MAE 163B / 263B - Dynamics of Robotic System

Project No. 2
Trajectory Generation - Joint Space

MAE 163B (Undergraduate Class) - Solve Parts 1, 2

MAE 263B (Graduate Class) - Solve Parts 1, 3
Note: The following assignment is described as "open design effort" in designing trajectories for a pick and place task performed by a robotic system. There is no right or wrong way to address the problem. Every piece of information that is not described in the following technical specification is a design parameter that may affect the overall performance of the system. As an engineer an/or scientist who is assigned to design the pick and place task it is up to you to determined. In the context to designing a trajectory the best solution is the one that complies with the following constrains:

- Shortest in length
- Shortest in time (under the limitation of the joint velocities and acceleration - see spec sheet at the appendix, you may assume a max acceleration of $50 \mathrm{deg} / \mathrm{s}^{\wedge} 2$)
- Doesn't violet the workspace limitation of the robotic arm
- Doesn't violate the performance of the arms in terms of pick joints' velocities and and acceleration (see spec sheet in the appendix for max joint velocity, you may assume a max acceleration of $50 \mathrm{deg} / \mathrm{s}^{\wedge} 2$ for all the joints)
- Avoid a collision with obstacles in the field

Task description - A feeder of electronic chips presents a chip with physical dimensions of $10 \mathrm{~mm} \times 10 \mathrm{~mm} \times 2 \mathrm{~mm}$ one at a time to the robotic system in a known position. All the chips fed by the feeder are present in exactly the same configuration (position and orientation) and at the same place one at the time. The feeder is much faster than the robotic arm and presents the chip before the arm completed its previous trajectory. The robotic arm is required to pick up the chips from the feeder and place the four chips at the corners of a PCB with the size of $100 \mathrm{~mm} x$ 100 mm . The orientations of chip is different at each one of the corners of the PCB $(1,2,3,4)$ as indicated by the dot on the chip. The chips are rotated by 90 deg with respect to each other but share the same surface. As the arm moves between the location the gripper mast remain close on the chip and further open as it is about to grasp/release the chip. The jaws of the gripper moves with a specific speed that needs to be taken into account during the grasping and releasing actions.

Open Geometrical Design Parameters

- Location of the feeder with respect to the world coordinate system \{S\}
- Location of the PCB with respect to the world coordinate system \{S\}

Initial and Final Arm Configurations - The arm is position such that the elbow is at 90 deg and the Z axis of the end effector is at the end of its range of motion fully retracted into the arm.

Trajectories - The arm has to complete the following trajectories (note the location of the dot at the feeder and the location of the dot in each one of the corners)

- Trajectory 1 - From the reference configuration of the arm to the feeder
- Trajectory 2 - From the feeder to the first corner
- Trajectory 3 - From the first corner to the feeder
- Trajectory 4 - From the feeder to the second corner
- Trajectory 5 - From the second corner to the feeder
- Trajectory 6 - From the feeder to the third corner
- Trajectory 7 - From the third corner to the feeder
- Trajectory 8 - From the feeder to the forth corner
- Trajectory 9 - From the forth corner to the reference configuration

System configuration - You as the designer of the system has the freedom to position the two elements of the system i.e. the feeder the PSB at any location that you wish in order to minimize the length of the trajectories and the completion time of the task under the following assumptions

- Collisions - Eliminate any collision between the arm and its griper and the objects in the environment i.e. the feeder ot the PCB.
- Operational Point of the axis \mathbf{Z} - The preferred operational point of the arm is such that Z axis is at the middle of the its displacement d as identified by the spec.
- Operational Point Elbow - The preferred configuration of the arm is when the elbow is at about 90 deg.

Arm Definition - SCARA Mitsubishi Arm - Model RH-3FRH5515

Gripper - Yamaha YRG-4220W

Part 1 (for Both Ugrad and Grad)

1.1 Define the DH parameters of the system including their numerical values based on the spec of the robotic arm and the gripper
1.2 Derive the forward and inverse kinematics. Pay attention to the multiple solutions of the inverse kinematics (i.e. elbow up and elbow down)
1.3 Determined the initial positions of the feeder (i.e. the picking location) and the four target locations of the PCB with respect to the stationary frame $\{S\}$. These definitions should be expressed (numerically) as five homogeneous transformation matrixes.
1.4 Define via points for the various trajectory and expressed them numerically as homogenous transformation matrixes in order to avoid any potential collision
1.5 Develop using the Matlab Robotic Toolbox a model of the robotic arm

Part 2 (Only for Ugrad)

2.1 Joint Space Approach - Use the joint space approach to develop the trajectories of the robotic arm to complete the task. You may choose any of the methods described in class. It is recommended to use the linear interpolation with parabolic blends since this method is the most common one in industry

Part 3 (Only for Grad)

3.1 Joint Space \& Task Space - Use both the joint space approach and the task space approach to develop the trajectories of the robotic arm to complete the task using the linear interpolation with parabolic blends since this method is the most common one in industry
3.2 Optimization - Based on the results of 3.1 change the locations of the feeder, the PCB, as well as the via points as needed to shorten the trajectories.

Report Outline - Submitted a written report

Part 1

- DH parameters
- Forward Kinematics
- Inverse Kinematics
- Locations of the feeder and PCB
- Locations of the via points
- Matlab Code of the arm (M-file)

Part 2

- Extended Matlab code for the entire project (M-file). The code should be in a shape that allow one to run it without any additional knowledge of the code and verify the results.
- Animation of the robotic arm moving through the trajectories (can be broken up to individual segments)
- Joint angles, velocity, acceleration of all the trajectories including joint limits (angles, velocities, accelerations)
- End effector position and orientation plotted in 3D
- Verifications that all the conditions are met in designing the trajectories i.e.
- kinematic limitation - joint angle velocity and accelerations
- Collision avoidance
- Discussion of the outcomes

System Configuration

Appendix Technical Information

SCARA Mitsubishi Arm - Model RH-3FRH5515
https://us.mitsubishielectric.com/fa/en/support/technical-support/knowledge-base/getdocument/?docid=3E26SJWH3ZZR-38-2664

Ideal for compact cell construction, such as assembling or transporting small workpieces.
-Among the fastest moving robots in its class [XY composite: $8,300 \mathrm{~mm} / \mathrm{s}$]
[J4 (θ axis): 3,000 deg/s]

- Standard cycle time

[^0][0.41 s (RH-3FRH35)]

Type		Unit	RH-3FRH3515/12C	RH-3FRH4515/12C	RH-3FRH5515/12C
Environmental specifications			Standard/ Cleanroom		
Protection degree *1			IP20/ ISO class3 *6		
Installation			Floor type		
Structure			Horizontal multiple-joint type		
Degrees of freedom			4		
Drive system			$A C$ servo motor		
Position detection method			Absolute encoder		
Maximum load capacity		kg	Maximum 3 (Rated 1)		
Arm length	NO1 arm	mm	125	225	325
	NO2 arm		225		
Maximum reach radius		mm	350	450	550
Operating range	J1	deg	340 (± 170)		
	J2		290 (± 145)		
	J3 (Z)	mm	150 (Clean specification: 120) *1		
	J4 (θ)	deg	720 (± 360)		
Maximum speed	J1	deg/sec	420		
	J2		720		
	J3 (Z)	$\mathrm{mm} / \mathrm{sec}$	1100		
	J4 (θ)	deg/sec	3000		
Maximum composite speed *2		$\mathrm{mm} / \mathrm{sec}$	6800	7500	8300
Cycle time *3		sec	0.41	0.46	0.51
Position repeatability	Y-X composite	m	± 0.010	± 0.010	± 0.012
	J3 (Z)		± 0.01		
	J4 (θ)	deg	± 0.004		
Ambient temperature		${ }^{\circ} \mathrm{C}$	0 to 40		
Mass		kg	29	29	32
Tolerable amount of inertia	Rating	kgm ${ }^{2}$	0.005		
	Maximum		0.06		
Tool wiring			Gripper: 8 input points/8 output points (20 pins total) Signal cable for the multi-function gripper (2-pin +2 -pin power line) LAN $\times 1<100$ BASE-TX $>(8$-pin) *4		
Tool pneumatic pipes			Primary: $\varnothing 6 \times 2$ Secondary: $\varnothing 4 \times 8$		
Machine cable			5 m (connector on both ends)		
Connected controller *5			CR800-D, CR800-R, CR800-Q		

*1: Space required for the battery replacement
*3: Screw holes (M4, 6 mm long) for affixing user wiring and piping. (6 locations on both sides and 2 locations on
the front of the No. 2 arm.)

*1: Space required for the battery replacement
*2: Space required for the interconnection cable
*3: Screw holes (M4, 6 mm long) for affixing use
the front of the No. 2 arm.)
Variable dimensions

Robot series	A	B	c	D	E	F	G	H	J
RH-3FRH3515	125	R350	R142	210	R253	220	R174	342	150
RH-3FRH3512C	125	R350	R142	224	R253	268	R196	342	120
RH-3FRH4515	225	R450	R135	210	R253	220	R174	337	150
RH-3FRH4512C	225	R450	R135	224	R253	268	R197	337	120
RH-3FRH5515	325	R550	R191	160	R244	172	R197	337	150
RH-3FRH5512C	325	R550	R191	160	R253	259	R222	337	120

Gripper - Yamaha YRG-4220W

https://global.yamaha-motor.com/business/robot/lineup/yrg/w/
https://global.yamaha-
motor.com/business/robot/lineup/yrg/w/pdf/index/yrg 2005w 2810w 4220w.pdf
YRG-2005W/2810W/4220W $=$? VRGGO205W/2810W/420W $=$?
 - Acceleration control: 1 to 100% ((1\% steps) - Multipoint

- Graph shows a general guide to gripping power versus gripping power setting (\%). Variations will appear
in the actual gripping power.

			YRG-2005W	YRG-2810W	YRG-4220W	
Guide	Allowable load	F	N	1000	1000	2000
	Allowable pitching moment	Mp	$\mathrm{N} \cdot \mathrm{m}$	6.7	8.1	20.1
	Allowable yawing moment	My	$\mathrm{N} \cdot \mathrm{m}$	4	4.8	12
	Allowable rolling moment	Mr	$\mathrm{N} \cdot \mathrm{m}$	5.1	7.8	25.9
Finger	Max. weight (1 pair)	Max. holding position		g	40	80

- Mount the finger so that the allowable load and load moment of the guide do not exceed the values stated in the table above. - Make the adjustment so that the finger weight, holding length (L) from the installation surface
YRG-2005W/2810W/4220W

Connection Between the Tip of the Robot and the Gripper

Notes (Assembly drawing not to scale)

- Connective Block (marked by a blue cube) with a high of 60 mm
- Left jaw if the gripper (marked by a yellow cube) and right jaw of the gripper (marked by a green cube) each with a height of 20 mm

Note

- Assume that the bottom of the computer chip grasped by the jaws is fleshed with the face of the gripper as it is being placed on the PCB

[^0]: Pivotal operating range: $\pm 170^{\circ}$
 Comph Machinery Directives (CE) as standard
 Compliance with other standards is available in specialized machines. Contact Mitsubishi Electric for details.

