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Kinematics Relations - Joint & Cartesian Spaces

« Avrobot is often used to manipulate object attached to its tip (end effector).

« The location of the robot tip may be specified using one of the following
descriptions:

« Joint Space 01

« Cartesian Space / Operational Space

0 K
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0 1 Euler Angles
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A minimal representation of orientation - Euler angles

» As an example, consider a trar}sformation that uses
ZYZ Euler angles ¢_ = [¢, 9, 9]

Siciliano, et al. Robotics: Modelling, Planning, and Control. Sec. 3.6. London: Springer-Verlag, 2009.




s A minimal representation of orientation - Euler angles

Relationship between w, and ¢ (EXAMPLE]

A
g, = |
K4
W, :T(qbf’)qbe
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Analytical Jacobian

 In order to design controllers in operational space,
we must use the analytical Jacobian J4(q), a
transformed version of the geometric Jacobian J(q).

— The analytical Jacobian is used in both Jacobian
transpose control and Jacobian inverse control.

Tala) = 252 or T =TI

where T'A(¢p.) = [(I) T((Q?be)}

Siciliano, et al. Robotics: Modelling, Planning, and Control. Ch. 8. London: Springer-Verlag, 2009.




Comments on w, and ¢_

 The meaning of W, is more intuitive than that of ée.

— W, represents components of angular velocity with
respect to a fixed base frame.

- Qe represents non-orthogonal components of angular
velocity with respect to a frame that varies as the end-
effector orientation varies.

« The integral of ¢_over time yields ¢_, but the
integral of W, does NOT have a clear physical
interpretation.

 In general, w. # QE (and J(q) # Ja(q)) unless you are
considering a special case in which all DOFs cause

rotations about the same fixed axis in space (e.g. z-axis
for planar arm)

Siciliano, et al. Robotics: Modelling, Planning, and Control. Sec. 3.6. London: Springer-Verlag, 2009.




Kinematics Relations - Forward & Inverse

« The robot kinematic equations relate the two description of the robot tip location

L X =FK(&
7 (0)
0 = ‘9,2 I
6] < —
0 = IK(X)
Tip Location in Tip Location in
Joint Space Cartesian Space
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Velocity relationship
. Jacobian Matrix — Joint velocity / End-effector velocity

X =J9

_91_

. d 6
O=—101=| 2
dt[ ] :

_éN_

Tip Velocity in ,Q = 3" )'( Tip velocity in
Joint Space Cartesian Space
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Jacobian Matrix - Introduction

« The velocity relationship
: The relationship between
the joint angle rates ( g, )
and the translation and rotation velocities of the end
effector ( X ).

« The relationship between
the robot joint torques ( Z )
and the forces and moments ( F )
at the robot end effector (Static Conditions).

UCLA



Jacobian Matrix - Calculation Methods

s

Iterative Propagation

(Velocities or Forces / Torques)

Jacobian Matrix

UCLA



‘ Jacobian Matrix - Introduction

« In the field of robotics the Jacobian
matrix describe the relationship
between the joint angle rates ( QN)
and the translation and rotation
velocities of the end effector ( X ).
This relationship is given by:

v,| [*)
W {7 5\x:a(e)e/
v, Z
we| |95 6=3(0)"x
Wy q
Wi J)
B
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Jacobian Matrix - Introduction

* This expression can be expanded to: N

X
Cartesian Space / Operational Space 7/\

y
0 0 [‘Jﬂ'-
07 {\' R R\' ) 7
N =
X

N% ) I—‘%

X =

1(9) N p.=JTp(@)g

N

:| Euler Angles

0 1 ["3‘]]] \_/:
(@, we = Jo(9)d-

Cf)y
Q, n . _éN _

6x1 6XN Nx1
Where: P

S

— X is a6xl vector of the end effector linear and angular velocities

~ J(0) is a 6xN Jacobian matrix

— gN Is a Nx1 vector of the manipulator joint velocities

— N is the number of joints
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Position Propagation

The homogeneous transform matrix provides a complete description of the
linear and angular position relationship between adjacent links.

-~ [uR R
i—1T =" '

These descriptions may be combined together to describe the position of a link
relative to the robot base frame {0}.

T




Velocity Propagation

« Given: A manipulator - A chain of
rigid bodies each one capable of Y
moving relative to its neighbor

* Problem: Calculate the linear and
angular velocities of the link of a
robot

« Solution (Concept): Due to the robot
structure (serial mechanism) we can
compute the velocities of each link
in order starting from the base.

The velocity of link i+1
= The velocity of link i
+ whatever new velocity components were added by joint i+1

UCLA



Velocity Propagation — Intuitive Explanation

« Three Actions

— The origin of frame B moves as a function of time with respect to the origin
of frame A

— Point Q moves with respect to frame B
— Frame B rotates with respect to frame A along an axis defined by AQB

* Linear and Rotational Velocity

— Vector Form A0, °P,
{B} .
_A ApB A ApB
— Matrix Form APyore

Ao ="Vgone+oR%V,+ 2R, (2R®P, )

UCLA



Velocity Propagation — Intuitive Explanation

 Three Actions
— The origin of frame B moves with respect to the origin of frame A
— Point Q moves with respect to frame B
— Frame B rotates with respect to frame A about an axis defined by AQB

A
0
® {B} o

{A}

A
Pporc

UCLA



NV, ="VgorataR E‘VQ +4Q, ><E§\RBPQ

Ao ="VgonaHeRV+ 2R, (2REP, )

Linear Velocity - Rigid Body

« Given: Consider a frame {B} attached
to a rigid body whereas frame {A} is
fixed. The orientation of frame {A}
with respect to frame {B} is not
changing as a function of time BAR =0

*  Problem: describe the motion of of
the vector BpQ relative to frame {A}

- Solution: Frame {B} is located
relative to frame {A} by a position
vector APBORGand the rotation matrix E’;R
(assume that the orientation is not
changing in time 2R = Q) expressing
both components of the velocity in
terms of frame {A} gives

{B} ®

{A} Bp

A
Pporc

AR=0

N

Q :AVBORG+A(BVQ ):AVBORG+BAR BVQ

Instructor: Jacob Rosen

Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA
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Frame - Velocity

As with any vector, a velocity vector may be described in terms of any frame,
and this frame of reference is noted with a leading superscript.

A velocity vector computed in frame {B} and represented in frame {A} would be
written

{B1 tA}

Represented
(Reference Frame)

ArB AdB
(VQ):E R

Computed
(Measured)

UCLA



Ay =*Vpoms+ERV, 1A Qg xREP, Vo ="Vgors+oRVo+4Ro(5R°P )

Angular Velocity - Rigid Body

Given: Consider a frame {B} attached
to a rigid body whereas frame {A} is
fixed. The vector Bp_ is constant as
view from frame {B} BVQ -0

Problem: describe the velocity of the
vectorBP. representing the the point
Q relative to frame {A}

Solution: Even though the vector Bp
is constant as view from frame {B} it
Is clear that point Q will have a
velocity as seen from frame {A} due
to the rotational velocity Q.

UCLA



Ay =*Vyoms+ERV, 140 xAREP, Vo ="Vgors+oRVo+4Ro(5R°P )

Angular Velocity - Rigid Body - Intuitive Approach

S = arc length

The figure shows to instants of time
as the vector P rotates around AQ
This is what an observer in frame {A}
would observe.

The Magnitude of the differential
change is

‘APQ‘sin 0

S\
Al
A R,
Py (t+At)

A A A :
‘A PQ‘ = q QB‘AtN PQ‘sm 9)
Using a vector cross product we get

AP,
—2=N,="Q, x"R,
At

UCLA



Simultaneous Linear and Rotational Velocity

The final results for the derivative of a vector in a moving frame (linear and
rotation velocities) as seen from a stationary frame

Vector Form

”VQ ="V, oretaR BVQ +4Q, ><,§RBPQ

{A}

Matrix Form

N

5 =NVaora+iR®V, +4R, (2R®P, )

UCLA



Simultaneous Linear and Rotational Velocity

* Linear and Rotational Velocity AQ)
— Vector Form i

A ApB A ApB (4)
Vo ="VorstsR Vo + Qs xgR°F,

APporc

— Matrix Form

Ao ="Vgone+2R%V,+2R, (£R®P, )

Q

* Angular Velocity

— A A ApB
Vector Form Q.="Q,+.R°Q

— Matrix Form AF AR Ap B ApT
CRQ:BRQ+BRCRQBR

UCLA



s Velocity of Adjacent Links - Summary

* Angular Velocity
O - Prismatic Joint

i+1 _i+lpyi
;.= R, *f

- Linear Velocity 0 - Revolute Joint
ha

i+1Vi+1:i+i1R(ia)XiPi 1+iVi)4j

The velocity of link i+1
=1 = The velocity of link i
+ whatever new velocity components were added by joint i+1

>




Jacobian: Velocity propagation

« Therefore the recursive expressions for the adjacent joint linear and angular
velocities can be used to determine the Jacobian in the end effector frame

"X=NJ(0)p

« This equation can be expanded to:

T x " (61
y N 162
T _{NNVN}: 6)
QX N
Qy - -
| Q7 | O, |

UCLA



Velocity of Adjacent Links - Angular Velocity 5/5

« The resultis arecursive equation that shows the angular velocity of one link in
terms of the angular velocity of the previous link plus the relative motion of the
two links.

i+16()- 1:i+ilRiQ)i + O

1+

« Since the term i+1a)i+1 depends on all previous links through this recursion, the
angular velocity is said to propagate from the base to subsequent links.

UCLA



Velocity of Adjacent Links - Angular Velocity 1/5

From the relationship developed previously
Q. ="Q,+RPQ,

we can re-assign link names to calculate the velocity of any link i relative to the
base frame {0}

-

A—0
B—oi

N

\C—>i+1

OQi+1ZOQi "‘?Ri Qi

By pre-multiplying both sides of the equation by ‘*01R ,we can convert the frame
of reference for the base {0} to frame {i+1}

UCLA



Velocity of Adjacent Links - Angular Velocity 2/5

i+150 i+150 i+150pi
+0R €= +oR Qi++ORiR Q4
« Using the recently defined ngtation, we have

i+1 i+l I+l
@, = o+ R,

1+

i+1a)i+1 - Angular velocity of frame {i+1} measured relative to the robot base, and
expressed in frame {i+1} - Recall the car example © W/ Sy
c c

”1a)i - Angular velocity of frame {i} measured relative to the robot base, and
expressed in frame {i+1}

iy . Angular velocity of frame {i+1} measured relative to frame {i} and
I 1+
expressed in frame {i+1}

UCLA



& Velocity of Adjacent Links - Angular Velocity 3/5

i+1 i+l i+1pi
W= o+ RO,

i1+1

« Angular velocity of frame {i} measured relative to the robot base, expressed in
frame {i+1}

|+160i =|+51Ri(()i

UCLA



Velocity of Adjacent Links - Angular Velocity 4/5

i+1 _ i+l i+1lpyi
0, = o+ R,

1+

« Angular velocity of frame {i+1} measured (differentiate) in frame {i} and
represented (expressed) in frame {i+1}

« Assuming that a joint has only 1 DOF. The joint configuration can be either
revolute joint (angular velocity) or prismatic joint (Linear velocity).

« Based on the frame attachment convention in which we assign the Z axis
pointing along the i+1 joint axis such that the two are coincide (rotations of a link
is preformed only along its Z- axis) we can rewrite this term as follows:

O .
. \DM s

0 G
.. -




SCARA - RRRP — DH Parameter (Modified form)

¢
914 ll 2 l 93
(o>
]
Q /_\ N
71 fﬂ ZZ? Z3L Modified form:
50 > — X3 a;_; - The distance from Zr  to Z measured anngX
Xo A

i

% 1-The angle betweenZ ,and Z measured about X
d, d, - The distance from ){t to ' measured along Z
6, - The angle betweeny and X measured about Z
i

0 0 0 0,
0 L, 0 0,




SCARA - RRRP

Modified DH parameter

syms pi

L{1) = Link('revolute','d’,@,'a",@, 'alpha’,®, 'modified"};

L(2) = Link('revolute','d',®,'a",11, 'alpha’,@, 'modified");

L(3) = Link('revolute','d',®,'a",12, 'alpha’,@, 'modified");

L{4) = Link('prismatic', 'alpha’,pi, 'theta’, @ ,'a',0, 'modified")

SCARA = SerialLink(L, 'name','SCARA")

For plot [mm]

11 = 9.3; 12=0.3; pi= 3.14;
Tl =8; t2=0; t3=9; d4=0.2;
th= [tl t2 t3 d4];

L_P{1) = Link('revolute','d',@,'a"',8, 'alpha’',@, 'modified');

L_P(2) = Link('revolute','d',9,"'a"',11, "alpha’,9, 'modified"');
L_P(3) = Link('revolute','d',®,"'a"',12, 'alpha’',8, 'modified"');

L P(4) = Link('prismatic’, ' 'alpha',pi, 'theta', @ ,'a’,@, 'modified")

SCARA_P = SeriallLink(L_P, 'name’, 'SCARA")

figure()
SCARA_P.plot(th, 'workspace',[-1 1 -1 1 -1 1])

SCARA:: 4 awis, RRRP, modDH, slowRME

- -
| 31 theta |
feammpocmccncnana -
| 1] ql|
| 2] q2|
[ 2] q3|
| 4] 8|
fommfmommenoan-a fmmmmmommna-
1
0.5
N 0
-0.5

T e LT frmmmmmmmm—— +
d | a | alpha | offset |
fmmmmmmmmm—- $rmmmmmmmma= frmmmmmmmm—— +
al a| al 2}
al 11] al 8|
al 12| al 8|
94| 8| pil ]
e fommmmmmeoan fommmmmmeaas +

\y

SCARA




SCARA - RRRP -

Forward Kinematics

T8 1 =

= [t1 t2 t3 d4]

Te_1 = SCARA.A([1],q)
T1_2 = SCARA.A([2],Q)
T2_3 = SCARA.A([3],q)
T3_4 = SCARA.A([4],q)

TO_4 = simplify(SCARA.A([1 2 3 4],q))

Te_2 = simplify(SCARA.A([1,2],q))
Te_3 = simplify(SCARA.A([1,2,3]1,0))
Te_2 =

cos(t; + ) —sin(t;+1,) 0 [, cos(t,)
sin(t; + 1) coslt; +¢) 0 [ sin(t)
0 0 1 0
0 0 0 1
Te 3 =

coslty +h+ 1) —sinln +n+6) 0 Leos(t + )+ 1, cosin)
sinff, + 6 +1:)  cos(ty++1) O bysin(iy +15) + 1, sin(r)
0 0 1 0
0 0 0 1

cos(t ) —siniy) 0 0
sin(f ) cos(y) O 0
0 0 [ ]
0 0 o1

coslf) =sinii) O [
sin{#y)  coslsy) 00

0 0 1 0
b i 01

cos(fy) =sin(f;) O [

sin(#;)  cosiyy) 00
0 0 1 0
0 0 01
T3 4 =
1 o 0 o0
0 -1 o 0O
0 0 -1 —d,
0o o 0 1
Te_4 =

cos(ty + i+ 1) sinlty +6+0) 0 Leos(ty + b+ cosit)

sinlfy + -+ 1) —coslh +t+8) 0 Lsinlty + &)+ sinity)

0 0 ~1 —d,
0 1] 0 l



Simplify Function

TO 4 = SCARA.A([1 2 3 4],q)

T0_4 =
cos(ty) 6, — sin(ty) oy o
o sin(t;) a3 — cos(13) 64
0 0
0 0
where

0, = C0s(tz) o3 + sin(1;) o,
0, = c0s(t,) cos(t,) — sin(t,) sin(t,)

o3 = cos(t)) sin(r;) + cos(t,) sin(t,)

0 Lo,+1, cos(ty)
0 [:(73+[|Sin‘l|]
—I —(l;

0 1

simplified _Te 4 = simplify(SCARA.A([1 2 3 4],q))

simplified T@ 4 =

cositfy+L+1) ﬂiﬂ[f]+f3+h:| 0 I:CQN[I|+|’3]+I| cosit)
sinff, +t,+ 1) —cos(fy+t+1) 0
0 0 -1 —d,

0 0 0 I

[, sin(f, +1,) + I, sin(1,)




SCARA example _Jacobian: Velocity propagation

The recursive equation for the Angular Velocity is

0 . : C .
i+1, _itip i o | P =0inthe prismatic joint
Wit R witp g...| P =1inthe revolute joint
i+1

| "+IR is the transpose of ; {R ( ""1R = (;44R) )and ;iR = ;,iT(1:3,1:3)
i+1R can be obtained from the transformation matrix in the forward kinematics.




SCARA example _Jacobian: Velocity propagation

RO_1 = t2r(Te_1) R1_8 = transpose(Re_1)
R1 2 = t2r(T1_2) R2_1 = transpose(R1_2)
R2_3 = t2r(T2_3) R3_2 = transpose(R2_3)
R34 = t2r(T3_4) RO_1 = R4_3 = transpose(R3_4) Rl o -
cos(t,) —sinity) 0 cos(r;) sin(r,) 0
sin(t;)  cos(ry) 0 —sin(t;) cos(t;) 0
0 U 0 0 1
R1_2 = R2.1 =
cos(t,) —sinit,) 0 cos(t,) sin() 0
sin(f;) - cos(r;) 0 —sin(#,) cos(,) 0
0 0 I 0 0 1
R2_3 = R3_2 =
cos(t;) —=sin(t;) 0 cos(f;) sin(1;) 0
sin(r;)  cosi(r;) 0 —sin(ty) cosit) 0
0 0 | 0 0 |
R3_4 = R4 3 =
1 0 0 1 0 0
0 -1 0 0 -1 0

0 0 -l 00 -l




SCARA example _Jacobian: Velocity propagation

The recursive equation for the Angular Velocity is

0 . : ..
41, _itip i o | P =0inthe prismatic joint
Wit R witp .| P =1inthe revolute joint
i+1

The base frame does not move

0
%wo = [0 (The base frame does not move)
0
Three revolute joints
0 0 0
'w; =R "wo+ |0 “w, =2R 'w; +| 0 w3 = 3R “wy +| 0
01 0, 03

One prismatic joint
4(1)4 - gR 3(1)3 +

0
o |
94=O




SCARA example _Jacobian: Velocity propagation

The recursive equation for the Angular Velocity is

¢ ] o 1= 0 in the prismatic joint
T =R o+ PI-U ; =1inthe FTEFG!HtE;UEHI
3|’+]
*  The base frame does not move
]
ﬂmn = |0] (The base frame does not move)
]
*  Three revolute joints
0 [0 0
Yw, = IR %wy + | 0 2w, =*R 'w, +|0 Yy = 3R 2w, + |0
0, 0, 05
One prismatic joint 0
4m4 = 1R 3m3 +] 0
B8, =0

% Angular Velocity Propagation

we = [8; 8; 8;]

wl = [@; ©; dtl] * for a revolute joint

w2 = R2_1*wl + [©; ©; dt2;] % for a revolute joint

w3 = simplify(R3_2*w2 + [©; ©; dt3;]) % for a revolute joint
wd = simplify(R4_3*w3)% for a prismatic joint

w3

wid

()
§]
L'||| + (":

0
0
dt, + dt, + dt;

0
0
_d[| - d[: - d['J'




SCARA example _Jacobian: Velocity propagation

The recursive equation for Linear Velocity is
0

0

d

p = 1in the prismatic joint
"p =0inthe revolute joint

i+1 _ itlp( i i i
Vigr = TIR(wp X Pg + ) +p

The base frame does not move

Three revolute joints
1171 - %R( OCUO X OP]_ + Ovo)
v, = 2R(twy X Py + 'vy)
31)3 &S %R( 2(1)2 X 2P3 + 2172)

One prismatic joint 0

Y
dy

47]4_ — él-R( 3(1)3 X 3P4_ + 3173) +




Ve

a8
8
SCARA example @
Jacobian: Velocity propagation vl =
0
0
¢ The recursive equation for Linear Velocity is 0

p = linthe prismatic joint VI =

! 'p = 0inthe revolute foint

e = ”:—FE‘( ‘wi x Pyq+ r't,r,-)+p .
o

”| Sjnl:f:}) d[|

*  The base frame does not move

0 (1, cos(r,) ) dt,
"o = H 0
0

vi_c =
= Thr olute joints . . . : .

ree reviiute Jomis : Ny 3 5 (sinfty) (L + 1, cosits)) + {, cos(ty) sin(t)) dt;, + (L sinf(1y)) dt,
vy = oR( "wo x °Py + ")

2p, = 2R( 'wy, x P, + 'vy) (cos(ts) (f. 41 cosits)) =1 sinlt) sin(t)) dt; + (1 cosits)) di,
3U3=§R[ ZMEX 2P3+ 21:"2) D
. .. v3_s =
One prismatic joint 0 . . _ o
41?4=§R( EM3:’< 3P4+ 3v3)+ 1:] dhf:hln[h}+dl_~.|r:.‘>ll1[f-.l'+dl|!r| 51“[::""?_]]
Eiq_ d[| i;: ':DS{I_-:':I + dt: !rJ Cﬂﬁl.r.lr_';::' +dt| !] CDH“: + !1]'
0
V3 =
% Linear Velocity Propagation . ; P
ve = [8; 8; 8;] (f, sin(#y + t3) + [ sin(#3) ) dt, + (1, sin(¢3)) dt;
vl = Cﬂlle{:t(ﬂl_@*(CI"USS(WB,F’B_].)+V@),[dtl dt2 dt3 dd‘l]) ”| CUE{I: +Ii} +||I: CUS“_;}]{.]M + [!r: CUS{I_J,]}[“:
v2 = collect(R2_1*(cross(wl,P1 2)+v1),[dtl dt2 dt3 dd4])
v3_c = collect(R3_2*(cross(w2,P2_3)+v2),[dtl dt2 dt3 dd4]) 0
v3_s = simplify(v3_c) vl =
v3 = collect(v3_s,[dtl dt2 dt3 dd4])
vd = collect(R4 3*(cross(w3,P3 4)+v3)+[8:0;dda], [dtl dt2 dt3 dda])" (f, sin(t, + £5) + [ sin(f5) ) dt, + ([, sin(#5)) dt,

(=1, cos(t, + t;) — [, cos(ty) ) dt, + (=1, cos(ry)) dt,
dd,




SCARA example _Jacobian: Velocity propagation

_9'1_
*v 6
- The Jacobian */,is defined as [4 4] =[*L]]
Wy 03
d,]
T | 4774,1
M4, 4774,2 0,
4 4 4 :
, — % % % 2
»  According to the definition [4_ 4’] =1, 7 . =[]l
Wy Wy,1 Wa,1 63
4'W42 4W4,2 dy
w, 34 4W4,3




SCARA example _Jacobian: Velocity propagation

[Iv4a]=equationsToMatrix([v4],[dtl dt2 dt3 dda])
[Iwa]=equationsToMatrix([wd],[dtl dt2 dt3 dda])
J4_vP=simplify([Iv4;Iwa])

vd = ng =
(1, sin(t, + t;) + L sin(f3)) dt, + (1, sin(5)) dt, [ysin(t; + t3) + I;sin(t;)  Lsin(s) 0 0
(=1, cos(ty + t;) = I, cos(ty) ) dt, + (=1; cos(#;)) di; =l cos(ty, + ;) =, cosiry) —Lcosin) O 0
dd, 0 0 0 1
wd = Jwg =
0 0 0 0 0
0 0 0 0 0
J4_\P =

{ Lisin(t,+1;) + Lsin(t;)  Lsin(t) 0 0)
—={, cos(t; + 13) = lycos(r;) —lcos(ry) O O

0 0 0 1
0 0 0 0
0 0 0 0

\ ~1 -1 -1 0/




Jacobian: Frame of Representation

velocity measured relative to the robot base frame {0}

* For velocity expressed in frame {N}

"X=NJ(6)0

« For velocity expressed in frame {0}

"X ="3(0)0

The Jacobian provides the relationship between the end effector’'s Cartesian

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA

UCLA



Jacobian: Frame of Representation

Consider the velocities in a different frame {B}

: By :
X ={B N}= 83(9)6’
Wy

We may use the rotation matrix to find the velocities in frame {A}.
FoR 6 POT

A
: V S—
AX — . N — 6‘
N
0
& [
The Jacobian transformation is given by a rotation matrix J
(¢ JEC I 1

AX="1(0)9=R,BI1(0)0

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA



¢

Jacobian: Frame of Representation

where BARJ is given by

or equivalently,

o O O

o O O

5R]

o O O

57

o O O

o O O

o O O

Instructor: Jacob Rosen

Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA

UCLA



Jacobian: Frame of Representation - 3R Example

|R]

o O O
o O O
o O O

|R]

o O O
o O O
o O O

% convert 4J4_VP to @J4_VP
18 _VP=[R@_4 zeros(3,3); zeros(3,3) R@_4]%*14_VP;
Je_VP=simplify(J@_VP,58)

14 WP = Je VP =
{ lsin(t, +15) + Lsin(es) Lsin() 00 0)
—[, cos(t, + 1;) — l,cos(t;) —Lcos(ts) O 0 Iy cos(ty, + ;) + [, cos(t))
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
\ ~1 -1 -1 0/ \ |

(=L sin(t, +15) = I, sin(t,) =L, sin(t; +1.) 0 u\

|'r: 'L"{]'F-'u”|+f:} 0 0

0
0
0
I

0 -1
0 0
0

0
10/

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA
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Jacobian Methods of Derivation & the
Corresponding Reference Frame - Summary

Jacobian Transformation to Base Frame (Frame 0)
Matrix
Reference
Frame
Explicit 0 None
(Diff. the Forward I
Kinematic Eq.)
Iterative Velocity Eq. Transform Method 1: 0 N
VA NR Y
0 0pN
y W, =R @,
) J\ Transform Method 2:
0
R0 |
OJN (9) = |:‘\ 0 :| ‘\JN(H)
0 JR
Iterative Force Eq. Transpose N N +T T
J N — "/ N]
N yT
J N Transform




¢

Jacobian: Direct Differentiation

« This expression can be expanded to: N

= Cartesian Space / Operational Space

om [A,
_;?T{-"R By X = [!:]

0 ] :| Euler Angles

T3

6x1

6XN
P =Jp(q)q
We = Jﬂ[qjq

N% ) I—‘%

UCLA



Jacobian: Direct Differentiation

pe =Jprla)q (3.2)

We = Jﬁ{q}q {33)
In (3.2) Jp is the (3 x n) matrix relating the contribution of the joint veloc-
ities ¢ to the end-effector linear velocity p_, while in (3.3) Jp is the (3 x n)
matrix relating the contribution of the joint velocities ¢ to the end-effector
angular velocity w.. In compact form, (3.2), (3.3) can be written as

=

e = [ i] — J(a)i (3.4

which represents the manipulator differential kinematics equation. The (6 xn)
matrix J is the manipulator geometric Jacobian

J = HE] ., (3.5)

which in general is a funetion of the joint variables.




Jacobian: Direct Differentiation

TO 4 =

cos(ty + 1.+ 13)
sin(t; + 1, + 13)
0
0

0T

sin(t,+t,+t;) 0O IJCDSU,+-@}-+!]CUSU]ﬂ
—cos(ty+t,+1t;) O | Lisin(t;, +1,) + [ sin(t;)
0 ~1 —d,
0 0 1

Px

P |
Py

= |, sin(t, +t,) +1,sin(t)

=| [I, cos(t, +t,)—1, cos(t)]t, +I, cos(t, + t,)]L,

P,

1, cos(t, +t,) +1, cos(t,) |

—d, |
[, sin(t, +t,) =, sin(t)]t, +[-1, sin(t, +t,)t,”

—d,

UCLA



Jacobian: Direct Differentiation (Jp)

~—t+,
N

Px
Py

P, |

Py
Py

b,

Py
Py

1, cos(t, +t,) +1, cos(t,) |
|, sin(t, +t,) +1;sin(t)

__(j4

:[—IZ sin(t, +t,) -1, sin(tl_)]t'1 +[-1, sin(t, +t,)]E, |
[1, cos(t, +t,) —1 cos(t)]t, +[I, cos(t, + t,)]t,

—d,

b,

(-1, sin(t, +t,) -1 sin(t)) (-, sin(t,+t,)) 0 O
(I, cos(t, +t,)—1,cos(t)) (l,cos(t,+t,)) O O

0 0 0 1

J8_VP =

A

O. .
-b w

[

—bLsin(f, +1,) = I, sin(t,) —=Lsin(f, +1,) 0 0

Lcos(t, +¢,) + 1 coslr,) Lcosit,+1) 0 0

0

] 0 -1

0
0
I

0 00 | —

oo o JUCLA




Jacobian: Direct Differentiation (Jo) we = Jolq)i
- _WX_ i 0 i
WX
W, :JO[Q] Wy : .O .
W, 6,+6,+0,+0
W, S o
: N -| 6
" 4 w,] [[0O 0 0 O 91
X f )
w, |43 W, |<|0 0 0 0|
& w,|[[1110]°7°
W, . e -1 d
- d, | V4
Je_ VP =
[ —Lsin(t, +1,) — I, sin(r,) —Lsin(f, +1,) 0 0\
Lcos(t, +¢) + 1 coslr,)  Lcosit,+1) 0 0
0 0 0 —1
0 0 0 0
0 0 0 0
\ | | 1 0

UCLA



Jacobian: Direct Differentiation

We = Jﬂ{q}q
Je_\P =
(L sin(t, + 1) = [ sin(t,) —Lsin(t, +1,) 0 0 \
l,cos(ty +1,) +{,cos(t;) Leosity,+5,) 0 0
J — J-P 0 0 0 -1
0 0 0 0
J‘j 0 0 0 0

1 1 ]ﬂ)'




Jacobian: Direct Differentiation

In summary, the Jacobian in (3.5) can be partitioned into the (3 x 1)
column vectors jp; and j,, as

Jp1 JpPn
J— o -. (3.29)

Jo JOon

where
3151] for a prismatic joint
jﬁ:] _ )L | (3.30)
Oi Zi-1 X ,{sz N pi—l}] for a revolute joint.
i—1

The expressions in (3.30) allow Jacobian computation in a simple, systematic
way on the basis of direct kinematics relations. In fact, the vectors z;,_,, p,
and p, , are all functions of the joint variables. In particular:

UCLA



Jacobian: Direct Differentiation

e =z, ; is given by the third column of the rotation matrix R?— ., le.,
zio1=Ri(q1) ... Ri_1(gi-1)=0 (3.31)

where zo =[0 0 1]7 allows the selection of the third column.

e p_ is given by the first three elements of the fourth column of the trans-
formation matrix TY, i.e., by expressing P, in the (4 x 1) homogeneous
form

Pe = Al(q1) ... A7 (42)Po (3.32)
where p, =[0 0 0 1]7 allows the selection of the fourth column.

e p, , is given by the first three elements of the fourth column of the trans-
formation matrix T _,, i.e., it can be extracted from

ﬁz’—i - ‘4'[1:1{'5}1} e ‘4'2:-‘]?{‘?1'—1}ﬁ[j- (3.33}

UCLA



31—1] for a prismatic joint
JP:’] _J L 0

Jacobian: Direct Differentiation [ | -
Joi Zio1 [x (pe —pi_l)]

for a revolute joint.

| Zi—1
Te_1l =
Re_1 = e 1 =
cosit) —sin(r) O 0 :
sin(r,)  cos(ry) 00 cos(t,) —sin(r) |0 0
0 0 1.0 sin(t;)  cos(t;) |0 0
i 0 0 1 0 0 14 |
Te 2 = R@_2 = 70_2 =
r C{JS“; + l'z_] _Si[1[FF =+ ?‘3}' [.}\ ()
cos(t, + 1) —sin(f +1) 0 [ cos(r) . 0
sin(ty + 1) cos(fy+6) 0 4 sin(r) Sl[]“; + FI:I r'1"'[}':"1"“! + 73:' 0
0 0 10 0 0 1, I
0 0 v l Sy 76 3 =
Te_ 3 = L
Cosity + 1+ 1;) —sinlt, + 1.+ 0 0
cos(ty +t+1;) —sin(f+t+1¢6) 0 Leosity +6) + 1, cosin) .
e o R sin{t, +t,+t;) cosity,+t,+1¢) |0 0
sin(t, + -+ ;) cos(t, +t,+t;)0 O Lsinlt, + ) + 1, sin() - - - T |
0 0 I 0 0 0 I
u U u | RO 4 = 7o 4 =
Te 4 =
cos(ty +t,+ 1) sinlty +t,+85) |0 0
cos(ty+1+13)  sinlf,+6+06)0 0 Leos(n +16)+ 1 cos(n) sin[r; Tty !3] —-.:::r:s{.rl +1, +I_1_,} 0 ]
sin(fy +fa+ ;) —cosity +6 4160 0 Lsinln +6) 4+ sin(y) -1
0 ] -1 —d 0 0 -1
4
u u 1] |

%t2r : rotation matrix from the homogeneous matrix

RO_1 = t2r(T_1) Z6_1 = R@_1(1:3,3)
RE_2 = t2r(Te_2) "Z0_2 = RB_2(1:3,3)
RO_3 = t2r(Te_3) Z8_3 = RO_3(1:3,3)
RO_4 = t2r(TO_4) Z8_4 = R@_4(1:3,3)



Jacobian: Direct Differ|””

Te 1 =

cos(t) =sin(r) 0

sin(r,)  coslr) 0
0 ] 1
i 1] 01
Te 2 =

cos(ry + 1) =sin(t + 60 0 ) cosly
sinfr, + ;) cos(ry+16,) 0 ) sinfr)
0 0 1 0
0 0 0
T8 3 =

cosity + t +13)
sinlt, + >+ t3)
0
0
Te_4 =

cosll + I+ 15)
sinlf, + f+ f3)
0
0

—sin(t, + t, + t3)
cos(t, + t,+ t3)
0
0

sl + 15+ 15)
—cos(l + 1+ 13)
0
0

1, cos(t + t;) + 1, cos(t))
Lsin(t, + ) + 4, sin(#,)
0

o = o o

1

Ly cos(t, + 1) + 1, cos(ry)
Ly sin{t; +1,) + 1 sin(ty)
—dy
|

Zi—1
0

zio1 X {p. FIpi_1)

Zi—1

#%.t : translation
PE_1=Te 1.t
PE_2 =Te 2.t
PB_3 = Te_ 3.t
PB_4 = Te_4.t

for a prismatic joint

] for a revolute joint.

matrix from the homogeneous matrix



Jpi

Jacobian: Direct Differe =

| JOi |

Jp1= 2o 1 X (Pe — Do 1)

8 1 =

)
0
1

Pe_4 =
lycos(ty +15) + 1) cosihy)
{,sinit, + ;) + I} sinit))

_d_;

Jp2= 2o 2 X (Pe — Do _2)

ie_2 =

Rt
0
1

Po_4 =
Leos(ty +15) + 1 cosity)
sinit, + 1) + I, sinit))

_d_;

Jp3=2g 3 X (Pe — Do 3)

Z8_3 =

= (n) X (
0
!

Jpa=Zg 4

PO_4 =
Leos(ty +15) + 1 coslty)
sinit, + t;) + I, sinit,)

_d_;

Fé@_1 = 11

()

PO_2 =

oo ol

[, cos(ty) ) =
rl‘j Siﬂ[ﬁ}
0

Pa_3 =

lcos(ty + 1) + 1 cos(r)\ ) =
L sin(ty + t5) + I, sin(r,)

0

[Zisi % (p. =Py

=L sin(ty + t2) — 1, sin(1,)

Izmﬂ{h + t:]l + f| cﬂﬁih:’
0

12 =
=L sin(ty, + 1)
I, cos(t) + 1)
(0

13 =

g

for a prismatic joint

] for a revolute joint.
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Jpi

Jacobian: Direct Differe =

| JOi |

Jp1= 2o 1 X (Pe — Do 1)

8 1 =

)
0
1

Pe 4 =
leosity + 1) + [ cosin)
{,sinit, + ;) + I} sinit))

_d_;

Jp2= 2o 2 X (Pe — Do _2)

ie_2 =

Rt
0
1

PO 4 =
Leos(ty + 1) + 1 cosity)
sinit, + 1) + I, sinit))

_d_;

Jp3=2g 3 X (Pe — Do 3)

70 3 = PO 4 =
= 0 )(( Lcos(ty +15) + ) cos(ty)
0 lysin(t) + ;) + [ sinit,)
( 1 ) —d,
JPa= Zo 4
= z0.4 =

Fé@_1 = 11

()"

Pe_2 =
[, cos(t,) ) =
Iy sin(t)
0

oo ol

P@_3 =

lcos(ty + 1) + 1 cos(r)\ ) =
L sin(t, + t,) + I, sin(1,)

0

for a prismatic joint

L
[Zé—l X (Pe —Pi_1)

=L sin(ty + t2) — 1, sin(1,)

I; mS{n + f;] + f| cﬂﬁ[h]
0

2 =
=l sin(t; +15)
I, cos(t) + 1)

0

13 =

g

] for a revolute joint.
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Jacobian: Direct Differentiation

#%.t : translation matrix from the homogeneous matrix fprintf('Te_2 = ")

PO_1 = TO_1.t Te_2 = simplify(SCARA.A([1,2],q))
P@_2 = T 2.t fprintf('TE_3 = ')

PG 3 = T@ 3.t T@_3 = simplify(SCARA.A([1,2,3],9))
Pe_4 = Te_ 4.t fprintf('Te_4 = ')

Te_4 = simplify(SCARA.A([1,2,3,4],q))
%t2r . rotation matrix from the homogeneous matrix

RO_1 = t2r(Te_1)
RO_2 = t2r(Te_2)
RO_3 = t2r(Te_3)
RO_4 = t2r(Te_4)

7e_1 = Re_1(1:3,3)
Z6_2 = RO_2(1:3,3)
76_3 = Re_3(1:3,3)
70 4 = RO_4(1:3,3)

J1 = cross(Ze_1,(P@_4-Pe_1)) % Column:1, Row:1-3 % for a revolute joint
J2 = cross(Z6_2,(PO_4-P0_2)) % Column:2, Row:1-3 % for a revolute joint
13 = cross(Z0_3,(P@_4-P8_3)) % Column:3, Row:1-3 % for a revolute joir?*

J4 = Ze_4 % Column:4, Row:1-3 %for a prismatic joint R e
R2_1 = transpose(R1_2);
R3_2 = transpose(R2_3);
18_DD = simplify(Je_pD)

UCLA



]_llpl Jp, Jp, ]P4]

Jacobian: Direct Differentiation Jo, Jo, Jos o,

1= Jz = Jim 14
—bysin(ty + t2) — I, sin(t,) =bsin(t; + 1) 0 0
I cos(ty, + 1) + I, cosit,) [, cos(t, + 1) 0 ( 0 )
0 0 g -1
18_0D =
I/-f3 sin(t, 4+ 1,) — I, sin(r,) =hLsin(f, +5,) 0 0
Leos(ty+ ) + [jcos(tyy  Leos(t +r,) 0 0O
0 ) 0 _—1
0 0 0 0
0 0 0 0
l\ | | 10/
Ze 1 = 202 = Z0_3 = I8 4 =
0 0 0 0
0 0 1] 0
I 1 1 -1
[z . L.
“D l] for a prismatic joint
[JP:‘] _J L
Joi [ zi_1 %X (p. — p. .
o i1 X (Pe = Pi—1) for a revolute joint. UCLA
| Zi—1




Jacobian - Comparison

J4_ WP =
[ sin(r; + 15) + L sin(y) Lsin(r;) 0
=l coslty + i5) = L coslis) —hcos(i;) O

0 0 0

0 0 0

0 0 0

-1 -1 -1

Ja VP =
—Lsin(t, + 6) — I, sin(¢,) =L sinlr, + 1)

lyeos(f) + 1) + 1, cos(t,)  Lcos(t + 1)

0 0
0 0
0 0
1 I

0

0
0

0 0
0 0

Ja DD =
=Lsin(r, +t,) =1, sin(t) =Lsin(r + 1)
bcos(t, + 1) + 1, cos(ry)  Leos(t, +1,)

0 0
0 0
0 0
1 1

0
0

0
0
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Jacobian Methods of Derivation & the
Corresponding Reference Frame - Summary

Jacobian Transformation to Base Frame (Frame 0)
Matrix
Reference
Frame
Explicit 0 None
(Diff. the Forward I
Kinematic Eq.)
Iterative Velocity Eq. Transform Method 1: 0 N
VA NR Y
0 0pN
y W, =R @,
) J\ Transform Method 2:
0
R0 |
OJN (9) = |:‘\ 0 :| ‘\JN(H)
0 JR
Iterative Force Eq. Transpose N N +T T
J N — "/ N]
N yT
J N Transform




Summary

v' Jacobian with SCARA example
* Velocity propagation
* Direct differentiation

v' Frame of Representation
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