
Manipulator Dynamics 2
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Forward Dynamics

Problem

Given: Joint torques and links 

geometry, mass, inertia,  

friction, joint torques 

Compute: Angular acceleration of the 

links (solve differential

equations)

Solution

solve a set of differential equations

Dynamic Equations - Newton-Euler method or 

Lagrangian Dynamics

𝛕 = 𝑀(Θ) ሷΘ + 𝑉(Θ, ሶΘ) + 𝐺(Θ) + 𝐹(Θ, ሶΘ)

𝛕𝑖
𝐿𝑖𝑛𝑘𝑖(𝑥, 𝑦, 𝑧)
𝑚𝑖

𝐼𝑖
𝑃𝐶𝑖
𝑓𝑖
𝑛𝑖

ቐ
Θ
ሶΘ
ሷΘ
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Inverse Dynamics 

Problem

Given: Angular acceleration, velocity and

angels of the links in addition to

the links geometry, mass, inertia,

friction 

Compute: Joint torques 

Solution

Solve a set of algebraic equations

Dynamic Equations - Newton-Euler method or 

Lagrangian Dynamics

𝛕 = 𝑀(Θ) ሷΘ + 𝑉(Θ, ሶΘ) + 𝐺(Θ) + 𝐹(Θ, ሶΘ)

Θ
ሶΘ
ሷΘ
𝐿𝑖𝑛𝑘𝑖(𝑥, 𝑦, 𝑧)
𝑚𝑖

𝐼𝑖
𝑃𝐶𝑖
𝑓𝑖
𝑛𝑖

ሼ𝜏
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Iterative Newton Euler Equations 

Steps of the Algorithm

• (1) Outward Iterations 

– Starting With velocities and accelerations of the base 

– Calculate velocities accelerations, along with forces 

and torques (at the CM)  

• (2) Inward Iteration

– Starting with forces and torques (at the CM) 

– Calculate forces and torques at the joints 

(𝑖 = 𝑛 → 1)

𝜔, ሶ𝜔, ሶ𝜈, ሶ𝜈𝐶𝑀, 𝐹, 𝑁

0𝜔0 = 0, ሶ0𝜔0 = 0, 0𝜈0 = 0, ሶ0𝜈0 = +𝑔 Ƹ𝑧

𝐹,𝑁

𝑓, 𝑛

(𝑖 = 0 → 𝑛 − 1)

(𝑖 = 𝑛 → 1)

0𝜔0 = 0
ሶ0𝜔0 = 0

0𝜈0 = 0
ሶ0𝜈0 = +𝑔 Ƹ𝑧

𝜔
ሶ𝜔
ሶ𝜈
ሶ𝜈𝐶𝑀
𝐹
𝑁

ቊ
𝐹
𝑁
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(𝑖 = 0 → 𝑛 − 1)



Iterative Newton-Euler Equations - Solution Procedure

Phase 1: Outward Iteration 

• Calculate the link velocities and accelerations iteratively from the robot’s base to the end effector 

• Calculate the force and torques applied on the CM of each link using the Newton and Euler equations  

𝑖+1𝜔𝑖+1 = 𝑖
𝑖+1𝑅𝑖𝜔𝑖 + ሶ𝜃𝑖+1

𝑖+1 መ𝑍𝑖+1

𝑖+1 ሶ𝜔𝑖+1 = 𝑖
𝑖+1𝑅𝑖 ሶ𝜔𝑖 + 𝑖

𝑖+1𝑅𝑖𝜔𝑖 × ሶ𝜃𝑖+1
𝑖+1 መ𝑍𝑖+1 + ሷ𝜃𝑖+1

𝑖+1 መ𝑍𝑖+1

𝑖+1 ሶ𝑣𝑖+1 = 𝑖
𝑖+1𝑅( ሶ𝑖𝜔𝑖 × 𝑖𝑃𝑖+1 +

𝑖𝜔𝑖 × (𝑖𝜔𝑖 × 𝑖𝑃𝑖+1) +
𝑖 ሶ𝑣𝑖)

𝑖+1 ሶ𝑣𝐶𝑖+1 =
𝑖+1 ሶ𝜔𝑖+1 ×

𝑖+1𝑃𝐶𝑖+1 +
𝑖+1𝜔𝑖+1 × (𝑖+1𝜔𝑖+1 ×

𝑖+1𝑃𝐶𝑖+1) + 𝑖+1 ሶ𝑣𝑖+1

𝑖+1𝐹𝑖+1 = 𝑚𝑖+1
𝑖+1 ሶ𝑣𝐶𝑖+1

1

1

1

1

1

1

1

1

1

1

1
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Outward Iteration: 𝑖 : 0 → 5

Instructor: Jacob Rosen 
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Iterative Newton-Euler Equations - Solution Procedure

Phase 2: Inward Iteration 

• Use the forces and torques generated at the joints starting with forces and torques generating by interacting 

with the environment (that is, tools, work stations, parts etc.)  at the end effector all the way the robot’s base.  

Inward Iteration: 𝑖 : 6 → 1

𝑖𝑓𝑖 = 𝑖+1
𝑖𝑅 𝑖+1𝑓𝑖+1 +

𝑖𝐹𝑖

𝑖𝑛𝑖 =
𝑖𝑁𝑖 + 𝑖+1

𝑖𝑅𝑖+1𝑛𝑖+1 +
𝑖𝑃𝐶𝑖 ×

𝑖𝐹𝑖 +
𝑖𝑃𝑖+1 × 𝑖+1

𝑖𝑅 𝑖+1𝑓𝑖+1

𝜏𝑖 =
𝑖+1𝑛𝑇

𝑖+1
𝑖𝑍𝑖
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Manipulator Dynamics – Newton Euler Equations 

The Inertia Tensor (Moment of Inertia)  

𝑐𝐼

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA



Dynamics - Newton-Euler Equations

• To solve the Newton and Euler equations, we’ll need to develop mathematical terms for:

ሶ𝑣𝑐 - The linear acceleration of the center of mass

ሶ𝜔 - The angular acceleration
𝑐𝐼 - The Inertia tensor (moment of inertia)  

𝐹 - The sum of all the forces applied on the center of mass 

𝑁 - The sum of all the moments applied on the center of mass 

𝑁 = 𝑐𝐼 ሶ𝜔 + 𝜔 × 𝑐𝐼𝜔

𝐹 = 𝑚 ሶ𝑣𝑐

Instructor: Jacob Rosen 
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Moment of Inertia – Intuitive Understanding 

𝐹 = 𝑚 ሶ𝑣𝑐

𝑁 = 𝑐𝐼 ሶ𝜔 + 𝜔 × 𝑐𝐼𝜔

Instructor: Jacob Rosen 
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Moment of Inertia – Intuitive Understanding 
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Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA



Moment of Inertia – Intuitive Understanding 

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA



Moment of Inertia – Intuitive Understanding 
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Moment of Inertia – Intuitive Understanding 
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Moment of Inertia – Intuitive Understanding 
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Moment of Inertia – Intuitive Understanding 

• https://www.youtube.com/watch?v=9SaShn8OkJI

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA

https://www.youtube.com/watch?v=9SaShn8OkJI


Moment of Inertia – Intuitive Understanding 

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA



Moment of Inertia – Particle – WRT Axis 

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA

𝐼𝐴𝐴′ = r2Δ𝑚



Moment of Inertia – Solid – WRT Axis

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA

𝐼𝐴𝐴′ =

𝑖

ri
2Δ𝑚𝑖

𝐼𝐴𝐴′ = න

𝑣

𝑟2 𝑑𝑚 =ම

𝑣

𝑟2 𝜌𝑑𝑣

𝜌𝑑𝑣



Moment of Inertia – Solid – WRT Coordinate Frame

Instructor: Jacob Rosen 
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𝐼𝑦𝑦 = න𝑟2 𝑑𝑚 = න 𝑧2 + 𝑥2 𝑑𝑚 =ම

𝑣

𝑧2 + 𝑥2 𝜌𝑑𝑣

𝐼𝑧𝑧 =ම

𝑣

𝑥2 + 𝑦2 𝜌𝑑𝑣

𝐼𝑥𝑥 =ම

𝑣

𝑧2 + 𝑦2 𝜌𝑑𝑣



Moment of Inertia – Solid – WRT an Arbitrary Axis

Instructor: Jacob Rosen 
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𝑝 = rsin𝜃 = 𝜆 × 𝑟

IOL = න𝑝2 𝑑𝑚 = න 𝜆 × 𝑟 2 𝑑𝑚 = න 𝜆 × 𝑟 𝑇 𝜆 × 𝑟 𝑑𝑚

𝜆 × 𝑟 =
𝑖 𝑗 𝑘
𝜆𝑥 𝜆𝑦 𝜆𝑧
𝑥 𝑦 𝑧

= 𝑖 𝜆𝑦𝑧 − 𝜆𝑧𝑦 + 𝑗 𝜆𝑧𝑥 − 𝜆𝑥𝑧 + 𝑘 𝜆𝑥𝑦 − 𝜆𝑦𝑥

IOL = න 𝜆𝑥𝑦 − 𝜆𝑦𝑥
2
+ 𝜆𝑦𝑧 − 𝜆𝑧𝑦

2
+ 𝜆𝑧𝑥 − 𝜆𝑥𝑧

2 𝑑𝑚



Moment of Inertia – Solid – WRT an Arbitrary Axis

Instructor: Jacob Rosen 
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IOL = න 𝜆𝑥𝑦 − 𝜆𝑦𝑥
2
+ 𝜆𝑦𝑧 − 𝜆𝑧𝑦

2
+ 𝜆𝑧𝑥 − 𝜆𝑥𝑧

2 𝑑𝑚

IOL = 𝜆𝑥
2 න 𝑦2 + 𝑧2 𝑑𝑚 + 𝜆𝑦

2 න 𝑧2 + 𝑥2 𝑑𝑚 + 𝜆𝑧
2න 𝑥2 + 𝑦2 𝑑𝑚

−2𝜆𝑥𝜆𝑦න𝑥𝑦 𝑑𝑚 − 2𝜆𝑦𝜆𝑧න𝑦𝑧 𝑑𝑚 − 2𝜆𝑧𝜆𝑥න𝑧𝑥 𝑑𝑚

IOL = 𝐼𝑥𝑥𝜆𝑥
2 + 𝐼𝑦𝑦𝜆𝑦

2 + 𝐼𝑧𝑧𝜆𝑧
2 − 2𝐼𝑥𝑦𝜆𝑥𝜆𝑦 − 2𝐼𝑦𝑧𝜆𝑦𝜆𝑧 − 2𝐼𝑧𝑥𝜆𝑧𝜆𝑥

𝐼𝑥𝑥 𝐼𝑦𝑦 𝐼𝑍𝑍

𝐼𝑥𝑦 𝐼𝑦𝑧 𝐼𝑧𝑥



Inertia Tensor – WRT a Coordinate Frame at the CM

• Expression of the angular momentum of a system of particles 

about the center of mass, the angular momentum HG is defined as 

Where, 𝑟′ is the position vector relative to the center of mass, 𝑣′

is the velocity relative to the center of mass. 

• For a 3D continuum mass of a rigid body, the summation can be 

replaced by an integration over the entire mass. 

Instructor: Jacob Rosen 
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Inertia Tensor – WRT a Coordinate Frame at the CM

• For a 3D rigid body, the distance 𝑟′ between infinitesimal mass 

𝑑𝑚 and the center of mass G remains constant, and the 

infinitesimal mass velocity 𝑣′, relative to the center of mass G, due 

to the rotation of the rigid body by an angular velocity 𝜔 is 

expressed by 

• Using the vector identity 

the expression the angular momentum HG is rewritten as 

Instructor: Jacob Rosen 
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Inertia Tensor – WRT a Coordinate Frame at the CM

• For a 2D rigid body, rotating in its own plane the distance 𝑟′

between infinitesimal mass 𝑑𝑚 is perpendicular to the angular 

velocity 𝜔 , therefore the term 𝑟′ ∙ 𝜔 is zero, as a result the angular 

velocity vector 𝜔 is parallel to the angular momentum HG

• In the three-dimensional case however, this simplification does not 

occur, and as a consequence, the angular velocity vector, 𝜔, and 

the angular momentum vector, HG, are in general, not parallel. 

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA

0

𝐻𝐺 = න
𝑚

(𝑟′ ∙ 𝑟′)𝜔



Inertia Tensor – WRT a Coordinate Frame at the CM

• In cartesian coordinates, the distance 𝑟′ between infinitesimal 

mass 𝑑𝑚 and the center of mass G and the angular velocity 

vector, 𝜔 are defined as 

• The expression for the the angular momentum HG can be 

expended to  

Instructor: Jacob Rosen 
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Inertia Tensor – WRT a Coordinate Frame at the CM

• The quantities 𝐼𝑥𝑥, 𝐼𝑦𝑦, and 𝐼𝑧𝑧 are called the mass moments of 

inertia with respect to the x, y and z axis, respectively, and are 

given by

• We observe that the quantity in the integrand is precisely the 

square of the distance to the x, y and z axis, respectively.

• It is also clear, from their expressions, that the moments of inertia 

are always positive

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA

𝐼𝑥𝑥 = න
𝑚

𝑦′2 + 𝑧′2 𝑑𝑚 =ම

𝑉

(𝑦′2 + 𝑧′2) 𝜌𝑑𝑣

𝐼𝑦𝑦 = න
𝑚

𝑥′2 + 𝑧′2 𝑑𝑚 =ම

𝑉

(𝑥2 + 𝑧′2) 𝜌𝑑

𝐼𝑧𝑧 = න
𝑚

𝑥′2 + 𝑦′2 𝑑𝑚 =ම

𝑉

(𝑥′2 + 𝑦′2) 𝜌𝑑

Mass moments of inertia



Inertia Tensor – WRT a Coordinate Frame at the CM

• The quantities 𝐼𝑥𝑦, 𝐼𝑦𝑥, 𝐼𝑥𝑧, 𝐼𝑧𝑥, 𝐼𝑦𝑧, and 𝐼𝑧𝑦 are called mass 

products of inertia and they can be positive, negative, or zero, and 

are given by,

• They are a measure of the imbalance in the mass distribution.

Instructor: Jacob Rosen 
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𝐼𝑥𝑦 = 𝐼𝑦𝑥 = න
𝑚

𝑥′𝑦′ 𝑑𝑚 =ම

𝑉

𝑥′𝑦′ 𝜌𝑑

𝐼𝑥𝑧 = 𝐼𝑧𝑥 = න
𝑚

𝑥′𝑧′ 𝑑𝑚 = ම

𝑉

𝑥′𝑧′ 𝜌𝑑

𝐼𝑦𝑧 = 𝐼𝑧𝑦 = න
𝑚

𝑦′𝑧′ 𝑑𝑚 =ම

𝑉

𝑦′𝑧′ 𝜌𝑑

Mass products of inertia



Inertia Tensor – WRT a Coordinate Frame at the CM

• The angular momentum with respect to the center of mass G can 

be expressed in a matrix form as

Instructor: Jacob Rosen 
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Inertia Tensor – WRT an Arbitrary Coordinate Frame

• For a rigid body that is free to move in a 3D space there are 

infinite possible rotation axes

• The intertie tensor characterizes the mass distribution of the rigid 

body with respect to a specific coordinate system  

• The intertie Tensor relative to frame {A} is express as a matrix  

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA

𝐴𝐼 =

𝐼𝑥𝑥 −𝐼𝑥𝑦 −𝐼𝑥𝑧
−𝐼𝑥𝑦 𝐼𝑦𝑦 −𝐼𝑦𝑧
−𝐼𝑥𝑧 −𝐼𝑦𝑧 𝐼𝑧𝑧



Inertia Tensor

𝐼𝑥𝑦 =ම

𝑉

𝑥𝑦 𝜌𝑑

𝐼𝑥𝑧 =ම

𝑉

𝑥𝑧 𝜌𝑑

𝐼𝑦𝑧 = ම

𝑉

𝑦𝑧 𝜌𝑑

Mass products of inertia

𝐴𝐼 =

𝐼𝑥𝑥 −𝐼𝑥𝑦 −𝐼𝑥𝑧
−𝐼𝑥𝑦 𝐼𝑦𝑦 −𝐼𝑦𝑧
−𝐼𝑥𝑧 −𝐼𝑦𝑧 𝐼𝑧𝑧

𝐼𝑥𝑥 =ම

𝑉

(𝑦2 + 𝑧2) 𝜌𝑑𝑣

𝐼𝑦𝑦 =ම

𝑉

(𝑥2 + 𝑧2) 𝜌𝑑

𝐼𝑧𝑧 =ම

𝑉

(𝑥2 + 𝑦2) 𝜌𝑑

Mass moments of inertia

Instructor: Jacob Rosen 
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Tensor of Inertia – Example 

• This set of six independent quantities for a given body, depend on the position and orientation of the frame 

in which they are defined 

• We are free to choose the orientation of the reference frame. It is possible to cause the product of inertia to 

be zero

• The axes of the reference frame when so aligned are called the principle axes and the corresponding mass 

moments are called the principle moments of intertie  

𝐴𝐼 =

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧
ቑ

𝐼𝑥𝑦 = 0

𝐼𝑥𝑧 = 0
𝐼𝑦𝑧 = 0

Mass products of inertia

Instructor: Jacob Rosen 
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𝐴𝐼 =

𝐼𝑥𝑥 −𝐼𝑥𝑦 −𝐼𝑥𝑧
−𝐼𝑥𝑦 𝐼𝑦𝑦 −𝐼𝑦𝑧
−𝐼𝑥𝑧 −𝐼𝑦𝑧 𝐼𝑧𝑧



Tensor of Inertia – Example 

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA

𝐼𝑥𝑥 = න

0

ℎ

න

0

𝑙

න

0

𝑤

𝑦2 + 𝑧2 𝜌𝑑𝑥𝑑𝑦𝑑𝑧 = න

0

ℎ

න

0

𝑙

𝑦2 + 𝑧2 𝑤𝜌𝑑𝑦𝑑𝑧

=
ℎ𝑙3𝑤

3
+
ℎ3𝑙𝑤

3
𝜌 = 𝜌ℎ𝑙𝑤

𝑙2

3
𝑝ℎ𝑙𝑤

ℎ2

3
= න

0

ℎ
𝑙3

3
+ 𝑧2𝑙 𝑤𝜌𝑑𝑧 =

𝑚

3
𝑙2 + ℎ2

𝑥: 0 → 𝑤

𝑦: 0 → 𝑙

𝑧: 0 → ℎ

𝐼𝑦𝑦 =
𝑚

3
𝑤2 + ℎ2

𝐼𝑧𝑧 =
𝑚

3
𝑙2 + 𝑤2



Tensor of Inertia – Example 

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA

𝐼𝑥𝑦 = න

0

ℎ

න

0

𝑙

න

0

𝑤

𝑥𝑦 𝜌𝑑𝑥𝑑𝑦𝑑𝑧 = න

0

ℎ

න

0

𝑙
𝑤2

2
𝑦 𝜌𝑑𝑦𝑑𝑧 = න

0

ℎ
𝑤2𝑙2

4
𝜌𝑑𝑧 =

𝑤2𝑙2ℎ

4
𝜌 = 𝑤𝑙ℎ𝜌

𝑤𝑙

4
=
𝑚

4
𝑤𝑙

𝐼𝑥𝑧 =
𝑚

4
ℎ𝑤

𝐼𝑦𝑧 =
𝑚

4
ℎ𝑙

𝐴𝐼 =

𝑚

3
𝑙2 + ℎ2 −

𝑚

4
𝑤𝑙 −

𝑚

4
ℎ𝑤

−
𝑚

4
𝑤𝑙

𝑚

3
𝑤2 + ℎ2 −

𝑚

4
ℎ𝑙

−
𝑚

4
ℎ𝑤 −

𝑚

4
ℎ𝑙

𝑚

3
𝑙2 + 𝑤2



Tensor of Inertia – Operations 

Translations of the Inertia Tensor

Parallel Axis Theorem 

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA



Parallel Axis Theorem – 1D 

• The inertia tensor is a function of the position and orientation of the 

reference frame

• Parallel Axis Theorem – How the inertia tensor changes under 

translation of the reference coordinate system    

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA

𝐴𝐼𝑧𝑧 =
𝐶𝐼𝑧𝑧 +𝑚𝑑2

Frame {C} – is located at the CM

Frame {A} – an arbitrarily translated frame



Parallel Axis Theorem – 3D 

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA

𝐴𝐼𝑧𝑧 =
𝐶𝐼𝑧𝑧 +𝑚 𝑥𝑐

2 + 𝑦𝑐
2

𝐴𝐼𝑥𝑥 =
𝐶𝐼𝑥𝑥 +𝑚 𝑧𝑐

2 + 𝑦𝑐
2

𝐴𝐼𝑦𝑦 =
𝐶𝐼𝑦𝑦 +𝑚 𝑥𝑐

2 + 𝑧𝑐
2

𝐴𝐼𝑥𝑦 =
𝐶𝐼𝑥𝑦 −𝑚𝑥𝑐𝑦𝑐

𝐴𝐼𝑥𝑧 =
𝐶𝐼𝑥𝑧 −𝑚𝑥𝑐𝑧𝑐

𝐴𝐼𝑦𝑧 =
𝐶𝐼𝑦𝑧 −𝑚𝑦𝑐𝑧𝑐

𝑃𝑐 =

𝑥𝑐
𝑦𝑐
𝑧𝑐

- Location of the CM (origin of C) relative to frame [A]



Parallel Axis Theorem – 3D 

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA

𝐴𝐼 = 𝐶𝐼 + 𝑚 𝑃 ∙ 𝑃 𝐼3 − 𝑃⊗ 𝑃

𝑥𝑐
2 + 𝑦𝑐

2 + 𝑧𝑐
2

1 0 0
0 1 0
0 0 1

𝑃𝑥𝑃𝑥 𝑃𝑥𝑃𝑦 𝑃𝑥𝑃𝑧
𝑃𝑦𝑃𝑥 𝑃𝑦𝑃𝑦 𝑃𝑦𝑃𝑧
𝑃𝑧𝑃𝑥 𝑃𝑧𝑃𝑦 𝑃𝑧𝑃𝑧

𝐴𝐼 =

𝐶𝐼𝑥𝑥 +𝑚 𝑦𝑐
2 + 𝑧𝑐

2 𝐶𝐼𝑥𝑦 −𝑚𝑥𝑐𝑦𝑐
𝐶𝐼𝑥𝑧 −𝑚𝑥𝑐𝑧𝑐

𝐶𝐼𝑥𝑦 −𝑚𝑥𝑐𝑦𝑐
𝐶𝐼𝑦𝑦 +𝑚 𝑥𝑐

2 + 𝑧𝑐
2 𝐶𝐼𝑦𝑧 −𝑚𝑦𝑐𝑧𝑐

𝐶𝐼𝑥𝑧 −𝑚𝑥𝑐𝑧𝑐
𝐶𝐼𝑦𝑧 −𝑚𝑦𝑐𝑧𝑐

𝐶𝐼𝑧𝑧 +𝑚 𝑥𝑐
2 + 𝑦𝑐

2

Outer Product

𝑥𝑐
2 + 𝑦𝑐

2 + 𝑧𝑐
2 0 0

0 𝑥𝑐
2 + 𝑦𝑐

2 + 𝑧𝑐
2 0

0 0 𝑥𝑐
2 + 𝑦𝑐

2 + 𝑧𝑐
2



Tensor of Inertia – Example 

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA

𝑃𝑐 =

𝑥𝑐
𝑦𝑐
𝑧𝑐

=
1

2

𝑤
𝑙
ℎ

𝐶𝐼𝑧𝑧 =
𝐴𝐼𝑧𝑧 −𝑚 𝑥𝑐

2 + 𝑦𝑐
2 =

𝑚

3
𝑙2 + 𝑤2 −

𝑚

4
𝑤2 + 𝑙2 =

𝑚

12
𝑤2 + 𝑙2

𝐶𝐼𝑥𝑦 =
𝐴𝐼𝑥𝑦 +𝑚𝑥𝑐𝑦𝑐 = −

𝑚𝑤𝑙

4
+ 𝑚

1

2
𝑤
1

2
𝑙 = 0

𝐶𝐼 =
𝑚

12

ℎ2 + 𝑙2 0 0
0 𝑤2 + ℎ2 0
0 0 𝑙2 + 𝑤2



Tensor of Inertia – Operations 

Rotation of the Inertia Tensor

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA



Rotation of the  Inertia Tensor

• Given: 

– The inertia tensor of the a body expressed in frame A

– Frame B is rotated with respect to frame A

– Note: Both frames are stationary in space

• Calculate

– The inertia tensor of the body expressed in frame B 

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA



Rotation of the  Inertia Tensor

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA

𝐴𝐻 = 𝐴𝐼𝐴𝜔
𝐵𝐻 = 𝐵𝐼𝐵𝜔

𝐴𝜔 = 𝐵
𝐴𝑅𝐵𝜔

∗ 𝐴𝜔, 𝐴𝐻 - angular velocity and momentum expressed in frame A

∗ 𝐵𝜔, 𝐵𝐻 - angular velocity and momentum expressed in frame B

𝐴𝐻 = 𝐵
𝐴𝑅𝐵𝐻

𝐴𝐻 = 𝐵
𝐴𝑅𝐵𝐼𝐵𝜔

𝐴𝐻 = 𝐵
𝐴𝑅𝐵𝐼(𝐵

𝐴𝑅−1𝐵
𝐴𝑅)𝐵𝜔

𝐴𝐻 = 𝐵
𝐴𝑅𝐵𝐼𝐵

𝐴𝑅−1𝐴𝜔

𝐼𝐴 = 𝐵
𝐴𝑅𝐵𝐼𝐵

𝐴𝑅−1 = 𝐵
𝐴𝑅𝐵𝐼𝐵

𝐴𝑅𝑇



Inertia Tensor 2/

• The elements for relatively simple shapes can be solved from the equations describing the shape of the links 

and their density.  However, most robot arms are far from simple shapes and as a result, these terms are 

simply measured in practice.

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA



Inertia Tensor 2/

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA



Inertia Tensor 2/

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA



Instructor: Jacob Rosen 

Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA

Inertia Tensor – Robotic Links



Inertia Tensor – Robotic Links

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA

𝐶𝑀𝐼 =
𝑚

12

ℎ2 + 𝑙2 0 0
0 𝑤2 + ℎ2 0
0 0 𝑙2 + ℎ2

𝐶𝑀𝐼 =

1

12
𝑚 3𝑟2 + ℎ2 0 0

0
1

12
𝑚 3𝑟2 + ℎ2 0

0 0
𝑚𝑟2

2



Inertia Tensor – Robotic Links

• Body A

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA

𝐼𝑏𝑜𝑥 =
𝑚

12

ℎ2 + 𝑙2 0 0
0 𝑤2 + ℎ2 0
0 0 𝑙2 + ℎ2

𝐼𝑐𝑦𝑙 =

1

12
𝑚 3𝑟2 + ℎ2 0 0

0
1

12
𝑚 3𝑟2 + ℎ2 0

0 0
𝑚𝑟2

2



Inertia Tensor – Robotic Links

• Body A

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA

𝐶𝑀,𝑙𝑖𝑛𝑘𝐼 = 𝐶𝑀,𝐴𝐼 + 𝑚[𝑃𝑐
𝑇𝑃𝑐𝐼3 − 𝑃⊗ 𝑃]

= 𝐶𝑀,𝐴𝐼 + 𝑚 −𝑑 0 0
−𝑑
0
0

𝐼3 −
𝑑2 0 0
0 0 0
0 0 0

STEP 2 – Translate from frame A 

to the frame at the CoM of the link



Inertia Tensor – Robotic Links

• Body B

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA

𝐵𝐼 =

𝑚𝑟2

2
0 0

0
1

12
𝑚 3𝑟2 + ℎ2 0

0 0
1

12
𝑚 3𝑟2 + ℎ2

The frame of body B is aligned with the frame 

of the CM of the entire body



Inertia Tensor – Robotic Links

• Body C

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA

𝐶𝐼 = 𝐼𝑏𝑜𝑥 − 𝐼𝑐𝑦𝑙

STEP 1

See body A



Inertia Tensor – Robotic Links

• Body C

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA

STEP 2 – Rotate about 𝑥𝑐 by −𝛼

𝐶𝑀𝐶
𝐶𝑀,𝑙𝑖𝑛𝑘𝑅 = 𝑅𝑜𝑡 ො𝑥𝑐 , −𝛼

𝐶𝑀,𝑙𝑖𝑛𝑘𝐼 = 𝐶𝑀𝐶
𝐶𝑀,𝑙𝑖𝑛𝑘𝑅𝐶𝑀𝐶𝐼 𝐶𝑀𝐶

𝐶𝑀,𝑙𝑖𝑛𝑘𝑅𝑇



Inertia Tensor – Robotic Links

• Body C

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA

STEP 3 – translate to the CM of the link

𝑃𝑐 =
𝑑
0
0

See body A



Summary 

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA



Inertia Tensor – WRT a Coordinate Frame at the CM

• The angular momentum with respect to the center of mass G can 

be expressed in a matrix form as

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA

𝐼𝑥𝑥 = න
𝑚

𝑦′2 + 𝑧′2 𝑑𝑚 =ම

𝑉

(𝑦′2 + 𝑧′2) 𝜌𝑑𝑣

𝐼𝑦𝑦 = න
𝑚

𝑥′2 + 𝑧′2 𝑑𝑚 =ම

𝑉

(𝑥2 + 𝑧′2) 𝜌𝑑

𝐼𝑧𝑧 = න
𝑚

𝑥′2 + 𝑦′2 𝑑𝑚 =ම

𝑉

(𝑥′2 + 𝑦′2) 𝜌𝑑

𝐼𝑥𝑦 = 𝐼𝑦𝑥 = න
𝑚

𝑥′𝑦′ 𝑑𝑚 =ම

𝑉

𝑥′𝑦′ 𝜌𝑑

𝐼𝑥𝑧 = 𝐼𝑧𝑥 = න
𝑚

𝑥′𝑧′ 𝑑𝑚 = ම

𝑉

𝑥′𝑧′ 𝜌𝑑

𝐼𝑦𝑧 = 𝐼𝑧𝑦 = න
𝑚

𝑦′𝑧′ 𝑑𝑚 =ම

𝑉

𝑦′𝑧′ 𝜌𝑑



Inertia Tensor

• The elements for relatively simple shapes can be solved from the equations describing the shape of the links 

and their density.  However, most robot arms are far from simple shapes and as a result, these terms are 

simply measured in practice.

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA



Parallel Axis Theorem – 3D 

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA

𝐴𝐼𝑧𝑧 =
𝐶𝐼𝑧𝑧 +𝑚 𝑥𝑐

2 + 𝑦𝑐
2

𝐴𝐼𝑥𝑥 =
𝐶𝐼𝑥𝑥 +𝑚 𝑧𝑐

2 + 𝑦𝑐
2

𝐴𝐼𝑦𝑦 =
𝐶𝐼𝑦𝑦 +𝑚 𝑥𝑐

2 + 𝑧𝑐
2

𝐴𝐼𝑥𝑦 =
𝐶𝐼𝑥𝑦 −𝑚𝑥𝑐𝑦𝑐

𝐴𝐼𝑥𝑧 =
𝐶𝐼𝑥𝑧 −𝑚𝑥𝑐𝑧𝑐

𝐴𝐼𝑦𝑧 =
𝐶𝐼𝑦𝑧 −𝑚𝑦𝑐𝑧𝑐

𝑃𝑐 =

𝑥𝑐
𝑦𝑐
𝑧𝑐

- Location of the CM (origin of C) relative to frame [A]



Rotation of the  Inertia Tensor

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA

𝐼𝐴 = 𝐵
𝐴𝑅𝐵𝐼𝐵

𝐴𝑅𝑇


