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Kinematics Relations - Joint & Cartesian Spaces 

• A robot is often used to manipulate object attached to its tip (end effector). 

• The location of the robot tip may be specified using one of the following 

descriptions: 

• Joint Space

• Cartesian Space / Operational Space

{N}



















=

N







2

1

 
 






=

N

N

r

P
X

0

0

Euler Angles









=

10

00

0 NN

N

PR
T



A minimal representation of orientation - Euler angles
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A minimal representation of orientation - Euler angles







Kinematics Relations - Forward & Inverse 

• The robot kinematic equations relate the two description of the robot tip location
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Velocity relationship

: Jacobian Matrix – Joint velocity / End-effector velocity
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Jacobian Matrix - Introduction

• The velocity relationship

: The  relationship between 

the joint angle rates  (       ) 

and the translation and rotation velocities of the end        

effector (       ).  

• The relationship between 

the robot joint torques (     ) 

and the forces and moments (     ) 

at the robot end effector (Static Conditions).  
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Jacobian Matrix - Calculation Methods

Jacobian Matrix

Differentiation the 

Forward Kinematics Eqs.

Iterative Propagation  

(Velocities or Forces / Torques)



Jacobian Matrix - Introduction

• In the field of robotics the Jacobian 

matrix describe the  relationship 

between the joint angle rates  (       ) 

and the translation and rotation 

velocities of the end effector (       ).  

This relationship is given by:
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Jacobian Matrix - Introduction

• This expression can be expanded to:

• Where:

– is a 6x1 vector of the end effector linear and angular velocities

– is a 6xN Jacobian matrix 

– is a Nx1 vector of the manipulator joint velocities

– is the number of joints 
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Position Propagation 

• The homogeneous transform matrix provides a complete description of the 

linear and angular position relationship between adjacent links.  

• These descriptions may be combined together to describe the position of a link 

relative to the robot base frame {0}.
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Velocity Propagation

• Given: A manipulator - A chain of 

rigid bodies each one capable of 

moving relative to its neighbor  

• Problem: Calculate the linear and 

angular velocities of the link of a 

robot  

• Solution (Concept): Due to the robot 

structure (serial mechanism) we can 

compute the velocities of each link 

in order starting  from the base. 

The velocity of link i+1

= The velocity of link i

+ whatever new velocity components were added by joint i+1



Velocity Propagation – Intuitive Explanation 

• Three Actions

– The origin of frame B moves as a function of time with respect to the origin 

of frame A

– Point Q moves with respect to frame B

– Frame B rotates with respect to frame A along an axis defined by 
B

A

B

A Q

BP

• Linear and Rotational Velocity 

– Vector Form

– Matrix Form
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Velocity Propagation – Intuitive Explanation 

• Three Actions

– The origin of frame B moves with respect to the origin of frame A

– Point Q moves with respect to frame B

– Frame B rotates with respect to frame A about an axis defined by 
B

A

B

A Q

BP



Linear Velocity - Rigid Body

• Given: Consider a frame {B} attached 

to a rigid body whereas frame {A} is 

fixed. The orientation of frame {A} 

with respect to frame {B} is not 

changing as a function of time

• Problem: describe the motion of of 

the vector         relative to frame {A} 

• Solution: Frame {B} is located 

relative to frame {A} by a position 

vector             and the rotation matrix        

(assume that the orientation is not 

changing in time              ) expressing 

both components of the velocity in 

terms of frame {A} gives 
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Frame - Velocity

• As with any vector, a velocity vector may be described in terms of any frame, 

and this frame of reference is noted with a leading superscript. 

• A velocity vector computed in frame {B} and represented in frame {A} would be 

written 
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Angular Velocity - Rigid Body

Q

Q

BP

• Given: Consider a frame {B} attached 

to a rigid body whereas frame {A} is 

fixed. The vector        is constant as 

view from frame {B} 

• Problem: describe the velocity of the 

vector       representing the the point 

Q relative to frame {A} 

• Solution: Even though the vector     

is constant as view from frame {B} it 

is clear that point Q will have a 

velocity as seen from frame {A} due 

to the rotational velocity 
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Angular Velocity - Rigid Body - Intuitive Approach

• The figure shows to instants of time 

as the vector       rotates around          

This is what an observer in frame {A} 

would observe.  

• The Magnitude of the differential 

change is

• Using a vector cross product we get 
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Simultaneous Linear and Rotational Velocity

• The final results for the derivative of a vector in a moving frame (linear and 

rotation velocities) as seen from a stationary frame

• Vector Form

• Matrix Form
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Simultaneous Linear and Rotational Velocity

• Linear and Rotational Velocity 

– Vector Form

– Matrix Form

• Angular Velocity

– Vector Form

– Matrix Form
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Velocity of Adjacent Links - Summary

• Angular Velocity

• Linear Velocity
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Jacobian: Velocity propagation

• Therefore the recursive expressions for the adjacent joint linear and angular 

velocities can be used to determine the Jacobian in the end effector frame

• This equation can be expanded to:
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Velocity of Adjacent Links - Angular Velocity 5/5

• The result is a recursive equation that shows the angular velocity of one link in 

terms of the angular velocity of the previous link plus the relative motion of the 

two links.

• Since the term              depends on all previous links through this recursion, the 

angular velocity is said to propagate from the base to subsequent links.
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Velocity of Adjacent Links - Angular Velocity 1/5

• From the relationship developed previously

• we can re-assign link names to calculate the velocity of any link i relative to the 

base frame {0}

• By pre-multiplying both sides of the equation by           ,we can convert the frame 

of reference for the base {0} to frame {i+1} 
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Velocity of Adjacent Links - Angular Velocity 2/5

• Using the recently defined notation, we have

- Angular velocity of frame {i+1} measured relative to the robot base, and 

expressed in frame {i+1} - Recall the car example

- Angular velocity of frame {i} measured relative to the robot base, and 

expressed in frame {i+1}

- Angular velocity of frame {i+1} measured relative to frame {i} and

expressed in frame {i+1}
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Velocity of Adjacent Links - Angular Velocity 3/5

• Angular velocity of frame {i} measured relative to the robot base, expressed in 

frame {i+1}
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Velocity of Adjacent Links - Angular Velocity 4/5

• Angular velocity of frame {i+1} measured (differentiate) in frame {i} and 

represented (expressed) in frame {i+1}

• Assuming that a joint has only 1 DOF. The joint configuration  can be either 

revolute joint (angular velocity) or prismatic joint (Linear velocity).

• Based on the frame attachment convention  in which we assign the  Z  axis 

pointing along the i+1 joint axis such that the two are coincide (rotations of a link 

is preformed only along its Z- axis) we can rewrite this term as follows: 
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SCARA – RRRP – DH Parameter (Modified form)



SCARA – RRRP



SCARA – RRRP – Forward Kinematics



Simplify Function



SCARA example _ Jacobian: Velocity propagation

• The recursive equation for the Angular Velocity is

𝑖+1𝜔𝑖+1 = 𝑖
𝑖+1𝑅 𝑖𝜔𝑖 + 𝜌

0
0
ሶ𝜃𝑖+1

,
𝜌 = 0 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐 𝑗𝑜𝑖𝑛𝑡
𝝆 = 𝟏 𝒊𝒏 𝒕𝒉𝒆 𝒓𝒆𝒗𝒐𝒍𝒖𝒕𝒆 𝒋𝒐𝒊𝒏𝒕

𝑖
𝑖+1𝑅 is the transpose of 𝑖+1

𝑖𝑅 ( 𝑖
𝑖+1𝑅 = 𝑖+1

𝑖𝑅
𝑇
) and 𝑖+1

𝑖𝑅 = 𝑖+1
𝑖𝑇(1: 3,1: 3)

𝑖+1
𝑖𝑅 can be obtained from the transformation matrix in the forward kinematics.



SCARA example _ Jacobian: Velocity propagation



SCARA example _ Jacobian: Velocity propagation

• The recursive equation for the Angular Velocity is

𝑖+1𝜔𝑖+1 = 𝑖
𝑖+1𝑅 𝑖𝜔𝑖 + 𝜌

0
0
ሶ𝜃𝑖+1

,
𝜌 = 0 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐 𝑗𝑜𝑖𝑛𝑡
𝝆 = 𝟏 𝒊𝒏 𝒕𝒉𝒆 𝒓𝒆𝒗𝒐𝒍𝒖𝒕𝒆 𝒋𝒐𝒊𝒏𝒕

• The base frame does not move 

• Three revolute joints

• One prismatic joint

1𝜔1 = 0
1𝑅 0𝜔0 +

0
0
ሶ𝜃1

2𝜔2 = 1
2𝑅 1𝜔1 +

0
0
ሶ𝜃2

3𝜔3 = 2
3𝑅 2𝜔2 +

0
0
ሶ𝜃3

4𝜔4 = 3
4𝑅 3𝜔3 +

0
0

ሶ𝜃4 = 0

0𝜔0 =
0
0
0

(The base frame does not move)



SCARA example _ Jacobian: Velocity propagation



SCARA example _ Jacobian: Velocity propagation

• The recursive equation for Linear Velocity is 

𝑖+1𝑣𝑖+1 = 𝑖
𝑖+1𝑅 𝑖𝜔𝑖 ×

𝑖𝑃𝑖+1 +
𝑖𝑣𝑖 + 𝜌

0
0
ሶ𝑑
,
𝜌 = 1 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐 𝑗𝑜𝑖𝑛𝑡
𝝆 = 𝟎 𝒊𝒏 𝒕𝒉𝒆 𝒓𝒆𝒗𝒐𝒍𝒖𝒕𝒆 𝒋𝒐𝒊𝒏𝒕

• The base frame does not move 

• Three revolute joints

• One prismatic joint

0𝑣0 =
0
0
0

1𝑣1 = 0
1𝑅 0𝜔0 ×

0𝑃1 +
0𝑣0

2𝑣2 = 1
2𝑅 1𝜔1 ×

1𝑃2 +
1𝑣1

3𝑣3 = 2
3𝑅 2𝜔2 ×

2𝑃3 +
2𝑣2

4𝑣4 = 3
4𝑅 3𝜔3 ×

3𝑃4 +
3𝑣3 +

0
0
ሶ𝑑4



SCARA example 

Jacobian: Velocity propagation



SCARA example _ Jacobian: Velocity propagation

• The Jacobian 4𝐽4is defined as  
4𝑣4
4𝜔4

= 4𝐽4

ሶ𝜃1
ሶ𝜃2
ሶ𝜃3
ሶ𝑑4

• According to the definition 
4𝑣4
4𝜔4

=

4𝑣4,1
4𝑣4,2
4𝑣4,3
4𝑤4,1
4𝑤4,2
4𝑤4,3

,     

4𝑣4,1
4𝑣4,2
4𝑣4,3
4𝑤4,1
4𝑤4,2
4𝑤4,3

= 4𝐽4

ሶ𝜃1
ሶ𝜃2
ሶ𝜃3
ሶ𝑑4



SCARA example _ Jacobian: Velocity propagation



Jacobian: Frame of Representation 

• The Jacobian provides the relationship between the end effector’s Cartesian 

velocity measured relative to the robot base frame {0}

• For velocity expressed in frame {N} 

• For velocity expressed in frame {0} 

( )  JX NN =

( )  JX 00 =

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA



Jacobian: Frame of Representation

• Consider the velocities in a different frame {B}

• We may use the rotation matrix to find the velocities in frame {A}:

• The Jacobian transformation is given by a rotation matrix
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Jacobian: Frame of Representation

• where          is given by

or equivalently, 
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Jacobian: Frame of Representation - 3R Example
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Jacobian: Frame of Representation 



Jacobian: Direct Differentiation

• This expression can be expanded to:
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Jacobian: Direct Differentiation



Jacobian: Direct Differentiation
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Jacobian: Direct Differentiation (Jp)
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Jacobian: Direct Differentiation (Jo)
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Jacobian: Direct Differentiation 
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Jacobian: Direct Differentiation 



Jacobian: Direct Differentiation 

𝐽𝑃1= 𝑧0_1 × (𝑝𝑒 − 𝑝0_1)

= ×( - ) = 

𝐽𝑃2= 𝑧0_2 × (𝑝𝑒 − 𝑝0_2)

= ×( - ) = 

𝐽𝑃3= 𝑧0_3 × (𝑝𝑒 − 𝑝0_3)

= ×( - ) = 

𝐽𝑃4= 𝑧0_4
=            =



Jacobian: Direct Differentiation 

𝐽𝑃1= 𝑧0_1 × (𝑝𝑒 − 𝑝0_1)

= ×( - ) = 

𝐽𝑃2= 𝑧0_2 × (𝑝𝑒 − 𝑝0_2)

= ×( - ) = 
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Jacobian: Direct Differentiation 



Jacobian: Direct Differentiation 
𝑱 =

𝑱𝑷𝟏 𝑱𝑷𝟐 𝑱𝑷𝟑 𝑱𝑷𝟒
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Jacobian - Comparison



Jacobian: Frame of Representation 



Summary

✓ Jacobian with SCARA example

• Velocity propagation 

• Direct differentiation 

✓ Frame of Representation 


