

MAE263B: Dynamics of Robotic Systems Discussion Section – Week5

: Jacobian (SCARA)

Seungmin Jung 02.07.2020.

□ Jacobian with SCARA example

- Velocity propagation
- Direct differentiation
- □ Frame of Representation

- A robot is often used to manipulate object attached to its tip (end effector).
- The location of the robot tip may be specified using one of the following descriptions:

A minimal representation of orientation - Euler angles

• As an example, consider a transformation that uses ZYZ Euler angles $\underline{\phi}_e = \left[\varphi, \vartheta, \psi\right]^T$

Fig. 3.8. Rotational velocities of Euler angles ZYZ in current frame

$$\phi = \begin{bmatrix} \varphi \\ \vartheta \\ \psi \end{bmatrix}$$

Siciliano, et al. Robotics: Modelling, Planning, and Control. Sec. 3.6. London: Springer-Verlag, 2009.

Relationship between $\underline{\omega}_e$ and $\underline{\phi}_e$

Analytical Jacobian

- In order to design controllers in operational space, we must use the analytical Jacobian $J_A(\underline{q})$, a transformed version of the geometric Jacobian J(q).
 - The analytical Jacobian is used in both Jacobian transpose control and Jacobian inverse control.

$$\begin{aligned} \mathbf{J}_A(\mathbf{q}) &= \frac{\partial \mathbf{k}(\mathbf{q})}{\partial \mathbf{q}} & or \quad \mathbf{J} &= \mathbf{T}_A(\phi) \mathbf{J}_A \\ \text{where} \quad \mathbf{T}_A(\phi_e) &= \begin{bmatrix} \mathbf{I} & \mathbf{O} \\ \mathbf{O} & \mathbf{T}(\phi_e) \end{bmatrix} \end{aligned}$$

Comments on $\underline{\omega}_e$ and $\underline{\dot{\phi}}_e$

- The meaning of $\underline{\omega}_e$ is more intuitive than that of $\underline{\phi}_e$.
 - $\underline{\omega}_e$ represents components of angular velocity with respect to a fixed base frame.
 - $\underline{\phi}_e$ represents non-orthogonal components of angular velocity with respect to a frame that varies as the end-effector orientation varies.
- The integral of $\underline{\phi}_e$ over time yields $\underline{\phi}_e$, but the integral of $\underline{\omega}_e$ does NOT have a clear physical interpretation.
- In general, <u>w</u>_e ≠ <u>φ</u>_e (and J(<u>q</u>) ≠ J_A(<u>q</u>)) unless you are considering a special case in which all DOFs cause rotations about the <u>same</u> fixed axis in space (e.g. z-axis for planar arm)

Siciliano, et al. Robotics: Modelling, Planning, and Control. Sec. 3.6. London: Springer-Verlag, 2009.

Kinematics Relations - Forward & Inverse

• The robot kinematic equations relate the two description of the robot tip location

UCLA

UCLA

Jacobian Matrix - Introduction

- The velocity relationship
 - : The relationship between the joint angle rates ($\underline{\dot{\theta}}_N$) and the translation and rotation velocities of the end effector ($\underline{\dot{x}}$).

$$\underline{\dot{x}} = J(\underline{\theta})\underline{\dot{\theta}}$$

 The relationship between the robot joint torques (<u>τ</u>) and the forces and moments (<u>F</u>) at the robot end effector (Static Conditions).

$$\underline{\tau} = J(\underline{\theta})^T \underline{F}$$

Jacobian Matrix - Calculation Methods

Jacobian Matrix - Introduction

4

A2

A

• In the field of robotics the Jacobian matrix describe the relationship between the joint angle rates $(\underline{\dot{\theta}}_N)$ and the translation and rotation velocities of the end effector $(\underline{\dot{x}})$. This relationship is given by:

$$\begin{array}{c} v_{\downarrow} \\ v_{y} \\ v_{z} \\ w_{x} \\ w_{y} \\ w_{y} \end{array} \right\} \begin{array}{c} \begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{y} \\ \dot{z} \\ \dot{z} \\ \dot{\theta}_{x} \\ \dot{\theta}_{y} \end{array} \\ \dot{\underline{\theta}} = J(\underline{\theta})^{-1} \underline{\dot{x}}$$

$$\dot{\theta}_2$$
 $\dot{\theta}_3$ $\dot{\theta}_3$ $\dot{\theta}_3$ $\dot{\theta}_4$ $\dot{\theta}_2$ $\dot{\theta}_1$ $\dot{\theta}_2$ $\dot{\theta}_2$ $\dot{\theta}_1$ $\dot{\theta}_2$ $\dot{\theta}_2$ $\dot{\theta}_1$ $\dot{\theta}_2$ $\dot{\theta}_2$ $\dot{\theta}_1$ $\dot{\theta}_1$ $\dot{\theta}_2$ $\dot{\theta}_1$ $\dot{\theta}_1$ $\dot{\theta}_2$ $\dot{\theta}_1$ $\dot{\theta}_2$ $\dot{\theta}_1$ \dot

Jacobian Matrix - Introduction

- - is a 6x1 vector of the end effector linear and angular velocities Х
 - $-J(\theta)$ is a 6xN Jacobian matrix
 - is a Nx1 vector of the manipulator joint velocities θ_{N}
 - is the number of joints N

• The homogeneous transform matrix provides a complete description of the linear and angular position relationship between adjacent links.

$${}_{i-1}^{i}T = \begin{bmatrix} {}^{i}R & {}^{i}P_{i-1} \\ 0 & 1 \end{bmatrix}$$

• These descriptions may be combined together to describe the position of a link relative to the robot base frame {0}.

 ${}^{o}_{i}T = {}^{o}_{1}T {}^{1}_{2}T \cdots {}^{i-1}_{i}T$

Velocity Propagation

- Given: A manipulator A chain of rigid bodies each one capable of moving relative to its neighbor
- Problem: Calculate the linear and angular velocities of the link of a robot
- Solution (Concept): Due to the robot structure (serial mechanism) we can compute the velocities of each link in order starting from the base.

The velocity of link *i*+1

- = The velocity of link *i*
 - + whatever new velocity components were added by joint i+1

٠

Velocity Propagation – Intuitive Explanation

- Three Actions
 - The origin of frame B moves as a function of time with respect to the origin of frame A
 - Point Q moves with respect to frame B
 - Frame B rotates with respect to frame A along an axis defined by ${}^{A}\Omega_{B}$
 - Linear and Rotational Velocity – Vector Form ${}^{A}V_{Q} = {}^{A}V_{BORG} + {}^{A}_{B}R^{B}V_{Q} + {}^{A}\Omega_{B} \times {}^{A}_{B}R^{B}P_{Q}$ – Matrix Form ${}^{A}V_{Q} = {}^{A}V_{BORG} + {}^{A}_{B}R^{B}V_{Q} + {}^{A}_{B}\dot{R}_{\Omega} \left({}^{A}_{B}R^{B}P_{Q} \right)$

Velocity Propagation – Intuitive Explanation

- Three Actions
 - The origin of frame B moves with respect to the origin of frame A
 - Point Q moves with respect to frame B
 - Frame B rotates with respect to frame A about an axis defined by ${}^{A}\Omega_{B}$

 $V_Q = {}^{A}V_{BORG} + {}^{A}_{B}R^{B}V_Q + {}^{A}\Omega_B \times {}^{A}_{B}R^{B}P_Q$

$${}^{A}V_{Q} = {}^{A}V_{BORG} + {}^{A}_{B}R^{B}V_{Q} + {}^{A}_{B}\dot{R}_{\Omega}\left({}^{A}_{B}R^{B}P_{Q}\right)$$

Linear Velocity - Rigid Body

- *Given:* Consider a frame {B} attached to a rigid body whereas frame {A} is fixed. The orientation of frame {A} with respect to frame {B} is not changing as a function of time ${}^{A}_{B}\dot{R} = 0$
- **Problem:** describe the motion of of the vector ${}^{B}P_{Q}$ relative to frame {A}
- Solution: Frame {B} is located relative to frame {A} by a position vector ${}^{A}P_{BORG}$ and the rotation matrix ${}^{A}_{B}R$ (assume that the orientation is not changing in time ${}^{A}_{B}\dot{R} = 0$) expressing both components of the velocity in terms of frame {A} gives

$${}^{A}V_{Q} = {}^{A}V_{BORG} + {}^{A}({}^{B}V_{Q}) = {}^{A}V_{BORG} + {}^{A}_{B}R^{B}V_{Q}$$

- As with any vector, a velocity vector may be described in terms of any frame, and this frame of reference is noted with a leading superscript.
- A velocity vector <u>computed</u> in frame {B} and <u>represented</u> in frame {A} would be written

 ${}^{A}V_{Q} = {}^{A}V_{BORG} + {}^{A}_{B}R^{B}V_{Q} + {}^{A}\Omega_{B} \times {}^{A}_{B}R^{B}P_{Q}$

$${}^{A}V_{Q} = {}^{A}V_{BORG} + {}^{A}_{B}R^{B}V_{Q} + {}^{A}_{B}\dot{R}_{\Omega}\left({}^{A}_{B}R^{B}P_{Q}\right)$$

Angular Velocity - Rigid Body

- *Given:* Consider a frame {B} attached to a rigid body whereas frame {A} is fixed. The vector ${}^{B}P_{Q}$ is constant as view from frame {B} ${}^{Q}{}^{B}V_{Q} = 0$
- Problem: describe the velocity of the vector^B P_Q representing the the point Q relative to frame {A}
- Solution: Even though the vector ${}^{B}P_{Q}$ is constant as view from frame {B} it is clear that point **Q** will have a velocity as seen from frame {A} due to the rotational velocity ${}^{A}\Omega_{B}$

The figure shows to instants of time as the vector
$${}^{A}P_{Q}$$
 rotates around ${}^{A}\Omega_{B}$.
This is what an observer in frame {A}

 ${}^{A}V_{Q} = {}^{A}V_{BORG} + {}^{A}_{B}R^{B}V_{Q} + {}^{A}\Omega_{B} \times {}^{A}_{B}R^{B}P_{Q} \qquad {}^{A}V_{Q} = {}^{A}V_{BORG} + {}^{A}_{B}R^{B}V_{Q} + {}^{A}_{B}\dot{R}_{\Omega}\left({}^{A}_{B}R^{B}P_{Q}\right)$

Angular Velocity - Rigid Body - Intuitive Approach

• The Magnitude of the differential change is

would observe.

$$\left|\Delta^{A} P_{Q}\right| = \left(\left|^{A} \Omega_{B}\right| \Delta t\right) \left|^{A} P_{Q}\right| \sin \theta\right)$$

• Using a vector cross product we get

$$\frac{\Delta^A P_Q}{\Delta t} = {}^A V_Q = {}^A \Omega_B \times {}^A P_Q$$

Simultaneous Linear and Rotational Velocity

- The final results for the derivative of a vector in a moving frame (linear and rotation velocities) as seen from a stationary frame
- Vector Form

$${}^{A}V_{Q} = {}^{A}V_{BORG} + {}^{A}_{B}R^{B}V_{Q} + {}^{A}\Omega_{B} \times {}^{A}_{B}R^{B}P_{Q}$$

• Matrix Form

$${}^{A}V_{Q} = {}^{A}V_{BORG} + {}^{A}_{B}R^{B}V_{Q} + {}^{A}_{B}\dot{R}_{\Omega}\left({}^{A}_{B}R^{B}P_{Q}\right)$$

Simultaneous Linear and Rotational Velocity

- Linear and Rotational Velocity – Vector Form ${}^{A}V_{Q} = {}^{A}V_{BORG} + {}^{A}_{B}R^{B}V_{Q} + {}^{A}\Omega_{B} \times {}^{A}_{B}R^{B}P_{Q}$ – Matrix Form ${}^{A}V_{Q} = {}^{A}V_{BORG} + {}^{A}_{B}R^{B}V_{Q} + {}^{A}_{B}\dot{R}_{\Omega}\left({}^{A}_{B}R^{B}P_{Q}\right)$
- Angular Velocity
 - Vector Form

$${}^{A}\Omega_{C} = {}^{A}\Omega_{B} + {}^{A}_{B}R^{B}\Omega_{C}$$

Matrix Form

 ${}^{A}_{C}\dot{R}_{\Omega} = {}^{A}_{B}\dot{R}_{\Omega} + {}^{A}_{B}R^{B}_{C}\dot{R}^{A}_{\Omega B}R^{T}$

٠

Velocity of Adjacent Links - Summary

Angular Velocity

The velocity of link *i*+1

= The velocity of link *i*

+ whatever new velocity components were added by joint i+1

• Therefore the recursive expressions for the adjacent joint linear and angular velocities can be used to determine the Jacobian in the end effector frame

$${}^{N}\dot{X} = {}^{N}J(\theta)\dot{\theta}$$

• This equation can be expanded to:

 The result is a <u>recursive equation</u> that shows the angular velocity of one link in terms of the angular velocity of the previous link plus the relative motion of the two links.

$${}^{i+1}\omega_{i+1} = {}^{i+1}_{i}R^{i}\omega_{i} + \begin{bmatrix} 0\\0\\\dot{\theta}_{i+1} \end{bmatrix}$$

• Since the term ${}^{i+1}\omega_{i+1}$ depends on all previous links through this recursion, the angular velocity is said to propagate from the base to subsequent links.

• From the relationship developed previously

$$\longrightarrow {}^{A}\Omega_{C} = {}^{A}\Omega_{B} + {}^{A}_{B}R^{B}\Omega_{C}$$

• we can re-assign link names to calculate the velocity of any link *i* relative to the base frame {0}

 $\begin{cases} A \to 0 \\ B \to i \\ C \to i+1 \end{cases}$

$${}^{0}\Omega_{i+1} = {}^{0}\Omega_{i} + {}^{0}_{i}R^{i}\Omega_{i+1}$$

• By pre-multiplying both sides of the equation by ${}^{i+1}_{0}R$, we can convert the frame of reference for the base {0} to frame {*i*+1}

Using the recently defined notation, we have ٠

 $^{i+1}\omega_{i+1}$ - Angular velocity of frame {*i*+1} measured relative to the robot base, and expressed in frame $\{i+1\}$ - Recall the car example ${}^{c}[{}^{w}V_{c}] = {}^{c}V_{c}$

 $^{i+1}\omega_{i+1} = \overset{i+1}{\overset{i+1}{\overset{}}}\omega_i + \overset{i+1}{\overset{i+1}{\overset{}}}R^i\Omega_{i+1}$

- $^{i+1}\omega_{i}$ - Angular velocity of frame $\{i\}$ measured relative to the robot base, and expressed in frame $\{i+1\}$
- $_{i}^{i+1}R^{i}\Omega_{i+1}$ Angular velocity of frame $\{i+1\}$ measured relative to frame $\{i\}$ and expressed in frame $\{i+1\}$

$$^{i+1}\omega_{i+1} = \overset{i+1}{\overset{i+1}{\overset{}}}\omega_i + \overset{i+1}{\overset{i}{\overset{}}}R^i\Omega_{i+1}$$

Angular velocity of frame {i} measured relative to the robot base, expressed in frame {i+1}

$${}^{i+1}\omega_{i} = {}^{i+1}R^{i}\omega_{i}$$

$${}^{i+1}R \left[{}^{i}R^{i} \Re \right]$$

$$^{i+1}\omega_{i+1} = {}^{i+1}\omega_i + {}^{i+1}R^i\Omega_{i+1}$$

- Angular velocity of frame {*i*+1} measured (differentiate) in frame {*i*} and represented (expressed) in frame {*i*+1}
- Assuming that a joint has only 1 DOF. The joint configuration can be either revolute joint (*angular velocity*) or prismatic joint (Linear velocity).
- Based on the frame attachment convention in which we assign the Z axis pointing along the *i*+1 joint axis such that the two are coincide (rotations of a link is preformed only along its Z- axis) we can rewrite this term as follows:

SCARA – RRRP – DH Parameter (Modified form)

<i>i-1</i>	i	$lpha_{i-1}$	a_{i-1}	d_i	$ heta_i$
0	1	0	0	0	θ_1
1	2	0	l_1	0	θ_2
2	3	0	l_2	0	θ_3
3	4	180°	0	d_4	0

SCARA – RRRP

syms pi

```
L(1) = Link('revolute','d',0,'a',0,'alpha',0,'modified');
L(2) = Link('revolute','d',0,'a',l1,'alpha',0,'modified');
L(3) = Link('revolute','d',0,'a',l2,'alpha',0,'modified');
L(4) = Link('prismatic','alpha',pi,'theta', 0,'a',0,'modified')
```

```
SCARA = SerialLink(L, 'name', 'SCARA')
```

For plot [mm]

```
l1 = 0.3; l2=0.3; pi= 3.14;
t1 =0; t2=0; t3=0; d4=0.2;
th= [t1 t2 t3 d4];
L_P(1) = Link('revolute','d',0,'a',0,'alpha',0,'modified');
L_P(2) = Link('revolute','d',0,'a',11,'alpha',0,'modified');
L_P(3) = Link('revolute','d',0,'a',12,'alpha',0,'modified');
L_P(4) = Link('prismatic','alpha',pi,'theta', 0,'a',0,'modified')
SCARA_P = SerialLink(L_P,'name','SCARA')
figure()
SCARA_P.plot(th,'workspace',[-1 1 -1 1 -1 1])
```

SCARA:: 4 axis, RRRP, modDH, slowRNE

+-	+-			+		+
İ	jİ	theta	d	a	alpha	offset
ļ	1	q1	0	0	0	0
	2	q2	0	11	0	0
	3	q3	0	12	0	0
	4	0	q4	0	pi	0
+-	+-					

SCARA – RRRP – Forward Kinematics

-	T0_1 =
q = [t1 t2 t3 d4]	$\left(\cos(t_1) - \sin(t_1) 0 0\right)$
TO 1 = CCADA A ([1] a)	$\sin(t_1) = \cos(t_1) = 0$
$\frac{10}{12} = SCARA.A([1],q)$	
$\prod_{i=2}^{n} = \text{SCARA} \cdot A([2], q)$	
$\frac{12}{3} = SCARA.A([3],q)$	T1 2 =
13.4 = SCARA.A([4],q)	
$10_4 = \text{simplity}(\text{SCARA.A}([1 2 3 4],q))$	$\left(\cos(t_2) - \sin(t_2) 0 l_1\right)$
	$\sin(t_2) \cos(t_2) = 0$
TO 2 = simplify(SCARA A([1 2] a))	T2 3 =
$TO_2 = simplify(SCARA A([1,2,3],q))$	-
10_9 - 31mpiiiy(3cAnA.A([1,2,9],4/)	$\left(\cos(t_3) - \sin(t_3) 0 l_2\right)$
T0_2 =	$\sin(t_3) = \cos(t_3) = 0 = 0$
	0 0 1 0
$\left(\cos(t_1+t_2) - \sin(t_1+t_2) 0 l_1\cos(t_1)\right)$	
$\sin(t_1 + t_2) = \cos(t_1 + t_2) = 0 = l_1 \sin(t_1)$	T3_4 =
0 0 1 0	
	$(1 \ 0 \ 0 \ 0)$
T0_3 =	0 -1 0 0
	$0 0 -1 -d_4$
$\left(\cos(t_1 + t_2 + t_3) - \sin(t_1 + t_2 + t_3) - 0 - l_2\cos(t_1 + t_2) + l_1\cos(t_1)\right)$	
$\sin(t_1 + t_2 + t_3) \cos(t_1 + t_2 + t_3) 0 l_2 \sin(t_1 + t_2) + l_1 \sin(t_1)$	T0_4 =
	$\cos(t_1 + t_2 + t_3) = \sin(t_1 + t_2 + t_3) = 0 = l_2 \cos(t_1 + t_2) + l_1 \cos(t_1)$
	$\sin(t_1 + t_2 + t_3) - \cos(t_1 + t_2 + t_3) = 0 = l_2 \sin(t_1 + t_2) + l_1 \sin(t_1)$
	$0 0 -1 -d_4$

Simplify Function

 $T0_4 = SCARA.A([1 2 3 4],q)$ $T0_4 =$ $\begin{aligned} \cos(t_3) \,\sigma_2 - \sin(t_3) \,\sigma_3 & \sigma_1 & 0 \quad l_2 \,\sigma_2 + l_1 \cos(t_1) \\ \sigma_1 & \sin(t_3) \,\sigma_3 - \cos(t_3) \,\sigma_2 & 0 \quad l_2 \,\sigma_3 + l_1 \sin(t_1) \end{aligned}$ 0 0 -1 $-d_4$ 0 0 0 1 where $\sigma_1 = \cos(t_3) \,\sigma_3 + \sin(t_3) \,\sigma_2$ $\sigma_2 = \cos(t_1)\cos(t_2) - \sin(t_1)\sin(t_2)$ $\sigma_3 = \cos(t_1)\sin(t_2) + \cos(t_2)\sin(t_1)$

simplified_T0_4 = simplify(SCARA.A([1 2 3 4],q))

simplified_T0_4 =

ĺ	$\cos(t_1 + t_2 + t_3)$	$\sin(t_1 + t_2 + t_3)$	0	$l_2 \cos(t_1 + t_2) + l_1 \cos(t_1)$	١
l	$\sin(t_1 + t_2 + t_3)$	$-\cos(t_1+t_2+t_3)$	0	$l_2 \sin(t_1 + t_2) + l_1 \sin(t_1)$	
l	0	0	-1	$-d_4$	
(0	0	0	1 /	ļ

• The recursive equation for the Angular Velocity is

$$^{i+1}\omega_{i+1} = {}^{i+1}_{i}R {}^{i}\omega_{i} + \rho \begin{bmatrix} 0\\0\\\dot{\theta}_{i+1} \end{bmatrix}, \rho = 0 \text{ in the prismatic joint}$$

 $^{i}\rho = 1 \text{ in the revolute joint}$

 ${}^{i+1}_{i}R$ is the transpose of ${}^{i}_{i+1}R$ (${}^{i+1}_{i}R = {}^{i}_{(i+1}R)^{T}$) and ${}^{i}_{i+1}R = {}^{i}_{i+1}T(1:3,1:3)$ ${}^{i}_{i+1}R$ can be obtained from the transformation matrix in the forward kinematics.

SCARA example _ Jacobian: Velocity propagation

• The recursive equation for the Angular Velocity is

$$^{i+1}\omega_{i+1} = {}^{i+1}_{i}R {}^{i}\omega_{i} + \rho \begin{bmatrix} 0\\0\\\dot{\theta}_{i+1} \end{bmatrix}, \rho = 0 \text{ in the prismatic joint}$$

 $^{i}\rho = \mathbf{1} \text{ in the revolute joint}$

• The base frame does not move

$${}^{0}\omega_{0} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$$
 (The base frame does not move)

• Three revolute joints

$${}^{1}\omega_{1} = {}^{1}_{0}R {}^{0}\omega_{0} + \begin{bmatrix} 0 \\ 0 \\ \dot{\theta}_{1} \end{bmatrix} \qquad {}^{2}\omega_{2} = {}^{2}_{1}R {}^{1}\omega_{1} + \begin{bmatrix} 0 \\ 0 \\ \dot{\theta}_{2} \end{bmatrix} \qquad {}^{3}\omega_{3} = {}^{3}_{2}R {}^{2}\omega_{2} + \begin{bmatrix} 0 \\ 0 \\ \dot{\theta}_{3} \end{bmatrix}$$

• One prismatic joint

$${}^{4}\omega_{4} = {}^{4}_{3}R {}^{3}\omega_{3} + \begin{bmatrix} 0 \\ 0 \\ \dot{\theta}_{4} = 0 \end{bmatrix}$$

SCARA example _ Jacobian: Velocity propagation

· The recursive equation for the Angular Velocity is

$${}^{i+1}\omega_{i+1} = {}^{i+1}_{i}R {}^{i}\omega_{i} + \rho \begin{bmatrix} 0\\0\\\dot{\theta}_{i+1} \end{bmatrix}, \rho = 0 \text{ in the prismatic joint} \\ \rho = \mathbf{1} \text{ in the revolute joint}$$

· The base frame does not move

$${}^{0}\omega_{0} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$$
 (The base frame does not move)

· Three revolute joints

$${}^{1}\omega_{1} = {}^{1}_{0}R {}^{0}\omega_{0} + \begin{bmatrix} 0\\0\\\dot{\theta}_{1} \end{bmatrix} \qquad {}^{2}\omega_{2} = {}^{2}_{1}R {}^{1}\omega_{1} + \begin{bmatrix} 0\\0\\\dot{\theta}_{2} \end{bmatrix} \qquad {}^{3}\omega_{3} = {}^{3}_{2}R {}^{2}\omega_{2} + \begin{bmatrix} 0\\0\\\dot{\theta}_{3} \end{bmatrix}$$

One prismatic joint

$${}^{4}\omega_{4} = {}^{4}_{3}R {}^{3}\omega_{3} + \begin{bmatrix} 0 \\ 0 \\ \dot{\theta}_{4} = 0 \end{bmatrix}$$

% Angular Velocity Propagation w0 = [0; 0; 0;] w1 = [0; 0; dt1] % for a revolute joint w2 = R2_1*w1 + [0; 0; dt2;] % for a revolute joint w3 = simplify(R3_2*w2 + [0; 0; dt3;]) % for a revolute joint w4 = simplify(R4_3*w3)% for a prismatic joint

• The recursive equation for Linear Velocity is

$$^{i+1}v_{i+1} = {}^{i+1}_{i}R({}^{i}\omega_{i} \times {}^{i}P_{i+1} + {}^{i}v_{i}) + \rho \begin{bmatrix} 0\\0\\\dot{d} \end{bmatrix}, \rho = 1 \text{ in the prismatic joint}$$

 $^{i}\rho = \mathbf{0} \text{ in the revolute joint}$

• The base frame does not move

$${}^{0}\nu_{0} = \begin{bmatrix} 0\\0\\0\end{bmatrix}$$

• Three revolute joints

$${}^{1}v_{1} = {}^{1}_{0}R({}^{0}\omega_{0} \times {}^{0}P_{1} + {}^{0}v_{0})$$
$${}^{2}v_{2} = {}^{2}_{1}R({}^{1}\omega_{1} \times {}^{1}P_{2} + {}^{1}v_{1})$$
$${}^{3}v_{3} = {}^{3}_{2}R({}^{2}\omega_{2} \times {}^{2}P_{3} + {}^{2}v_{2})$$

• One prismatic joint

$${}^{4}v_{4} = {}^{4}_{3}R({}^{3}\omega_{3} \times {}^{3}P_{4} + {}^{3}v_{3}) + \begin{bmatrix} 0\\0\\d_{4} \end{bmatrix}$$

v0 = 3×1 SCARA example Jacobian: Velocity propagation v1 = he recursive equation for Linear Velocity is ${}^{i+1}v_{i+1} = {}^{i+1}_{l}R({}^{i}\omega_{l} \times {}^{i}P_{i+1} + {}^{i}v_{l}) + \rho \begin{bmatrix} 0\\0\\d \end{bmatrix}, \rho = 1 in the prismatic joint$ $\rho = 0 in the revolute joint$ $\begin{pmatrix} (l_{1}\sin(t_{2})) dt_{1} \\ (l_{1}\cos(t_{2})) dt_{1} \end{pmatrix}$ The recursive equation for Linear Velocity is The base frame does not move ${}^{0}v_{0} = \begin{bmatrix} 0\\0 \end{bmatrix}$ Three revolute joints $\begin{pmatrix} (\sin(t_3) \ (l_2 + l_1 \cos(t_2)) + l_1 \cos(t_3) \sin(t_2)) \ dt_1 + (l_2 \sin(t_3)) \ dt_2 \\ (\cos(t_3) \ (l_2 + l_1 \cos(t_2)) - l_1 \sin(t_2) \sin(t_3)) \ dt_1 + (l_2 \cos(t_3)) \ dt_2 \\ 0 \end{pmatrix}$ ${}^{1}v_{1} = {}^{1}_{0}R({}^{0}\omega_{0} \times {}^{0}P_{1} + {}^{0}v_{0})$ ${}^{2}v_{2} = {}^{2}_{1}R({}^{1}\omega_{1} \times {}^{1}P_{2} + {}^{1}v_{1})$ ${}^{3}v_{3} = {}^{3}_{2}R({}^{2}\omega_{2} \times {}^{2}P_{3} + {}^{2}v_{2})$ ${}^{4}v_{4} = {}^{4}_{3}R({}^{3}\omega_{3} \times {}^{3}P_{4} + {}^{3}v_{3}) + \begin{bmatrix} 0\\0\\d_{4} \end{bmatrix} \begin{pmatrix} dt_{1} l_{2} \sin(t_{3}) + dt_{2} l_{2} \sin(t_{3}) + dt_{1} l_{1} \sin(t_{2} + t_{3})\\dt_{1} l_{2} \cos(t_{3}) + dt_{2} l_{2} \cos(t_{3}) + dt_{1} l_{1} \cos(t_{2} + t_{3})\\0 \end{pmatrix}$ One prismatic joint % Linear Velocity Propagation $\begin{pmatrix} (l_1 \sin(t_2 + t_3) + l_2 \sin(t_3)) \, \mathrm{dt}_1 + (l_2 \sin(t_3)) \, \mathrm{dt}_2 \\ (l_1 \cos(t_2 + t_3) + l_2 \cos(t_3)) \, \mathrm{dt}_1 + (l_2 \cos(t_3)) \, \mathrm{dt}_2 \\ 0 \end{pmatrix}$ v0 = [0; 0; 0;]v1 = collect(R1 0*(cross(w0,P0 1)+v0),[dt1 dt2 dt3 dd4]) $\begin{array}{l} & (l_{1}\sin(t_{2}+t_{3})+l_{2}\sin(t_{3})) \\ & (l_{1}\sin(t_{2}+t_{3})+l_{2}\sin(t_{3}))$ v2 = collect(R2_1*(cross(w1,P1_2)+v1),[dt1 dt2 dt3 dd4])

SCARA example _ Jacobian: Velocity propagation

 $\begin{bmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \\ \dot{\theta}_3 \\ \dot{d}_4 \end{bmatrix}$

• The Jacobian ${}^{4}J_{4}$ is defined as

⁴*J*₄ is defined as
$$\begin{bmatrix} {}^4v_4 \\ {}^4\omega_4 \end{bmatrix} = \begin{bmatrix} {}^4J_4 \end{bmatrix}$$

• According to the definition
$$\begin{bmatrix} 4 v_4 \\ 4 \omega_4 \end{bmatrix} = \begin{bmatrix} 4 v_{4,1} \\ 4 v_{4,2} \\ 4 v_{4,3} \\ 4 w_{4,1} \\ 4 w_{4,2} \\ 4 w_{4,3} \end{bmatrix}$$
, $\begin{bmatrix} 4 v_{4,1} \\ 4 v_{4,2} \\ 4 v_{4,3} \\ 4 w_{4,1} \\ 4 w_{4,2} \\ 4 w_{4,3} \end{bmatrix} = \begin{bmatrix} 4 J_4 \end{bmatrix} \begin{bmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \\ \dot{\theta}_3 \\ \dot{d}_4 \end{bmatrix}$

SCARA example _ Jacobian: Velocity propagation

[JV4]=equationsToMatrix([v4],[dt1 dt2 dt3 dd4])
[JW4]=equationsToMatrix([w4],[dt1 dt2 dt3 dd4])
J4_VP=simplify([JV4;JW4])

$$\begin{array}{l} \mathsf{V4} = & \mathsf{JV4} = \\ \begin{pmatrix} (l_1 \sin(t_2 + t_3) + l_2 \sin(t_3)) \, \mathrm{dt}_1 + (l_2 \sin(t_3)) \, \mathrm{dt}_2 \\ (-l_1 \cos(t_2 + t_3) - l_2 \cos(t_3)) \, \mathrm{dt}_1 + (-l_2 \cos(t_3)) \, \mathrm{dt}_2 \\ & \mathrm{dd}_4 \end{array} \right) \qquad \qquad \begin{array}{l} \mathsf{JV4} = & \\ \begin{pmatrix} l_1 \sin(t_2 + t_3) + l_2 \sin(t_3) & l_2 \sin(t_3) & 0 & 0 \\ -l_1 \cos(t_2 + t_3) - l_2 \cos(t_3) & -l_2 \cos(t_3) & 0 & 0 \\ & 0 & 0 & 0 & 1 \end{array} \right)$$

$$\begin{pmatrix} 0 \\ 0 \\ -dt_1 - dt_2 - dt_3 \end{pmatrix}$$

 $JW4 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & -1 & -1 & 0 \end{pmatrix}$

$$\begin{aligned} \mathsf{D4_VP} &= \\ \begin{pmatrix} l_1 \sin(t_2 + t_3) + l_2 \sin(t_3) & l_2 \sin(t_3) & 0 & 0 \\ -l_1 \cos(t_2 + t_3) - l_2 \cos(t_3) & -l_2 \cos(t_3) & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & -1 & -1 & 0 \end{aligned} \end{aligned}$$

- The Jacobian provides the relationship between the end effector's Cartesian velocity measured relative to the robot base frame {0}
- For velocity expressed in frame {N}

 $^{N}\dot{X} = ^{N}J(\theta)\dot{\theta}$

• For velocity expressed in frame {0}

$${}^{0}\dot{X} = {}^{0}J(\theta)\dot{\theta}$$

٠

Jacobian: Frame of Representation

• Consider the velocities in a different frame {B}

$${}^{B}\dot{X} = \begin{bmatrix} {}^{B}v_{N} \\ {}^{B}\omega_{N} \end{bmatrix} = {}^{B}J(\theta)\dot{\theta}$$

• We may use the rotation matrix to find the velocities in frame {A}:

$${}^{A}\dot{X} = \begin{bmatrix} {}^{A}v_{N} \\ {}^{A}\omega_{N} \end{bmatrix} = \begin{bmatrix} {}^{A}R^{B}v_{N} \\ {}^{A}B^{B}\omega_{N} \end{bmatrix} \stackrel{\circ}{}_{G} \tau = \stackrel{\circ}{}_{A}\tau \stackrel{\circ}{}_{2}\tau \stackrel{\circ}{}_{3}\tau \stackrel{\circ}{}_{4}\tau \stackrel{\circ}{}_{5}\tau \stackrel{\circ}{}_{6}\tau$$

The Jacobian transformation is given by a rotation matrix

UCL

$$A\dot{X} = AJ(\theta)\dot{\theta} = BR_{J}^{A}BJ(\theta)\dot{\theta}$$

Jacobian: Frame of Representation

ΠΟΓ Δ

where ${}^{A}_{B}R_{J}$ is given by ٠ ${}^{A}J(\theta) = \begin{bmatrix} 0 & 0 & 0 \\ B & R \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} {}^{B}J(\theta)$ or equivalently,

Jacobian: Frame of Representation - 3R Example

% convert 4J4_VP to 0J4_VP
J0_VP=[R0_4 zeros(3,3); zeros(3,3) R0_4]*J4_VP;
J0_VP=simplify(J0_VP,50)

J4_VP =

/	$l_1 \sin(t_2 + t_3) + l_2 \sin(t_3)$	$l_2 \sin(t_3)$	0	0)	
	$-l_1\cos(t_2+t_3) - l_2\cos(t_3)$	$-l_2\cos(t_3)$	0	0	
	0	0	0	1	
	0	0	0	0	
	0	0	0	0	
١	-1	-1	-1	0/	

J0_VP =

($-l_2\sin(t_1+t_2) - l_1\sin(t_1)$	$-l_2\sin(t_1+t_2)$	0	0 \
	$l_2 \cos(t_1 + t_2) + l_1 \cos(t_1)$	$l_2\cos(t_1+t_2)$	0	0
	0	0	0	-1
	0	0	0	0
	0	0	0	0
ſ	1	1	1	0 /

UCLA

Jacobian Methods of Derivation & the Corresponding Reference Frame – Summary

Method	Jacobian Matrix Reference Frame	Transformati	ion to Base Frame (Frame 0)
Explicit (Diff. the Forward Kinematic Eq.)	$^{0}{oldsymbol{J}}_{N}$	None	
Iterative Velocity Eq.	$^{\scriptscriptstyle N}J_{\scriptscriptstyle N}$	Transform Method 1: 0 Transform Method 2: 0	${}^{0}v_{N} = {}^{0}_{N}R^{N}v_{N}$ ${}^{0}\omega_{N} = {}^{0}_{N}R^{N}\omega_{N}$ ${}^{0}J_{N}(\theta) = \left[{}^{0}_{N}R^{N} 0 \\ 0 & {}^{0}_{N}R \right] {}^{N}J_{N}(\theta)$
Iterative Force Eq.	$^{\scriptscriptstyle N}J_{\scriptscriptstyle N}^{\scriptscriptstyle T}$	Transpose / Transform	${}^{N}J_{N} = \begin{bmatrix} {}^{N}J_{N}^{T} \end{bmatrix}^{T}$ ${}^{O}J_{N}(\theta) = \begin{bmatrix} {}^{0}R & 0 \\ 0 & {}^{0}R \end{bmatrix} {}^{N}J_{N}(\theta)$

Jacobian: Direct Differentiation

$$\dot{p}_e = J_P(q)\dot{q} \tag{3.2}$$

$$\omega_e = J_O(q)\dot{q}. \tag{3.3}$$

In (3.2) J_P is the $(3 \times n)$ matrix relating the contribution of the joint velocities \dot{q} to the end-effector *linear* velocity \dot{p}_e , while in (3.3) J_O is the $(3 \times n)$ matrix relating the contribution of the joint velocities \dot{q} to the end-effector *angular* velocity ω_e . In compact form, (3.2), (3.3) can be written as

$$v_e = \begin{bmatrix} \dot{p}_e \\ \omega_e \end{bmatrix} = J(q)\dot{q} \tag{3.4}$$

which represents the manipulator differential kinematics equation. The $(6 \times n)$ matrix J is the manipulator geometric Jacobian

$$J = \begin{bmatrix} J_P \\ J_O \end{bmatrix},\tag{3.5}$$

which in general is a function of the joint variables.

Jacobian: Direct Differentiation

$$\begin{array}{c} \mathsf{T0_4} = \\ \begin{pmatrix} \cos(t_1 + t_2 + t_3) & \sin(t_1 + t_2 + t_3) & 0 \\ \sin(t_1 + t_2 + t_3) & -\cos(t_1 + t_2 + t_3) & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{array} \begin{array}{c} l_2 \cos(t_1 + t_2) + l_1 \cos(t_1) \\ l_2 \sin(t_1 + t_2) + l_1 \sin(t_1) \\ l_2 \sin(t_1 + t_2) + l_1 \sin(t_1) \\ -d_4 \end{array} \right) \end{array} \right)$$

$$\begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix} = \begin{bmatrix} l_2 \cos(t_1 + t_2) + l_1 \cos(t_1) \\ l_2 \sin(t_1 + t_2) + l_1 \sin(t_1) \\ -d_4 \end{bmatrix}$$
$$\begin{bmatrix} \dot{p}_x \\ \dot{p}_y \\ \dot{p}_z \end{bmatrix} = \begin{bmatrix} [-l_2 \sin(t_1 + t_2) - l_1 \sin(t_1)]\dot{t}_1 + [-l_2 \sin(t_1 + t_2)]\dot{t}_2 \\ [l_2 \cos(t_1 + t_2) - l_1 \cos(t_1)]\dot{t}_1 + [l_2 \cos(t_1 + t_2)]\dot{t}_2 \\ -\dot{d}_4 \end{bmatrix}$$

$$\omega_e = J_O(q)\dot{q}.$$

$$\begin{bmatrix} v_{x} \\ v_{y} \\ v_{z} \end{bmatrix} = J_{p} \begin{bmatrix} \dot{\theta} \end{bmatrix} \begin{bmatrix} p_{x} \\ p_{y} \\ p_{z} \end{bmatrix} = \begin{bmatrix} l_{2} \cos(t_{1} + t_{2}) + l_{1} \cos(t_{1}) \\ l_{2} \sin(t_{1} + t_{2}) + l_{1} \sin(t_{1}) \\ -d_{4} \end{bmatrix}$$

$$\begin{bmatrix} \dot{p}_{x} \\ \dot{p}_{y} \\ \dot{p}_{z} \end{bmatrix} = \begin{bmatrix} \dot{l}_{a} \begin{bmatrix} \dot{t}_{1} \\ \dot{t}_{2} \\ \dot{t}_{3} \\ \dot{d}_{4} \end{bmatrix} \begin{bmatrix} \dot{p}_{x} \\ \dot{p}_{y} \\ \dot{p}_{z} \end{bmatrix} = \begin{bmatrix} [-l_{2} \sin(t_{1} + t_{2}) - l_{1} \sin(t_{1})]\dot{t}_{1} + [-l_{2} \sin(t_{1} + t_{2})]\dot{t}_{2} \\ -\dot{d}_{4} \end{bmatrix} \begin{bmatrix} \dot{t}_{1} \\ \dot{t}_{2} \\ \dot{t}_{3} \\ \dot{d}_{4} \end{bmatrix}$$

$$\begin{bmatrix} \dot{p}_{x} \\ \dot{p}_{y} \\ \dot{p}_{z} \end{bmatrix} = \begin{bmatrix} (-l_{2} \sin(t_{1} + t_{2}) - l_{1} \cos(t_{1})]\dot{t}_{1} + [l_{2} \cos(t_{1} + t_{2})]\dot{t}_{2} \\ -\dot{d}_{4} \end{bmatrix}$$

$$\begin{bmatrix} \dot{p}_{x} \\ \dot{p}_{y} \\ \dot{p}_{z} \end{bmatrix} = \begin{bmatrix} (-l_{2} \sin(t_{1} + t_{2}) - l_{1} \sin(t_{1})) & (-l_{2} \sin(t_{1} + t_{2})) & 0 & 0 \\ (l_{2} \cos(t_{1} + t_{2}) - l_{1} \cos(t_{1})) & (l_{2} \cos(t_{1} + t_{2})) & 0 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} \dot{t}_{1} \\ \dot{t}_{2} \\ \dot{t}_{3} \\ \dot{d}_{4} \end{bmatrix}$$

$$\xrightarrow{30 \text{ VP = }}$$

Jacobian: Direct Differentiation (Jo)

$$\dot{p}_e = J_P(q)\dot{q}$$

$$\omega_e = J_O(q)\dot{q}.$$

$$\begin{bmatrix} w_{x} \\ w_{y} \\ w_{z} \end{bmatrix} = Jo \begin{bmatrix} \dot{\theta} \end{bmatrix}$$
$$\begin{bmatrix} w_{x} \\ w_{y} \\ w_{z} \end{bmatrix} = Jc \begin{bmatrix} \dot{t}_{1} \\ \dot{t}_{2} \\ \dot{t}_{3} \\ \dot{d}_{4} \end{bmatrix}$$

$$\begin{bmatrix} w_{x} \\ w_{y} \\ w_{z} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \dot{\theta}_{1} + \dot{\theta}_{2} + \dot{\theta}_{3} + 0 \end{bmatrix}$$
$$\begin{bmatrix} w_{x} \\ w_{y} \\ w_{z} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} \dot{\theta}_{1} \\ \dot{\theta}_{2} \\ \dot{\theta}_{3} \\ \dot{d}_{4} \end{bmatrix}$$

 $JO_VP = (-l_s \sin t)$

$(-l_2\sin(t_1+t_2)-l_1\sin(t_1))$		$-l_2\sin(t_1+t_2)$	0	0 \
$l_2 \cos(t_1 + t_2) + l_1 \cos(t_1)$		$l_2\cos(t_1+t_2)$	0	0
	0	0	0	-1
	0	0	0	0
	0	0	0	0
	1	1	1	0 /

Jacobian: Direct Differentiation

$$\boldsymbol{v}_e = \begin{bmatrix} \dot{\boldsymbol{p}}_e \\ \boldsymbol{\omega}_e \end{bmatrix} = \boldsymbol{J}(\boldsymbol{q}) \dot{\boldsymbol{q}}$$

$$\dot{p}_e = J_P(q)\dot{q}$$

 $\omega_e = J_O(q)\dot{q}.$

$$J = \begin{bmatrix} J_P \\ J_O \end{bmatrix}$$

J	0_1	VP	

$\left(\right)$	$-l_2 \sin(t_1 + t_2) - l_1 \sin(t_1)$ $l_2 \cos(t_1 + t_2) + l_1 \cos(t_1)$	$-l_2 \sin(t_1 + t_2)$ $l_2 \cos(t_1 + t_2)$	0 0	$0 \\ 0 \\ -1$
	0	0	0	0
	0	0	0	0
	1	1	1	0 /

In summary, the Jacobian in (3.5) can be partitioned into the (3×1) column vectors j_{Pi} and j_{Oi} as

$$J = \begin{bmatrix} \mathcal{I}_{P1} & \mathcal{I}_{Pn} \\ & \dots & \\ \mathcal{I}_{O1} & \mathcal{I}_{On} \end{bmatrix}, \qquad (3.29)$$

where

$$\begin{bmatrix} \jmath_{Pi} \\ \jmath_{Oi} \end{bmatrix} = \begin{cases} \begin{bmatrix} z_{i-1} \\ 0 \end{bmatrix} & \text{for a prismatic joint} \\ \begin{bmatrix} z_{i-1} \times (p_e - p_{i-1}) \\ z_{i-1} \end{bmatrix} & \text{for a revolute joint.} \end{cases}$$
(3.30)

The expressions in (3.30) allow Jacobian computation in a simple, systematic way on the basis of direct kinematics relations. In fact, the vectors z_{i-1} , p_e and p_{i-1} are all functions of the joint variables. In particular:

UCLA

Jacobian: Direct Differentiation

• z_{i-1} is given by the third column of the rotation matrix R_{i-1}^0 , i.e.,

$$\boldsymbol{z}_{i-1} = \boldsymbol{R}_1^0(q_1) \dots \boldsymbol{R}_{i-1}^{i-2}(q_{i-1}) \boldsymbol{z}_0 \tag{3.31}$$

where $z_0 = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T$ allows the selection of the third column.

• p_e is given by the first three elements of the fourth column of the transformation matrix T_e^0 , i.e., by expressing \tilde{p}_e in the (4×1) homogeneous form

$$\widetilde{p}_e = A_1^0(q_1) \dots A_n^{n-1}(q_n) \widetilde{p}_0$$
(3.32)

where $\tilde{p}_0 = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T$ allows the selection of the fourth column.

• p_{i-1} is given by the first three elements of the fourth column of the transformation matrix T_{i-1}^0 , i.e., it can be extracted from

$$\widetilde{p}_{i-1} = A_1^0(q_1) \dots A_{i-1}^{i-2}(q_{i-1}) \widetilde{p}_0.$$
(3.33)

Jacobian: Direct Differentiation

$$\begin{bmatrix} \boldsymbol{\jmath}_{Pi} \\ \boldsymbol{\jmath}_{Oi} \end{bmatrix} = \begin{cases} \begin{bmatrix} \boldsymbol{z}_{i-1} \\ \boldsymbol{0} \end{bmatrix} \\ \begin{bmatrix} \boldsymbol{z}_{i-1} \times (\boldsymbol{p}_e - \boldsymbol{p}_{i-1}) \\ \boldsymbol{z}_{i-1} \end{bmatrix}$$

R

for a *prismatic* joint

for a *revolute* joint.

Z0_1 =

0

Z0_2 =

0

Z0_3 =

Z0_4 =

0

T0_1 =

1	$\cos(t_1)$	$-\sin(t_1)$	0	0)
	$sin(t_1)$	$\cos(t_1)$	0	0
l	0	0	1	0
ſ	0	0	0	1/

1	$\cos(t_1 + t_2)$	$-{\rm sin}(t_1+t_2)$	0	$l_1 \cos(t_1)$
I	$\sin(t_1 + t_2)$	$\cos(t_1 + t_2)$	0	$l_1 \sin(t_1)$
l	0	0	1	0
١	0	0	0	1 /
Т	0_3 =			

1	$\cos(t_1 + t_2 + t_3)$	$-\sin(t_1 + t_2 + t_3)$	0	$l_2 \cos(t_1 + t_2) + l_1 \cos(t_1)^2$
	$\sin(t_1 + t_2 + t_3)$	$\cos(t_1 + t_2 + t_3)$	0	$l_2 \sin(t_1 + t_2) + l_1 \sin(t_1)$
	0	0	1	0
1	0	0	0	1

T0_4 =

($\cos(t_1 + t_2 + t_3)$	$\sin(t_1 + t_2 + t_3)$	0	$l_2 \cos(t_1 + t_2) + l_1 \cos(t_1)$
	$\sin(t_1 + t_2 + t_3)$	$-\cos(t_1+t_2+t_3)$	0	$l_2 \sin(t_1 + t_2) + l_1 \sin(t_1)$
	0	0	$^{-1}$	$-d_4$
ſ	0	0	0	1

%t2r : rotation matrix from the homogeneous matrix R0_1 = t2r(T0_1) R0_2 = t2r(T0_2) R0_3 = t2r(T0_3) R0_4 = t2r(T0_4)

Z0_1 = R0_1(1:3,3) Z0_2 = R0_2(1:3,3) Z0_3 = R0_3(1:3,3) Z0_4 = R0_4(1:3,3)

for a *prismatic* joint

for a *revolute* joint.

UCLA

UCLA

```
%.t : translation matrix from the homogeneous matrix
                                                              fprintf('T0_2 = ')
P0 1 = T0 1.t
                                                              T0_2 = simplify(SCARA.A([1,2],q))
P0 2 = T0 2.t
                                                              fprintf('T0 3 = ')
P0 3 = T0 3.t
                                                              T0_3 = simplify(SCARA.A([1,2,3],q))
P0 4 = T0 4.t
                                                              fprintf('T0 4 = ')
                                                              TO_4 = simplify(SCARA.A([1,2,3,4],q))
%t2r : rotation matrix from the homogeneous matrix
 R0 1 = t2r(T0 1)
 R0_2 = t2r(T0_2)
 R0 3 = t2r(T0 3)
 R0 \ 4 = t2r(T0 \ 4)
 Z0 1 = R0 1(1:3,3)
 Z0 2 = R0 2(1:3,3)
 Z0_3 = R0_3(1:3,3)
 Z0 4 = R0 4(1:3,3)
J1 = cross(Z0 1, (P0 4-P0 1)) % Column:1, Row:1-3 % for a revolute joint
J2 = cross(Z0_2,(P0_4-P0_2)) % Column:2, Row:1-3 % for a revolute joint
J3 = cross(Z0_3,(P0_4-P0_3)) % Column:3, Row:1-3 % for a revolute joint
                                                                       R1_0 = transpose(R0_1);
J4 = Z0 4 % Column:4, Row:1-3 % for a prismatic joint
                                                                       R2_1 = transpose(R1_2);
                                                                       R3_2 = transpose(R2_3);
JO DD = [J1 J2 J3 J4; ZO 1 ZO 2 ZO 3 [0; 0; 0]];
                                                                       R4_3 = transpose(R3_4);
JO DD = simplify(JO DD)
```


$$J = \begin{bmatrix} J_{P_1} & J_{P_2} & J_{P_3} & J_{P_4} \\ J_{O_1} & J_{O_2} & J_{O_3} & J_{O_4} \end{bmatrix}$$

Jacobian: Direct Differentiation

J1 =	J2 =	J3 =	J4 =
$\begin{pmatrix} -l_2 \sin(t_1 + t_2) - l_1 \sin(t_1) \\ l_2 \cos(t_1 + t_2) + l_1 \cos(t_1) \\ 0 \end{pmatrix}$	$\begin{pmatrix} -l_2 \sin(t_1 + t_2) \\ l_2 \cos(t_1 + t_2) \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0\\0\\0 \end{pmatrix}$	$ \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} $

J0_DD =

($-l_2\sin(t_1 + t_2) - l_1\sin(t_1)$	$-l_2\sin(t_1+t_2)$	0	0
	$l_2 \cos(t_1 + t_2) + l_1 \cos(t_1)$	$l_2\cos(t_1+t_2)$	0	0
	0	0	0	$^{-1}$
	0	0	0	0
	0	0	0	0
	1	1	1	0.

$$\begin{array}{rcl} \mathsf{Z}\Theta_1 &=& \mathsf{Z}\Theta_2 &=& \mathsf{Z}\Theta_3 &=& \mathsf{Z}\Theta_4 &=\\ \begin{pmatrix} 0\\0\\1 \end{pmatrix} & \begin{pmatrix} 0\\0\\1 \end{pmatrix} & \begin{pmatrix} 0\\0\\1 \end{pmatrix} & \begin{pmatrix} 0\\0\\-1 \end{pmatrix} \end{array}$$

$$\begin{bmatrix} \boldsymbol{\jmath}_{Pi} \\ \boldsymbol{\jmath}_{Oi} \end{bmatrix} = \begin{cases} \begin{bmatrix} \boldsymbol{z}_{i-1} \\ \boldsymbol{0} \end{bmatrix} \\ \begin{bmatrix} \boldsymbol{z}_{i-1} \times (\boldsymbol{p}_e - \boldsymbol{p}_{i-1}) \\ \boldsymbol{z}_{i-1} \end{bmatrix}$$

for a $\ensuremath{\textit{prismatic}}$ joint

for a *revolute* joint.

J4_VP =

$l_1 \sin(t_2 + t_3) + l_2 \sin(t_3)$	$l_2 \sin(t_3)$	0	0)
$-l_1\cos(t_2+t_3) - l_2\cos(t_3)$	$-l_2\cos(t_3)$	0	0
0	0	0	1
0	0	0	0
0	0	0	0
-1	-1	-1	0/

1	J0_VP =					
	$\int -l_2 \sin(t_1 + t_2) - l_1 \sin(t_1)$	$-l_2\sin(t_1+t_2)$	0	0)		
	$l_2 \cos(t_1 + t_2) + l_1 \cos(t_1)$	$l_2\cos(t_1+t_2)$	0	0		
	0	0	0	-1		
	0	0	0	0		
	0	0	0	0		
	\ 1	1	1	0/		

J0_DD =

($-l_2\sin(t_1+t_2) - l_1\sin(t_1)$	$-l_2\sin(t_1+t_2)$	0	0)
	$l_2 \cos(t_1 + t_2) + l_1 \cos(t_1)$	$l_2\cos(t_1+t_2)$	0	0
	0	0	0	-1
	0	0	0	0
	0	0	0	0
ſ	1	1	1	0/

Jacobian Methods of Derivation & the Corresponding Reference Frame – Summary

Method	Jacobian Matrix Reference Frame	Transformation to Base Frame (Frame 0)
Explicit (Diff. the Forward Kinematic Eq.)	$^{0}{J}_{_{N}}$	None
Iterative Velocity Eq.	$^{\scriptscriptstyle N}J_{\scriptscriptstyle N}$	Transform Method 1: ${}^{0}v_{N} = {}^{0}_{N}R^{N}v_{N}$ ${}^{0}\omega_{N} = {}^{0}_{N}R^{N}\omega_{N}$ Transform Method 2: ${}^{0}J_{N}(\theta) = \left[{}^{0}_{N}R 0 \\ 0 {}^{0}_{N}R \right] {}^{N}J_{N}(\theta)$
Iterative Force Eq.	$^{\scriptscriptstyle N} J_{\scriptscriptstyle N}^{\scriptscriptstyle T}$	Transpose ${}^{N}J_{N} = [{}^{N}J_{N}^{T}]^{T}$ Transform ${}^{0}J_{N}(\theta) = \begin{bmatrix} {}^{0}R & 0\\ 0 & {}^{0}R \end{bmatrix} {}^{N}J_{N}(\theta)$

Summary

- ✓ Jacobian with SCARA example
 - Velocity propagation
 - Direct differentiation
- ✓ Frame of Representation

