c

MAEZ263B: Dynamics of Robotic Systems
Discussion Section — Week5
. Jacobian (SCARA)

Seungmin Jung
02.07.2020.

‘ Contents

J Jacobian with SCARA example
* Velocity propagation
* Direct differentiation

d Frame of Representation

Kinematics Relations - Joint & Cartesian Spaces

« Avrobot is often used to manipulate object attached to its tip (end effector).

« The location of the robot tip may be specified using one of the following
descriptions:

« Joint Space 01

« Cartesian Space / Operational Space

0 K
o _| R R x=[PN v
NT_ [OFN]
0 1 Euler Angles

UCLA

A minimal representation of orientation - Euler angles

» As an example, consider a trar}sformation that uses
ZYZ Euler angles ¢_ = [¢, 9, 9]

Siciliano, et al. Robotics: Modelling, Planning, and Control. Sec. 3.6. London: Springer-Verlag, 2009.

s A minimal representation of orientation - Euler angles

Relationship between w, and ¢ (EXAMPLE]

A
g, = |
K4
W, :T(qbf’)qbe
Yy
>
[() —8y, S9 |
% T'=10 ¢, SS9
// 1 0 Cy9
}' x - -

Analytical Jacobian

 In order to design controllers in operational space,
we must use the analytical Jacobian J4(q), a
transformed version of the geometric Jacobian J(q).

— The analytical Jacobian is used in both Jacobian
transpose control and Jacobian inverse control.

Tala) = 252 or T =TI

where T'A(¢p.) = [(I) T((Q?be)}

Siciliano, et al. Robotics: Modelling, Planning, and Control. Ch. 8. London: Springer-Verlag, 2009.

Comments on w, and ¢_

 The meaning of W, is more intuitive than that of ée.

— W, represents components of angular velocity with
respect to a fixed base frame.

- Qe represents non-orthogonal components of angular
velocity with respect to a frame that varies as the end-
effector orientation varies.

« The integral of ¢_over time yields ¢_, but the
integral of W, does NOT have a clear physical
interpretation.

 In general, w. # QE (and J(q) # Ja(q)) unless you are
considering a special case in which all DOFs cause

rotations about the same fixed axis in space (e.g. z-axis
for planar arm)

Siciliano, et al. Robotics: Modelling, Planning, and Control. Sec. 3.6. London: Springer-Verlag, 2009.

Kinematics Relations - Forward & Inverse

« The robot kinematic equations relate the two description of the robot tip location

L X =FK(&
7 (0)
0 = ‘9,2 I
6] < —
0 = IK(X)
Tip Location in Tip Location in
Joint Space Cartesian Space

UCLA

Velocity relationship
. Jacobian Matrix — Joint velocity / End-effector velocity

X =J9

91

. d 6
O=—101=| 2
dt[] :

éN

Tip Velocity in ,Q = 3")'(Tip velocity in
Joint Space Cartesian Space

UCLA

Jacobian Matrix - Introduction

« The velocity relationship
: The relationship between
the joint angle rates (g,)
and the translation and rotation velocities of the end
effector (X).

« The relationship between
the robot joint torques (Z)
and the forces and moments (F)
at the robot end effector (Static Conditions).

UCLA

Jacobian Matrix - Calculation Methods

s

Iterative Propagation

(Velocities or Forces / Torques)

Jacobian Matrix

UCLA

‘ Jacobian Matrix - Introduction

« In the field of robotics the Jacobian
matrix describe the relationship
between the joint angle rates (QN)
and the translation and rotation
velocities of the end effector (X).
This relationship is given by:

v,| [*)
W {7 5\x:a(e)e/
v, Z
we| |95 6=3(0)"x
Wy q
Wi J)
B

UCLA

Jacobian Matrix - Introduction

* This expression can be expanded to: N

X
Cartesian Space / Operational Space 7/\

y
0 0 [‘Jﬂ'-
07 {\' R R\') 7
N =
X

N%) I—‘%

X =

1(9) N p.=JTp(@)g

N

:| Euler Angles

0 1 ["3‘]]] _/:
(@, we = Jo(9)d-

Cf)y
Q, n . _éN _

6x1 6XN Nx1
Where: P

S

— X is a6xl vector of the end effector linear and angular velocities

~ J(0) is a 6xN Jacobian matrix

— gN Is a Nx1 vector of the manipulator joint velocities

— N is the number of joints

UCLA

Position Propagation

The homogeneous transform matrix provides a complete description of the
linear and angular position relationship between adjacent links.

-~ [uR R
i—1T =" '

These descriptions may be combined together to describe the position of a link
relative to the robot base frame {0}.

T

Velocity Propagation

« Given: A manipulator - A chain of
rigid bodies each one capable of Y
moving relative to its neighbor

* Problem: Calculate the linear and
angular velocities of the link of a
robot

« Solution (Concept): Due to the robot
structure (serial mechanism) we can
compute the velocities of each link
in order starting from the base.

The velocity of link i+1
= The velocity of link i
+ whatever new velocity components were added by joint i+1

UCLA

Velocity Propagation — Intuitive Explanation

« Three Actions

— The origin of frame B moves as a function of time with respect to the origin
of frame A

— Point Q moves with respect to frame B
— Frame B rotates with respect to frame A along an axis defined by AQB

* Linear and Rotational Velocity

— Vector Form A0, °P,
{B} .
_A ApB A ApB
— Matrix Form APyore

Ao ="Vgone+oR%V,+ 2R, (2R®P,)

UCLA

Velocity Propagation — Intuitive Explanation

 Three Actions
— The origin of frame B moves with respect to the origin of frame A
— Point Q moves with respect to frame B
— Frame B rotates with respect to frame A about an axis defined by AQB

A
0
® {B} o

{A}

A
Pporc

UCLA

NV, ="VgorataR E‘VQ +4Q, ><E§\RBPQ

Ao ="VgonaHeRV+ 2R, (2REP,)

Linear Velocity - Rigid Body

« Given: Consider a frame {B} attached
to a rigid body whereas frame {A} is
fixed. The orientation of frame {A}
with respect to frame {B} is not
changing as a function of time BAR =0

* Problem: describe the motion of of
the vector BpQ relative to frame {A}

- Solution: Frame {B} is located
relative to frame {A} by a position
vector APBORGand the rotation matrix E’;R
(assume that the orientation is not
changing in time 2R = Q) expressing
both components of the velocity in
terms of frame {A} gives

{B} ®

{A} Bp

A
Pporc

AR=0

N

Q :AVBORG+A(BVQ):AVBORG+BAR BVQ

Instructor: Jacob Rosen

Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA

UCLA

Frame - Velocity

As with any vector, a velocity vector may be described in terms of any frame,
and this frame of reference is noted with a leading superscript.

A velocity vector computed in frame {B} and represented in frame {A} would be
written

{B1 tA}

Represented
(Reference Frame)

ArB AdB
(VQ):E R

Computed
(Measured)

UCLA

Ay =*Vpoms+ERV, 1A Qg xREP, Vo ="Vgors+oRVo+4Ro(5R°P)

Angular Velocity - Rigid Body

Given: Consider a frame {B} attached
to a rigid body whereas frame {A} is
fixed. The vector Bp_ is constant as
view from frame {B} BVQ -0

Problem: describe the velocity of the
vectorBP. representing the the point
Q relative to frame {A}

Solution: Even though the vector Bp
is constant as view from frame {B} it
Is clear that point Q will have a
velocity as seen from frame {A} due
to the rotational velocity Q.

UCLA

Ay =*Vyoms+ERV, 140 xAREP, Vo ="Vgors+oRVo+4Ro(5R°P)

Angular Velocity - Rigid Body - Intuitive Approach

S = arc length

The figure shows to instants of time
as the vector P rotates around AQ
This is what an observer in frame {A}
would observe.

The Magnitude of the differential
change is

‘APQ‘sin 0

S\
Al
A R,
Py (t+At)

A A A :
‘A PQ‘ = q QB‘AtN PQ‘sm 9)
Using a vector cross product we get

AP,
—2=N,="Q, x"R,
At

UCLA

Simultaneous Linear and Rotational Velocity

The final results for the derivative of a vector in a moving frame (linear and
rotation velocities) as seen from a stationary frame

Vector Form

”VQ ="V, oretaR BVQ +4Q, ><,§RBPQ

{A}

Matrix Form

N

5 =NVaora+iR®V, +4R, (2R®P,)

UCLA

Simultaneous Linear and Rotational Velocity

* Linear and Rotational Velocity AQ)
— Vector Form i

A ApB A ApB (4)
Vo ="VorstsR Vo + Qs xgR°F,

APporc

— Matrix Form

Ao ="Vgone+2R%V,+2R, (£R®P,)

Q

* Angular Velocity

— A A ApB
Vector Form Q.="Q,+.R°Q

— Matrix Form AF AR Ap B ApT
CRQ:BRQ+BRCRQBR

UCLA

s Velocity of Adjacent Links - Summary

* Angular Velocity
O - Prismatic Joint

i+1 _i+lpyi
;.= R, *f

- Linear Velocity 0 - Revolute Joint
ha

i+1Vi+1:i+i1R(ia)XiPi 1+iVi)4j

The velocity of link i+1
=1 = The velocity of link i
+ whatever new velocity components were added by joint i+1

>

Jacobian: Velocity propagation

« Therefore the recursive expressions for the adjacent joint linear and angular
velocities can be used to determine the Jacobian in the end effector frame

"X=NJ(0)p

« This equation can be expanded to:

T x " (61
y N 162
T _{NNVN}: 6)
QX N
Qy - -
| Q7 | O, |

UCLA

Velocity of Adjacent Links - Angular Velocity 5/5

« The resultis arecursive equation that shows the angular velocity of one link in
terms of the angular velocity of the previous link plus the relative motion of the
two links.

i+16()- 1:i+ilRiQ)i + O

1+

« Since the term i+1a)i+1 depends on all previous links through this recursion, the
angular velocity is said to propagate from the base to subsequent links.

UCLA

Velocity of Adjacent Links - Angular Velocity 1/5

From the relationship developed previously
Q. ="Q,+RPQ,

we can re-assign link names to calculate the velocity of any link i relative to the
base frame {0}

-

A—0
B—oi

N

\C—>i+1

OQi+1ZOQi "‘?Ri Qi

By pre-multiplying both sides of the equation by ‘*01R ,we can convert the frame
of reference for the base {0} to frame {i+1}

UCLA

Velocity of Adjacent Links - Angular Velocity 2/5

i+150 i+150 i+150pi
+0R €= +oR Qi++ORiR Q4
« Using the recently defined ngtation, we have

i+1 i+l I+l
@, = o+ R,

1+

i+1a)i+1 - Angular velocity of frame {i+1} measured relative to the robot base, and
expressed in frame {i+1} - Recall the car example © W/ Sy
c c

”1a)i - Angular velocity of frame {i} measured relative to the robot base, and
expressed in frame {i+1}

iy . Angular velocity of frame {i+1} measured relative to frame {i} and
I 1+
expressed in frame {i+1}

UCLA

& Velocity of Adjacent Links - Angular Velocity 3/5

i+1 i+l i+1pi
W= o+ RO,

i1+1

« Angular velocity of frame {i} measured relative to the robot base, expressed in
frame {i+1}

|+160i =|+51Ri(()i

UCLA

Velocity of Adjacent Links - Angular Velocity 4/5

i+1 _ i+l i+1lpyi
0, = o+ R,

1+

« Angular velocity of frame {i+1} measured (differentiate) in frame {i} and
represented (expressed) in frame {i+1}

« Assuming that a joint has only 1 DOF. The joint configuration can be either
revolute joint (angular velocity) or prismatic joint (Linear velocity).

« Based on the frame attachment convention in which we assign the Z axis
pointing along the i+1 joint axis such that the two are coincide (rotations of a link
is preformed only along its Z- axis) we can rewrite this term as follows:

O .
. \DM s

0 G
.. -

SCARA - RRRP — DH Parameter (Modified form)

¢
914 ll 2 l 93
(o>
]
Q /_\ N
71 fﬂ ZZ? Z3L Modified form:
50 > — X3 a;_; - The distance from Zr to Z measured anngX
Xo A

i

% 1-The angle betweenZ ,and Z measured about X
d, d, - The distance from){t to ' measured along Z
6, - The angle betweeny and X measured about Z
i

0 0 0 0,
0 L, 0 0,

SCARA - RRRP

Modified DH parameter

syms pi

L{1) = Link('revolute','d’,@,'a",@, 'alpha’,®, 'modified"};

L(2) = Link('revolute','d',®,'a",11, 'alpha’,@, 'modified");

L(3) = Link('revolute','d',®,'a",12, 'alpha’,@, 'modified");

L{4) = Link('prismatic', 'alpha’,pi, 'theta’, @ ,'a',0, 'modified")

SCARA = SerialLink(L, 'name','SCARA")

For plot [mm]

11 = 9.3; 12=0.3; pi= 3.14;
Tl =8; t2=0; t3=9; d4=0.2;
th= [tl t2 t3 d4];

L_P{1) = Link('revolute','d',@,'a"',8, 'alpha’',@, 'modified');

L_P(2) = Link('revolute','d',9,"'a"',11, "alpha’,9, 'modified"');
L_P(3) = Link('revolute','d',®,"'a"',12, 'alpha’',8, 'modified"');

L P(4) = Link('prismatic’, ' 'alpha',pi, 'theta', @ ,'a’,@, 'modified")

SCARA_P = SeriallLink(L_P, 'name’, 'SCARA")

figure()
SCARA_P.plot(th, 'workspace',[-1 1 -1 1 -1 1])

SCARA:: 4 awis, RRRP, modDH, slowRME

- -
| 31 theta |
feammpocmccncnana -
| 1] ql|
| 2] q2|
[2] q3|
| 4] 8|
fommfmommenoan-a fmmmmmommna-
1
0.5
N 0
-0.5

T e LT frmmmmmmmm—— +
d | a | alpha | offset |
fmmmmmmmmm—- $rmmmmmmmma= frmmmmmmmm—— +
al a| al 2}
al 11] al 8|
al 12| al 8|
94| 8| pil]
e fommmmmmeoan fommmmmmeaas +

\y

SCARA

SCARA - RRRP -

Forward Kinematics

T8 1 =

= [t1 t2 t3 d4]

Te_1 = SCARA.A([1],q)
T1_2 = SCARA.A([2],Q)
T2_3 = SCARA.A([3],q)
T3_4 = SCARA.A([4],q)

TO_4 = simplify(SCARA.A([1 2 3 4],q))

Te_2 = simplify(SCARA.A([1,2],q))
Te_3 = simplify(SCARA.A([1,2,3]1,0))
Te_2 =

cos(t; +) —sin(t;+1,) 0 [, cos(t,)
sin(t; + 1) coslt; +¢) 0 [sin(t)
0 0 1 0
0 0 0 1
Te 3 =

coslty +h+ 1) —sinln +n+6) 0 Leos(t +)+ 1, cosin)
sinff, + 6 +1:) cos(ty++1) O bysin(iy +15) + 1, sin(r)
0 0 1 0
0 0 0 1

cos(t) —siniy) 0 0
sin(f) cos(y) O 0
0 0 []
0 0 o1

coslf) =sinii) O [
sin{#y) coslsy) 00

0 0 1 0
b i 01

cos(fy) =sin(f;) O [

sin(#;) cosiyy) 00
0 0 1 0
0 0 01
T3 4 =
1 o 0 o0
0 -1 o 0O
0 0 -1 —d,
0o o 0 1
Te_4 =

cos(ty + i+ 1) sinlty +6+0) 0 Leos(ty + b+ cosit)

sinlfy + -+ 1) —coslh +t+8) 0 Lsinlty + &)+ sinity)

0 0 ~1 —d,
0 1] 0 l

Simplify Function

TO 4 = SCARA.A([1 2 3 4],q)

T0_4 =
cos(ty) 6, — sin(ty) oy o
o sin(t;) a3 — cos(13) 64
0 0
0 0
where

0, = C0s(tz) o3 + sin(1;) o,
0, = c0s(t,) cos(t,) — sin(t,) sin(t,)

o3 = cos(t)) sin(r;) + cos(t,) sin(t,)

0 Lo,+1, cos(ty)
0 [:(73+[|Sin‘l|]
—I —(l;

0 1

simplified _Te 4 = simplify(SCARA.A([1 2 3 4],q))

simplified T@ 4 =

cositfy+L+1) ﬂiﬂ[f]+f3+h:| 0 I:CQN[I|+|’3]+I| cosit)
sinff, +t,+ 1) —cos(fy+t+1) 0
0 0 -1 —d,

0 0 0 I

[, sin(f, +1,) + I, sin(1,)

SCARA example _Jacobian: Velocity propagation

The recursive equation for the Angular Velocity is

0 . : C .
i+1, _itip i o | P =0inthe prismatic joint
Wit R witp g...| P =1inthe revolute joint
i+1

| "+IR is the transpose of ; {R (""1R = (;44R))and ;iR = ;,iT(1:3,1:3)
i+1R can be obtained from the transformation matrix in the forward kinematics.

SCARA example _Jacobian: Velocity propagation

RO_1 = t2r(Te_1) R1_8 = transpose(Re_1)
R1 2 = t2r(T1_2) R2_1 = transpose(R1_2)
R2_3 = t2r(T2_3) R3_2 = transpose(R2_3)
R34 = t2r(T3_4) RO_1 = R4_3 = transpose(R3_4) Rl o -
cos(t,) —sinity) 0 cos(r;) sin(r,) 0
sin(t;) cos(ry) 0 —sin(t;) cos(t;) 0
0 U 0 0 1
R1_2 = R2.1 =
cos(t,) —sinit,) 0 cos(t,) sin() 0
sin(f;) - cos(r;) 0 —sin(#,) cos(,) 0
0 0 I 0 0 1
R2_3 = R3_2 =
cos(t;) —=sin(t;) 0 cos(f;) sin(1;) 0
sin(r;) cosi(r;) 0 —sin(ty) cosit) 0
0 0 | 0 0 |
R3_4 = R4 3 =
1 0 0 1 0 0
0 -1 0 0 -1 0

0 0 -l 00 -l

SCARA example _Jacobian: Velocity propagation

The recursive equation for the Angular Velocity is

0 . : ..
41, _itip i o | P =0inthe prismatic joint
Wit R witp .| P =1inthe revolute joint
i+1

The base frame does not move

0
%wo = [0 (The base frame does not move)
0
Three revolute joints
0 0 0
'w; =R "wo+ |0 “w, =2R 'w; +| 0 w3 = 3R “wy +| 0
01 0, 03

One prismatic joint
4(1)4 - gR 3(1)3 +

0
o |
94=O

SCARA example _Jacobian: Velocity propagation

The recursive equation for the Angular Velocity is

¢] o 1= 0 in the prismatic joint
T =R o+ PI-U ; =1inthe FTEFG!HtE;UEHI
3|’+]
* The base frame does not move
]
ﬂmn = |0] (The base frame does not move)
]
* Three revolute joints
0 [0 0
Yw, = IR %wy + | 0 2w, =*R 'w, +|0 Yy = 3R 2w, + |0
0, 0, 05
One prismatic joint 0
4m4 = 1R 3m3 +] 0
B8, =0

% Angular Velocity Propagation

we = [8; 8; 8;]

wl = [@; ©; dtl] * for a revolute joint

w2 = R2_1*wl + [©; ©; dt2;] % for a revolute joint

w3 = simplify(R3_2*w2 + [©; ©; dt3;]) % for a revolute joint
wd = simplify(R4_3*w3)% for a prismatic joint

w3

wid

()
§]
L'||| + (":

0
0
dt, + dt, + dt;

0
0
_d[| - d[: - d['J'

SCARA example _Jacobian: Velocity propagation

The recursive equation for Linear Velocity is
0

0

d

p = 1in the prismatic joint
"p =0inthe revolute joint

i+1 _ itlp(i i i
Vigr = TIR(wp X Pg +) +p

The base frame does not move

Three revolute joints
1171 - %R(OCUO X OP]_ + Ovo)
v, = 2R(twy X Py + 'vy)
31)3 &S %R(2(1)2 X 2P3 + 2172)

One prismatic joint 0

Y
dy

47]4_ — él-R(3(1)3 X 3P4_ + 3173) +

Ve

a8
8
SCARA example @
Jacobian: Velocity propagation vl =
0
0
¢ The recursive equation for Linear Velocity is 0

p = linthe prismatic joint VI =

! 'p = 0inthe revolute foint

e = ”:—FE‘(‘wi x Pyq+ r't,r,-)+p .
o

”| Sjnl:f:}) d[|

* The base frame does not move

0 (1, cos(r,)) dt,
"o = H 0
0

vi_c =
= Thr olute joints . . . : .

ree reviiute Jomis : Ny 3 5 (sinfty) (L + 1, cosits)) + {, cos(ty) sin(t)) dt;, + (L sinf(1y)) dt,
vy = oR("wo x °Py + ")

2p, = 2R('wy, x P, + 'vy) (cos(ts) (f. 41 cosits)) =1 sinlt) sin(t)) dt; + (1 cosits)) di,
3U3=§R[ZMEX 2P3+ 21:"2) D
. .. v3_s =
One prismatic joint 0 . . _ o
41?4=§R(EM3:’< 3P4+ 3v3)+ 1:] dhf:hln[h}+dl_~.|r:.‘>ll1[f-.l'+dl|!r| 51“[::""?_]]
Eiq_ d[| i;: ':DS{I_-:':I + dt: !rJ Cﬂﬁl.r.lr_';::' +dt| !] CDH“: + !1]'
0
V3 =
% Linear Velocity Propagation . ; P
ve = [8; 8; 8;] (f, sin(#y + t3) + [sin(#3)) dt, + (1, sin(¢3)) dt;
vl = Cﬂlle{:t(ﬂl_@*(CI"USS(WB,F’B_].)+V@),[dtl dt2 dt3 dd‘l]) ”| CUE{I: +Ii} +||I: CUS“_;}]{.]M + [!r: CUS{I_J,]}[“:
v2 = collect(R2_1*(cross(wl,P1 2)+v1),[dtl dt2 dt3 dd4])
v3_c = collect(R3_2*(cross(w2,P2_3)+v2),[dtl dt2 dt3 dd4]) 0
v3_s = simplify(v3_c) vl =
v3 = collect(v3_s,[dtl dt2 dt3 dd4])
vd = collect(R4 3*(cross(w3,P3 4)+v3)+[8:0;dda], [dtl dt2 dt3 dda])" (f, sin(t, + £5) + [sin(f5)) dt, + ([, sin(#5)) dt,

(=1, cos(t, + t;) — [, cos(ty)) dt, + (=1, cos(ry)) dt,
dd,

SCARA example _Jacobian: Velocity propagation

9'1
*v 6
- The Jacobian */,is defined as [4 4] =[*L]]
Wy 03
d,]
T | 4774,1
M4, 4774,2 0,
4 4 4 :
, — % % % 2
» According to the definition [4_ 4’] =1, 7 . =[]l
Wy Wy,1 Wa,1 63
4'W42 4W4,2 dy
w, 34 4W4,3

SCARA example _Jacobian: Velocity propagation

[Iv4a]=equationsToMatrix([v4],[dtl dt2 dt3 dda])
[Iwa]=equationsToMatrix([wd],[dtl dt2 dt3 dda])
J4_vP=simplify([Iv4;Iwa])

vd = ng =
(1, sin(t, + t;) + L sin(f3)) dt, + (1, sin(5)) dt, [ysin(t; + t3) + I;sin(t;) Lsin(s) 0 0
(=1, cos(ty + t;) = I, cos(ty)) dt, + (=1; cos(#;)) di; =l cos(ty, + ;) =, cosiry) —Lcosin) O 0
dd, 0 0 0 1
wd = Jwg =
0 0 0 0 0
0 0 0 0 0
J4_\P =

{ Lisin(t,+1;) + Lsin(t;) Lsin(t) 0 0)
—={, cos(t; + 13) = lycos(r;) —lcos(ry) O O

0 0 0 1
0 0 0 0
0 0 0 0

\ ~1 -1 -1 0/

Jacobian: Frame of Representation

velocity measured relative to the robot base frame {0}

* For velocity expressed in frame {N}

"X=NJ(6)0

« For velocity expressed in frame {0}

"X ="3(0)0

The Jacobian provides the relationship between the end effector’'s Cartesian

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA

UCLA

Jacobian: Frame of Representation

Consider the velocities in a different frame {B}

: By :
X ={B N}= 83(9)6’
Wy

We may use the rotation matrix to find the velocities in frame {A}.
FoR 6 POT

A
: V S—
AX — . N — 6‘
N
0
& [
The Jacobian transformation is given by a rotation matrix J
(¢ JEC I 1

AX="1(0)9=R,BI1(0)0

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA

¢

Jacobian: Frame of Representation

where BARJ is given by

or equivalently,

o O O

o O O

5R]

o O O

57

o O O

o O O

o O O

Instructor: Jacob Rosen

Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA

UCLA

Jacobian: Frame of Representation - 3R Example

|R]

o O O
o O O
o O O

|R]

o O O
o O O
o O O

% convert 4J4_VP to @J4_VP
18 _VP=[R@_4 zeros(3,3); zeros(3,3) R@_4]%*14_VP;
Je_VP=simplify(J@_VP,58)

14 WP = Je VP =
{ lsin(t, +15) + Lsin(es) Lsin() 00 0)
—[, cos(t, + 1;) — l,cos(t;) —Lcos(ts) O 0 Iy cos(ty, + ;) + [, cos(t))
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
\ ~1 -1 -1 0/ \ |

(=L sin(t, +15) = I, sin(t,) =L, sin(t; +1.) 0 u\

|'r: 'L"{]'F-'u”|+f:} 0 0

0
0
0
I

0 -1
0 0
0

0
10/

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA

UCLA

Jacobian Methods of Derivation & the
Corresponding Reference Frame - Summary

Jacobian Transformation to Base Frame (Frame 0)
Matrix
Reference
Frame
Explicit 0 None
(Diff. the Forward I
Kinematic Eq.)
Iterative Velocity Eq. Transform Method 1: 0 N
VA NR Y
0 0pN
y W, =R @,
) J\ Transform Method 2:
0
R0 |
OJN (9) = |:‘\ 0 :| ‘\JN(H)
0 JR
Iterative Force Eq. Transpose N N +T T
J N — "/ N]
N yT
J N Transform

¢

Jacobian: Direct Differentiation

« This expression can be expanded to: N

= Cartesian Space / Operational Space

om [A,
_;?T{-"R By X = [!:]

0] :| Euler Angles

T3

6x1

6XN
P =Jp(q)q
We = Jﬂ[qjq

N%) I—‘%

UCLA

Jacobian: Direct Differentiation

pe =Jprla)q (3.2)

We = Jﬁ{q}q {33)
In (3.2) Jp is the (3 x n) matrix relating the contribution of the joint veloc-
ities ¢ to the end-effector linear velocity p_, while in (3.3) Jp is the (3 x n)
matrix relating the contribution of the joint velocities ¢ to the end-effector
angular velocity w.. In compact form, (3.2), (3.3) can be written as

=

e = [i] — J(a)i (3.4

which represents the manipulator differential kinematics equation. The (6 xn)
matrix J is the manipulator geometric Jacobian

J = HE] ., (3.5)

which in general is a funetion of the joint variables.

Jacobian: Direct Differentiation

TO 4 =

cos(ty + 1.+ 13)
sin(t; + 1, + 13)
0
0

0T

sin(t,+t,+t;) 0O IJCDSU,+-@}-+!]CUSU]ﬂ
—cos(ty+t,+1t;) O | Lisin(t;, +1,) + [sin(t;)
0 ~1 —d,
0 0 1

Px

P |
Py

= |, sin(t, +t,) +1,sin(t)

=| [I, cos(t, +t,)—1, cos(t)]t, +I, cos(t, + t,)]L,

P,

1, cos(t, +t,) +1, cos(t,) |

—d, |
[, sin(t, +t,) =, sin(t)]t, +[-1, sin(t, +t,)t,”

—d,

UCLA

Jacobian: Direct Differentiation (Jp)

~—t+,
N

Px
Py

P, |

Py
Py

b,

Py
Py

1, cos(t, +t,) +1, cos(t,) |
|, sin(t, +t,) +1;sin(t)

__(j4

:[—IZ sin(t, +t,) -1, sin(tl_)]t'1 +[-1, sin(t, +t,)]E, |
[1, cos(t, +t,) —1 cos(t)]t, +[I, cos(t, + t,)]t,

—d,

b,

(-1, sin(t, +t,) -1 sin(t)) (-, sin(t,+t,)) 0 O
(I, cos(t, +t,)—1,cos(t)) (l,cos(t,+t,)) O O

0 0 0 1

J8_VP =

A

O. .
-b w

[

—bLsin(f, +1,) = I, sin(t,) —=Lsin(f, +1,) 0 0

Lcos(t, +¢,) + 1 coslr,) Lcosit,+1) 0 0

0

] 0 -1

0
0
I

0 00 | —

oo o JUCLA

Jacobian: Direct Differentiation (Jo) we = Jolq)i
- _WX_ i 0 i
WX
W, :JO[Q] Wy : .O .
W, 6,+6,+0,+0
W, S o
: N -| 6
" 4 w,] [[0O 0 0 O 91
X f)
w, |43 W, |<|0 0 0 0|
& w,|[[1110]°7°
W, . e -1 d
- d, | V4
Je_ VP =
[—Lsin(t, +1,) — I, sin(r,) —Lsin(f, +1,) 0 0\
Lcos(t, +¢) + 1 coslr,) Lcosit,+1) 0 0
0 0 0 —1
0 0 0 0
0 0 0 0
\ | | 1 0

UCLA

Jacobian: Direct Differentiation

We = Jﬂ{q}q
Je_\P =
(L sin(t, + 1) = [sin(t,) —Lsin(t, +1,) 0 0 \
l,cos(ty +1,) +{,cos(t;) Leosity,+5,) 0 0
J — J-P 0 0 0 -1
0 0 0 0
J‘j 0 0 0 0

1 1]ﬂ)'

Jacobian: Direct Differentiation

In summary, the Jacobian in (3.5) can be partitioned into the (3 x 1)
column vectors jp; and j,, as

Jp1 JpPn
J— o -. (3.29)

Jo JOon

where
3151] for a prismatic joint
jﬁ:] _)L | (3.30)
Oi Zi-1 X ,{sz N pi—l}] for a revolute joint.
i—1

The expressions in (3.30) allow Jacobian computation in a simple, systematic
way on the basis of direct kinematics relations. In fact, the vectors z;,_,, p,
and p, , are all functions of the joint variables. In particular:

UCLA

Jacobian: Direct Differentiation

e =z, ; is given by the third column of the rotation matrix R?— ., le.,
zio1=Ri(q1) ... Ri_1(gi-1)=0 (3.31)

where zo =[0 0 1]7 allows the selection of the third column.

e p_ is given by the first three elements of the fourth column of the trans-
formation matrix TY, i.e., by expressing P, in the (4 x 1) homogeneous
form

Pe = Al(q1) ... A7 (42)Po (3.32)
where p, =[0 0 0 1]7 allows the selection of the fourth column.

e p, , is given by the first three elements of the fourth column of the trans-
formation matrix T _,, i.e., it can be extracted from

ﬁz’—i - ‘4'[1:1{'5}1} e ‘4'2:-‘]?{‘?1'—1}ﬁ[j- (3.33}

UCLA

31—1] for a prismatic joint
JP:’] _J L 0

Jacobian: Direct Differentiation [| -
Joi Zio1 [x (pe —pi_l)]

for a revolute joint.

| Zi—1
Te_1l =
Re_1 = e 1 =
cosit) —sin(r) O 0 :
sin(r,) cos(ry) 00 cos(t,) —sin(r) |0 0
0 0 1.0 sin(t;) cos(t;) |0 0
i 0 0 1 0 0 14 |
Te 2 = R@_2 = 70_2 =
r C{JS“; + l'z_] _Si[1[FF =+ ?‘3}' [.}\ ()
cos(t, + 1) —sin(f +1) 0 [cos(r) . 0
sin(ty + 1) cos(fy+6) 0 4 sin(r) Sl[]“; + FI:I r'1"'[}':"1"“! + 73:' 0
0 0 10 0 0 1, I
0 0 v l Sy 76 3 =
Te_ 3 = L
Cosity + 1+ 1;) —sinlt, + 1.+ 0 0
cos(ty +t+1;) —sin(f+t+1¢6) 0 Leosity +6) + 1, cosin) .
e o R sin{t, +t,+t;) cosity,+t,+1¢) |0 0
sin(t, + -+ ;) cos(t, +t,+t;)0 O Lsinlt, +) + 1, sin() - - - T |
0 0 I 0 0 0 I
u U u | RO 4 = 7o 4 =
Te 4 =
cos(ty +t,+ 1) sinlty +t,+85) |0 0
cos(ty+1+13) sinlf,+6+06)0 0 Leos(n +16)+ 1 cos(n) sin[r; Tty !3] —-.:::r:s{.rl +1, +I_1_,} 0]
sin(fy +fa+ ;) —cosity +6 4160 0 Lsinln +6) 4+ sin(y) -1
0] -1 —d 0 0 -1
4
u u 1] |

%t2r : rotation matrix from the homogeneous matrix

RO_1 = t2r(T_1) Z6_1 = R@_1(1:3,3)
RE_2 = t2r(Te_2) "Z0_2 = RB_2(1:3,3)
RO_3 = t2r(Te_3) Z8_3 = RO_3(1:3,3)
RO_4 = t2r(TO_4) Z8_4 = R@_4(1:3,3)

Jacobian: Direct Differ|””

Te 1 =

cos(t) =sin(r) 0

sin(r,) coslr) 0
0] 1
i 1] 01
Te 2 =

cos(ry + 1) =sin(t + 60 0) cosly
sinfr, + ;) cos(ry+16,) 0) sinfr)
0 0 1 0
0 0 0
T8 3 =

cosity + t +13)
sinlt, + >+ t3)
0
0
Te_4 =

cosll + I+ 15)
sinlf, + f+ f3)
0
0

—sin(t, + t, + t3)
cos(t, + t,+ t3)
0
0

sl + 15+ 15)
—cos(l + 1+ 13)
0
0

1, cos(t + t;) + 1, cos(t))
Lsin(t, +) + 4, sin(#,)
0

o = o o

1

Ly cos(t, + 1) + 1, cos(ry)
Ly sin{t; +1,) + 1 sin(ty)
—dy
|

Zi—1
0

zio1 X {p. FIpi_1)

Zi—1

#%.t : translation
PE_1=Te 1.t
PE_2 =Te 2.t
PB_3 = Te_ 3.t
PB_4 = Te_4.t

for a prismatic joint

] for a revolute joint.

matrix from the homogeneous matrix

Jpi

Jacobian: Direct Differe =

| JOi |

Jp1= 2o 1 X (Pe — Do 1)

8 1 =

)
0
1

Pe_4 =
lycos(ty +15) + 1) cosihy)
{,sinit, + ;) + I} sinit))

d;

Jp2= 2o 2 X (Pe — Do _2)

ie_2 =

Rt
0
1

Po_4 =
Leos(ty +15) + 1 cosity)
sinit, + 1) + I, sinit))

d;

Jp3=2g 3 X (Pe — Do 3)

Z8_3 =

= (n) X (
0
!

Jpa=Zg 4

PO_4 =
Leos(ty +15) + 1 coslty)
sinit, + t;) + I, sinit,)

d;

Fé@_1 = 11

()

PO_2 =

oo ol

[, cos(ty)) =
rl‘j Siﬂ[ﬁ}
0

Pa_3 =

lcos(ty + 1) + 1 cos(r)\) =
L sin(ty + t5) + I, sin(r,)

0

[Zisi % (p. =Py

=L sin(ty + t2) — 1, sin(1,)

Izmﬂ{h + t:]l + f| cﬂﬁih:’
0

12 =
=L sin(ty, + 1)
I, cos(t) + 1)
(0

13 =

g

for a prismatic joint

] for a revolute joint.

UCLA

Jpi

Jacobian: Direct Differe =

| JOi |

Jp1= 2o 1 X (Pe — Do 1)

8 1 =

)
0
1

Pe 4 =
leosity + 1) + [cosin)
{,sinit, + ;) + I} sinit))

d;

Jp2= 2o 2 X (Pe — Do _2)

ie_2 =

Rt
0
1

PO 4 =
Leos(ty + 1) + 1 cosity)
sinit, + 1) + I, sinit))

d;

Jp3=2g 3 X (Pe — Do 3)

70 3 = PO 4 =
= 0)((Lcos(ty +15) +) cos(ty)
0 lysin(t) + ;) + [sinit,)
(1) —d,
JPa= Zo 4
= z0.4 =

Fé@_1 = 11

()"

Pe_2 =
[, cos(t,)) =
Iy sin(t)
0

oo ol

P@_3 =

lcos(ty + 1) + 1 cos(r)\) =
L sin(t, + t,) + I, sin(1,)

0

for a prismatic joint

L
[Zé—l X (Pe —Pi_1)

=L sin(ty + t2) — 1, sin(1,)

I; mS{n + f;] + f| cﬂﬁ[h]
0

2 =
=l sin(t; +15)
I, cos(t) + 1)

0

13 =

g

] for a revolute joint.

UCLA

Jacobian: Direct Differentiation

#%.t : translation matrix from the homogeneous matrix fprintf('Te_2 = ")

PO_1 = TO_1.t Te_2 = simplify(SCARA.A([1,2],q))
P@_2 = T 2.t fprintf('TE_3 = ')

PG 3 = T@ 3.t T@_3 = simplify(SCARA.A([1,2,3],9))
Pe_4 = Te_ 4.t fprintf('Te_4 = ')

Te_4 = simplify(SCARA.A([1,2,3,4],q))
%t2r . rotation matrix from the homogeneous matrix

RO_1 = t2r(Te_1)
RO_2 = t2r(Te_2)
RO_3 = t2r(Te_3)
RO_4 = t2r(Te_4)

7e_1 = Re_1(1:3,3)
Z6_2 = RO_2(1:3,3)
76_3 = Re_3(1:3,3)
70 4 = RO_4(1:3,3)

J1 = cross(Ze_1,(P@_4-Pe_1)) % Column:1, Row:1-3 % for a revolute joint
J2 = cross(Z6_2,(PO_4-P0_2)) % Column:2, Row:1-3 % for a revolute joint
13 = cross(Z0_3,(P@_4-P8_3)) % Column:3, Row:1-3 % for a revolute joir?*

J4 = Ze_4 % Column:4, Row:1-3 %for a prismatic joint R e
R2_1 = transpose(R1_2);
R3_2 = transpose(R2_3);
18_DD = simplify(Je_pD)

UCLA

]_llpl Jp, Jp,]P4]

Jacobian: Direct Differentiation Jo, Jo, Jos o,

1= Jz = Jim 14
—bysin(ty + t2) — I, sin(t,) =bsin(t; + 1) 0 0
I cos(ty, + 1) + I, cosit,) [, cos(t, + 1) 0 (0)
0 0 g -1
18_0D =
I/-f3 sin(t, 4+ 1,) — I, sin(r,) =hLsin(f, +5,) 0 0
Leos(ty+) + [jcos(tyy Leos(t +r,) 0 0O
0) 0 _—1
0 0 0 0
0 0 0 0
l\ | | 10/
Ze 1 = 202 = Z0_3 = I8 4 =
0 0 0 0
0 0 1] 0
I 1 1 -1
[z . L.
“D l] for a prismatic joint
[JP:‘] _J L
Joi [zi_1 %X (p. — p. .
o i1 X (Pe = Pi—1) for a revolute joint. UCLA
| Zi—1

Jacobian - Comparison

J4_ WP =
[sin(r; + 15) + L sin(y) Lsin(r;) 0
=l coslty + i5) = L coslis) —hcos(i;) O

0 0 0

0 0 0

0 0 0

-1 -1 -1

Ja VP =
—Lsin(t, + 6) — I, sin(¢,) =L sinlr, + 1)

lyeos(f) + 1) + 1, cos(t,) Lcos(t + 1)

0 0
0 0
0 0
1 I

0

0
0

0 0
0 0

Ja DD =
=Lsin(r, +t,) =1, sin(t) =Lsin(r + 1)
bcos(t, + 1) + 1, cos(ry) Leos(t, +1,)

0 0
0 0
0 0
1 1

0
0

0
0

UCLA

Jacobian Methods of Derivation & the
Corresponding Reference Frame - Summary

Jacobian Transformation to Base Frame (Frame 0)
Matrix
Reference
Frame
Explicit 0 None
(Diff. the Forward I
Kinematic Eq.)
Iterative Velocity Eq. Transform Method 1: 0 N
VA NR Y
0 0pN
y W, =R @,
) J\ Transform Method 2:
0
R0 |
OJN (9) = |:‘\ 0 :| ‘\JN(H)
0 JR
Iterative Force Eq. Transpose N N +T T
J N — "/ N]
N yT
J N Transform

Summary

v' Jacobian with SCARA example
* Velocity propagation
* Direct differentiation

v' Frame of Representation

UCLA

