dot{\theta}_{(n-1) n}}{t_{\text {inb }}} t_{i n b}^{2}$
$t_{i n b}=t-\left(\frac{1}{2} t_{n-1}+t_{(n-1) n}\right)$

