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Jacobian – Mapping Operator

Joint & Cartesian/Task Spaces
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Kinematics Relations - Joint & Cartesian/Task Spaces 

• A robot is often used to manipulate object attached 

to its tip (end effector). 

• The location of the robot tip may be specified using 

one of the following descriptions: 

• Joint Space

• Task Space (Cartesian Space)

{N}

𝜃 =

𝜃1
𝜃2
⋮
𝑑𝑖
⋮
𝜃𝑁

𝑋 =
0𝑃𝑁
0𝐾𝑁

Equivalent Axis 

𝑁
0𝑇 = 𝑁

0𝑅 0𝑃𝑁
0 1
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Kinematics Relations - Forward & Inverse 

• The robot kinematic equations relate the two description of the robot tip location

Tip Location in 

Joint Space
Tip Location in 

Task/Cartesian/EE Space 

𝑋 = 𝐹𝐾(𝜃)

𝜃 = 𝐼𝐾(𝑋)
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𝜃 =

𝜃1
𝜃2
⋮
𝑑𝑖
⋮
𝜃𝑁

𝑋 =
0𝑃𝑁
0𝐾𝑁



Kinematics Relations - Forward & Inverse 

ሶ𝜃 =
𝑑

𝑑𝑡
[𝜃] =

ሶ𝜃1
ሶ𝜃2
⋮
ሶ𝑑𝑖
⋮
ሶ𝜃𝑁

ሶ𝑋 =
𝑑

𝑑𝑡
[𝑋] =

𝑣𝑁
𝜔𝑁

=

𝑣𝑥
𝑣𝑦
𝑣𝑧
𝜔𝑥

𝜔𝑦

𝜔𝑧

Tip Velocity in 

Joint Space
Tip velocity in 

Task/Cartesian/EE  Space
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ሶ𝑥 = 𝐽 𝜃 ሶ𝜃

ሶ𝜃 = 𝐽−1 𝜃 ሶ𝑥



Jacobian – Derivation from First Principals

Velocity Maping  
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Jacobian Matrix - Introduction

• The Jacobian is a multi dimensional form of the derivative.

• Suppose that for example we have 6 functions, each of which is a function of 6 independent variables

• We may also use a vector notation to write these equations as    

𝑦1 = 𝑓1(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6)
𝑦2 = 𝑓2(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6)
⋮
𝑦6 = 𝑓6(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6)

𝑌 = 𝐹(𝑋)
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Jacobian Matrix - Introduction

• If we wish to calculate the differential of   𝑦𝑖 as a function of the differential 𝑥𝑖 we use the chain rule to get

• Which again might be written more simply using a vector notation as  

𝛿𝑦1 =
𝜕𝑓1
𝜕𝑥1

𝛿𝑥1 +
𝜕𝑓1
𝜕𝑥2

𝛿𝑥2 +⋯+
𝜕𝑓1
𝜕𝑥6

𝛿𝑥6

𝛿𝑦2 =
𝜕𝑓2
𝜕𝑥1

𝛿𝑥1 +
𝜕𝑓2
𝜕𝑥2

𝛿𝑥2 +⋯+
𝜕𝑓2
𝜕𝑥6

𝛿𝑥6

⋮

𝛿𝑦6 =
𝜕𝑓6
𝜕𝑥1

𝛿𝑥1 +
𝜕𝑓6
𝜕𝑥2

𝛿𝑥2 +⋯+
𝜕𝑓6
𝜕𝑥6

𝛿𝑥6

𝛿𝑌 =
𝜕𝐹

𝜕𝑋
𝛿𝑋
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Jacobian Matrix - Introduction

• The 6x6 matrix of partial derivative is defined as the Jacobian matrix

• By dividing both sides by the differential time element, we can think of the Jacobian as mapping velocities in 

X to those in Y

• Note that the Jacobian is time varying linear transformation   

𝛿𝑌 =
𝜕𝐹

𝜕𝑋
𝛿𝑋 = 𝐽(𝑋)𝛿𝑋

ሶ𝑌 = 𝐽(𝑋) ሶ𝑋
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Jacobian Matrix - Introduction

• In the field of robotics the Jacobian matrix describe 

the  relationship between the joint angle rates ( ሶ𝜃𝑁)        

and the translation and rotation velocities of the 

end effector ( ሶ𝑥).  This relationship is given by:

ሶ𝑥 = 𝐽 𝜃 ሶ𝜃

ሶ𝜃 = 𝐽 𝜃
−1

ሶ𝑥
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ሶ𝜃 =

ሶ𝜃1
ሶ𝜃2
ሶ𝑑3
ሶ𝜃4
ሶ𝜃5
ሶ𝜃6

ሶ𝑋 =
𝑑

𝑑𝑡
[𝑋] =

𝑣𝑁
𝜔𝑁

=

𝑣𝑥
𝑣𝑦
𝑣𝑧
𝜔𝑥

𝜔𝑦

𝜔𝑧



Jacobian Matrix - Introduction

• In the field of robotics the Jacobian matrix describe 

the  relationship between the joint angle rates ( ሶ𝜃𝑁)        

and the translation and rotation velocities of the 

end effector ( ሶ𝑥).  This relationship is given by:

• Note: The Jacobian is a function of joint angle 𝜃
meaning that the Jacobian varies as the 

configuration of the arm changes   

ሶ𝑥 = 𝐽 𝜃 ሶ𝜃

ሶ𝜃 = 𝐽 𝜃
−1

ሶ𝑥
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ሶ𝑥
ሶ𝑦
ሶ𝑧

𝜔𝑥

𝜔𝑦

𝜔𝑧

=
𝐽 𝜃

ሶ𝜃1
ሶ𝜃2

⋯

ሶ𝜃𝑁



Jacobian Matrix - Introduction

• This expression can be expanded to:

• Where:

– is a 6x1 vector of the end effector linear and angular velocities

– is a 6xN Jacobian matrix 

– is a Nx1 vector of the manipulator joint velocities

– is the number of joints 

ሶ𝑥
ሶ𝑦
ሶ𝑧

𝜔𝑥

𝜔𝑦

𝜔𝑧

=

𝐽𝜐 𝜃

𝐽𝜔 𝜃

ሶ𝜃1
ሶ𝜃2

⋯

ሶ𝜃𝑁

ሶ𝜃𝑁

ሶ𝑥

𝐽 𝜃

𝑁

6x1 6xN Nx1
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Jacobian Matrix - Introduction

• The meaning of each line (e.g. the first line) of the 

Jacobian matrix:

• The first line maps the contribution of the angular 

velocity of each joint to the linear velocity of the end 

effector along the x-axis 

ሶ𝑥
ሶ𝑦
ሶ𝑧

𝜔𝑥

𝜔𝑦

𝜔𝑧

=

𝐽11 𝐽12 𝐽13 𝐽14 𝐽15 𝐽16
𝐽𝜐 𝜃

𝐽𝜔 𝜃

ሶ𝜃1
ሶ𝜃2

⋯

ሶ𝜃𝑁
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Jacobian Matrix - Introduction

• The meaning of each column (e.g. the first 

column) of the Jacobian matrix:

• The first column maps the contribution of the 

angular velocity of the first joint to the linear and 

angular velocities of the end effector along all the 

axis (x,y,z) 

ሶ𝑥
ሶ𝑦
ሶ𝑧

𝜔𝑥

𝜔𝑦

𝜔𝑧

=

𝐽11
𝐽21 𝐽𝜐 𝜃

𝐽31
𝐽41
𝐽51 𝐽𝜔 𝜃

𝐽61

ሶ𝜃1
ሶ𝜃2

⋯

ሶ𝜃𝑁

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA



Jacobian – Derivation from First Principles (Virtual Work) 

Forces & Torque

Instructor: Jacob Rosen 
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Jacobian Matrix – Derivation Using Virtual Work Principles 

– The work applied on a mass moving in a linear 

fashion is the dot product of the force applied 

and its incremental displacement  

𝑊 = 𝐹 ∙ Δ𝑥 = 𝐹𝑐𝑜𝑠𝜃𝑥

– In a similar fashion the work applied on a 

revolving mass is the do product of the torque 

and the incremental angular displacement 

𝑊 = 𝜏 ∙ Δ𝜃



Jacobian Matrix – Derivation Using Virtual Work Principles 

– Extending the two previous pervious principles 

to a multi joint multi link mechanism resulted in 

an equation which describes from one end the 

virtual work applied by the joint torque on the 

manipulator which should be equal to the work 

applied on its end effector by all the external 

loads   

𝐹 ∙ 𝛿𝑥 = 𝜏 ∙ 𝛿𝜃

– Rewriting this compact equation explicitly 

resulted in multiple equations defined as 

follows 

𝐹𝑥𝑥 = 𝜏1𝜃1
…

𝑀𝑥𝜃𝑥 = 𝜏4𝜃4



Jacobian Matrix – Derivation Using Virtual Work Principles 

– Transposing the following compact equation 

𝐹 ∙ 𝛿𝑥 = 𝜏 ∙ 𝛿𝜃
𝐹 ∙ 𝛿𝑥 = 𝜏 ∙ 𝛿𝜃 𝑇

– Resulted in  

𝐹𝑇𝛿𝑥 = 𝜏𝑇𝛿𝜃

– Utilizing the relationship between task space displacement and joint space displacement 

𝛿𝑥 = 𝐽𝛿𝜃

– And plugging it into the transpose equation, resulted in

𝐹𝑇𝐽𝛿𝜃 = 𝜏𝑇𝛿𝜃



Jacobian Matrix – Derivation Using Virtual Work Principles 

– Canceling delta theta 𝛿𝜃 and transposing the following compact equation 

𝐹𝑇𝐽𝛿𝜃 = 𝜏𝑇𝛿𝜃

𝜏𝑇 = 𝐹𝑇𝐽 𝑇

– Base on the notation where 

𝐴𝐵 𝑇 = 𝐵𝑇𝐴𝑇

𝐹𝑇𝐽 𝑇 = 𝐽𝑇𝐹

– Resulting in the equation defining the mapping between external loads and the joint torque  

𝜏 = 𝐽𝑇𝐹



Jacobian Matrix - Introduction

• Deriving the Jacobian matrix using virtual work principle  

𝑊 = 𝐹 ∙ Δ𝑥

= 𝐹𝑐𝑜𝑠𝜃𝑥

𝑊 = 𝜏 ∙ Δ𝜃

𝐹 ∙ 𝛿𝑥 = 𝜏 ∙ 𝛿𝜃 𝑇

𝐹𝑥𝑥 = 𝜏1𝜃1

𝑀𝑥𝜃𝑥 = 𝜏4𝜃4

𝐹𝑇𝛿𝑥 = 𝜏𝑇𝛿𝜃

𝛿𝑥 = 𝐽𝛿𝜃

𝐹𝑇𝐽𝛿𝜃 = 𝜏𝑇𝛿𝜃



Jacobian Matrix - Introduction

• In addition to the velocity relationship, we are also 

interested in developing a relationship between the 

robot joint torques (𝜏 ) and the forces and moments 

(𝐹) at the robot end effector (Static Conditions).  

This relationship is given by:

𝜏 = 𝐽 𝜃
𝑇
𝐹

𝐹
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Jacobian Matrix - Introduction

• This expression can be expanded to:

• Where:

– is a 6x1 vector of the robot joint torques 

– is a 6xN Transposed Jacobian matrix 

– is a Nx1 vector of the forces and moments at the robot end effector

– is the number of joints

𝜏1
𝜏2

⋯

𝜏𝑁

=
𝐽𝑓 𝜃 𝐽𝜏 𝜃

𝑇 𝐹𝑥
𝐹𝑦
𝐹𝑧
𝑀𝑥

𝑀𝑦

𝑀𝑧

𝜏

𝐹

𝐽 𝜃
𝑇

𝑁

6x16xNNx1
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• The meaning of each line (e.g. the first line) of the 

Jacobian matrix:

• Action: The first line represent how the torque 

applied at the first joint contributes to the forces and 

torques applied by the end effector 

• Reaction: The first line maps the contribution of the 

partial external loads applied on the end effector to 

the join torque that needs to be applied to maintain 

static equilibriums

•

𝜏1
𝜏2

⋯

𝜏𝑁

=

𝐽11 𝐽21 𝐽31 𝐽41 𝐽51 𝐽61

𝐽𝑓 𝜃 𝐽𝜏 𝜃

𝑇 𝐹𝑥
𝐹𝑦
𝐹𝑧
𝑀𝑥

𝑀𝑦

𝑀𝑧

Jacobian Matrix - Introduction

6x16xNNx1
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𝜏1
𝜏2

⋯

𝜏𝑁

=

𝐽11
𝐽12
𝐽13 𝐽𝑓 𝜃 𝐽𝜏 𝜃

𝐽14
𝐽15
𝐽16

𝑇 𝐹𝑥
𝐹𝑦
𝐹𝑧
𝑀𝑥

𝑀𝑦

𝑀𝑧

Jacobian Matrix - Introduction

• The meaning of each column (e.g. the first column) 

of the Jacobian matrix:

• Action: The first column represent what partial torque 

applied by each joint is required to create an 

equilibrium of the force alon the X- Axis 

• Reaction: The first column maps the contribution of 

the partial external loads of the force along the X-axis 

applied on the end effector to the join torques that are 

needed to be applied to maintain static equilibriums

6x16xNNx1
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Jacobian Matrix - Derivation Methods

Jacobian Matrix

Instructor: Jacob Rosen 
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Explicit Method

Differentiation the 

Forward Kinematics Eqs. 

(Method 1)

Iterative Methods 

Recursive Equations

Velocity

Propagation –

Base to EE 

(Method 2)

Force/Torque

Propagation –

EE to Base

(Method 3)  

𝐹



Jacobian – R Robot (1 DOF) - Example
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Jacobian Matrix by Differentiation - 1R - 1/4

• Consider a simple planar 1R robot

• The end effector position is given by 

𝑥

𝑦

𝜃, ሶ𝜃

𝑉𝑒𝑒

𝑃𝑥

𝑃𝑦

0𝑃𝑥 = 𝑥 = 𝑟 cos 𝜃
0𝑃𝑦 = 𝑦 = 𝑟 sin 𝜃

𝑟
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Jacobian Matrix by Differentiation - 1R - 2/4

• The velocity of the end effector is defined by

• Expressed in matrix form we have

0𝑉𝑥 = ሶ0𝑃𝑥 = ሶ𝑥 = − ሶ𝜃𝑟 sin 𝜃 = −𝜔𝑟 sin 𝜃 ሶ𝜃
0𝑉𝑦 = ሶ0𝑃𝑦 = ሶ𝑦 = ሶ𝜃𝑟 cos 𝜃 = 𝜔𝑟 cos 𝜃 ሶ𝜃

ሶ𝑥
ሶ𝑦
=

−𝑟 sin 𝜃
𝑟 cos 𝜃

ሶ𝜃

ሶ𝑥 = 𝐽 𝜃 ሶ𝜃

2x1 2x1 1x1
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Jacobian Matrix by Differentiation - 1R - 3/4

• The moment about the joint generated by the force acting on the end effector is given by

𝑥

𝑦

𝜃, ሶ𝜃

𝐹𝑒𝑒

𝑃𝑥

𝑃𝑦

𝑟

𝜏 = −𝑟𝐹𝑥 sin 𝜃 + 𝑟𝐹𝑦 cos 𝜃

𝐹𝑦

𝐹𝑥

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA

𝜏



Jacobian Matrix by Differentiation - 1R - 4/4

• Expressed in matrix form we have

𝜏 = −𝑟 sin 𝜃 𝑟 cos 𝜃
𝐹𝑥
𝐹𝑦

𝜏 = 𝐽 𝜃
𝑇
𝐹

ሶ𝑥
ሶ𝑦
=

−𝑟 sin 𝜃
𝑟 cos 𝜃

ሶ𝜃

ሶ𝑥 = 𝐽 𝜃 ሶ𝜃

1x1 1x2 2x1
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Jacobian – 2R Robot (2 DOF) - Example

Jacobian – Manipulability Ellipsoid 

Instructor: Jacob Rosen 
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• Given: Consider the following 2 DOF Planar 

manipulator

• Problem: Compute the Jacobian matrix that 

describes the relationship

• Solution: Differentiating the forward kinematics 

equations   

• Result: The end effector position and orientation is 

defined in the base frame by 

Instructor: Jacob Rosen 
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ሶ𝑥 = 𝐽 𝜃 ሶ𝜃 𝜏 = 𝐽 𝜃
𝑇
𝐹

𝑥 =
𝑥
𝑦

Jacobian Matrix by Differentiation - 2R
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𝑥𝑡𝑖𝑝 = 𝐿1𝑐1 + 𝐿2𝑐12

𝑦𝑡𝑖𝑝 = 𝐿1𝑠1 + 𝐿2𝑠12

𝑣𝑥𝑡𝑖𝑝 =
𝑑𝑥𝑡𝑖𝑝

𝑑𝑡
= −𝐿1 ሶ𝜃1𝑠1 − 𝐿2 ሶ𝜃1 + ሶ𝜃2 𝑠12

𝑣𝑦𝑡𝑖𝑝 =
𝑑𝑦𝑡𝑖𝑝

𝑑𝑡
= 𝐿1 ሶ𝜃1𝑐1 + 𝐿2 ሶ𝜃1 + ሶ𝜃2 𝑐12

Jacobian Matrix by Differentiation - 2R

𝑣𝑥
𝑣𝑦

=
−𝐿1𝑠1 − 𝐿2𝑠12 −𝐿2𝑠12
𝐿1𝑐1 + 𝐿2𝑐12 𝐿2𝑐12

ሶ𝜃1
ሶ𝜃2
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• Column 1 of 𝐽 𝜃 → 𝐽1 𝜃 when ሶ𝜃1 = 1, ሶ𝜃2 = 0

• Column 2 of 𝐽 𝜃 → 𝐽2 𝜃 when ሶ𝜃1 = 0, ሶ𝜃2 = 1

• As long as 𝐽1 𝜃 and 𝐽2 𝜃 are not collinear 

(parallel), it is possible to generate an end effector 

velocity 𝑣𝑡𝑖𝑝 in any arbitrary direction in the 𝑥0, 𝑦0
plane by choosing appropriate joint velocities ሶ𝜃1
and ሶ𝜃2.

• Since  𝐽1 𝜃 and 𝐽2 𝜃 depend on the joint values 𝜃1
and 𝜃2, there are some configurations where 

𝐽1 𝜃 , 𝐽2 𝜃 become collinear (parallel) (e.g. when 

𝜃2 = 0 or 𝜃2 = 180)

𝑣𝑥
𝑣𝑦

=
𝐽11 𝐽21
𝐽12 𝐽22

ሶ𝜃1
ሶ𝜃2

Jacobian Matrix by Differentiation - 2R
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• If                        
𝜃2 = 0

𝜃2 = 180

regardless of the value of 𝜃1, 𝐽1 𝜃 and 𝐽2 𝜃 will 

be collinear and the Jacobian 𝐽(𝜃) become a 

singular matrix

• Such configurations are called singularities, and 

they are characterized by a situation where the 

robot’s end effector is unable to generate velocities 

in certain directions

Jacobian Matrix by Differentiation - 2R
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For any 𝜃1
𝜃2 = 0

𝜃2 = 180
𝐽1 ∥ 𝐽2
𝐽1 ∥ 𝐽2

→ 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑖𝑒𝑠

Jacobian Matrix by Differentiation - 2R



• Substitute 𝐿1 = 1;   𝐿2 = 1

• Consider the robot at two different non-singular postures

• The Jacobian can be used to map bounds on rotational speed of the joints ሶ𝜃 to bounds on the end 

effector velocity 𝑣𝑡𝑖𝑝
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𝜃 =
0
𝜋/4

𝐽
0
𝜋/4

=
−0.71 −0.71
1.71 0.71

Jacobian Matrix by Differentiation - 2R

ሶ𝜃 =
ሶ𝜃1
ሶ𝜃2

ሶ𝑋 =
𝑣𝑥
𝑣𝑦

Tip Velocity in 

Joint Space

Tip velocity in 

Task Space

ሶ𝑋 = 𝐽 𝜃 ሶ𝜃

𝑣𝑥
𝑣𝑦

=
−0.71 −0.71
1.71 0.71

ሶ𝜃1
ሶ𝜃2
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ሶ𝜃 =
ሶ𝜃1
ሶ𝜃2

ሶ𝑋 =
𝑣𝑥
𝑣𝑦

Tip Velocity in 

Joint Space

Tip velocity in 

Task Space

ሶ𝑋 = 𝐽 𝜃 ሶ𝜃

𝑣𝑥
𝑣𝑦

=
−0.71 −0.71
1.71 0.71

ሶ𝜃1
ሶ𝜃2

Jacobian Matrix by Differentiation - 2R

𝑣𝑡𝑖𝑝 =
−0.71 −0.71
1.71 0.71

1
1

=
−1.42
2.42

𝑣𝑡𝑖𝑝 =
−0.71 −0.71
1.71 0.71

−1
1

=
0
−1

𝑣𝑡𝑖𝑝 =
−0.71 −0.71
1.71 0.71

1
−1

=
0
1

𝑣𝑡𝑖𝑝 =
−0.71 −0.71
1.71 0.71

−1
−1

=
1.42
−2.42

A

B

C

D
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• Rather than mapping a polygon of joint velocities through the Jacobian, we could instead map a unit circle of 

joint velocities into the end effector velocities in the 𝑥0, 𝑦0 plane

• The circle represents an iso-effort contour in the joint velocity space, where total actuator effort is considered 

to be the sum of squares of the joint velocities

Jacobian Matrix by Differentiation - 2R

1 = ሶ𝜃1
2 + ሶ𝜃2

2

Tip Velocity in 

Joint Space

Tip velocity in 

Task Space



Properties of the Jacobian -

Velocity Mapping and Singularities

• Note: See Mathematica Simulations 

– Two Link: https://demonstrations.wolfram.com/ForwardAndInverseKinematicsForTwoLinkArm/ 

– Three links : https://demonstrations.wolfram.com/ManipulabilityEllipsoidOfARobotArm/ 

Instructor: Jacob Rosen 
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https://demonstrations.wolfram.com/ForwardAndInverseKinematicsForTwoLinkArm/
https://demonstrations.wolfram.com/ManipulabilityEllipsoidOfARobotArm/
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ሶ𝑥 = 𝐽 𝜃 ሶ𝑞

Manipulability Ellipsoid – Definition  

Tip Velocity in 

Joint Space

Tip velocity in 

Task Space
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Manipulability Ellipsoid & Manipulability Measures  – Design  

• Robotic Arm Design – Mechanism Size 

• Robotic Arm - Base Position – Position of the mechanism with respect to the workspace to maximize the 

manipulability 



Jacobian – RR Robot (3 DOF) - Example

Instructor: Jacob Rosen 
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Jacobian Matrix by Differanciation - 3R - 1/4

• Given: Consider the following 3 DOF Planar 

manipulator

• Problem: Compute the Jacobian matrix that 

describes the relationship

• Solution: Differentiating the forward kinematics 

equations   

• Result: The end effector position and orientation is 

defined in the base frame by 

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA

𝑥0

𝑦0
𝛼

𝑥1

𝑦1

𝑥2

𝑦2

𝑥3

𝑦3

𝑥

𝑦ሶ𝑥 = 𝐽 𝜃 ሶ𝜃 𝜏 = 𝐽 𝜃
𝑇
𝐹

𝑥 =
𝑥
𝑦
𝛼



Jacobian Matrix by Differanciation - 3R - 2/4

• Problem: Compute the Jacobian matrix that describes the relationship

• Solution: The end effector position and orientation is defined in the base frame by 

ሶ𝑥 = 𝐽 𝜃 ሶ𝜃 𝜏 = 𝐽 𝜃
𝑇
𝐹

𝑥 =
𝑥
𝑦
𝛼
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Jacobian Matrix by Differanciation - 3R - 3/4

• The forward kinematics gives us relationship of the end effector to the joint angles:

• Differentiating the three expressions gives

0𝑃3 𝑜𝑟𝑔, 𝑥 = 𝑥 = 𝐿1𝑐1 + 𝐿2𝑐12 + 𝐿3𝑐123

0𝑃3 𝑜𝑟𝑔, 𝑦 = 𝑦 = 𝐿1𝑠1 + 𝐿2𝑠12 + 𝐿3𝑠123

0𝑃3 𝑜𝑟𝑔, 𝛼 = 𝛼 = 𝜃1 + 𝜃2 + 𝜃3

ሶ𝑥 = −𝐿1𝑠1 ሶ𝜃1 − 𝐿2𝑠12 ሶ𝜃1 + ሶ𝜃2 − 𝐿3𝑠123 ሶ𝜃1 + ሶ𝜃2 + ሶ𝜃3
= − 𝐿1𝑠1 + 𝐿2𝑠12 + 𝐿3𝑠123 ሶ𝜃1 − 𝐿2𝑠12 + 𝐿3𝑠123 ሶ𝜃2 − 𝐿3𝑠123 ሶ𝜃3

ሶ𝛼 = ሶ𝜃1 + ሶ𝜃2 + ሶ𝜃3

ሶ𝑦 = 𝐿1𝑐1 ሶ𝜃1 + 𝐿2𝑐12 ሶ𝜃1 + ሶ𝜃2 + 𝐿3𝑐123 ሶ𝜃1 + ሶ𝜃2 + ሶ𝜃3
= 𝐿1𝑐1 + 𝐿2𝑐12 + 𝐿3𝑐123 ሶ𝜃1 + 𝐿2𝑐12 + 𝐿3𝑐123 ሶ𝜃2 + 𝐿3𝑐123 ሶ𝜃3
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𝑥0

𝑦0
𝛼

𝑥1

𝑦1

𝑥2

𝑦2

𝑥3

𝑦3

𝑥

𝑦



Jacobian Matrix by Differanciation - 3R - 4/4

• Using a matrix form we get

• The Jacobian provides a linear transformation, giving a velocity map and a force map for a robot manipulator.  

For the simple example above, the equations are trivial, but can easily become more complicated with robots 

that have additional degrees a freedom.  Before tackling these problems, consider this brief review of linear 

algebra. 

ሶ𝑥 = 0𝐽 𝜃 ሶ𝜃

ሶ𝑥
ሶ𝑦
ሶ𝛼
=

−𝐿1𝑠1 − 𝐿2𝑠12 − 𝐿3𝑠123 −𝐿2𝑠12 − 𝐿3𝑠123 −𝐿3𝑠123
𝐿1𝑐1 + 𝐿2𝑐12 + 𝐿3𝑐123 𝐿2𝑐12 + 𝐿3𝑐123 𝐿3𝑐123

1 1 1

ሶ𝜃1
ሶ𝜃2
ሶ𝜃3
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