Advanced Kinematics
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Jacobian Matrix - Derivation Methods

Differentiation the
Forward Kinematics Egs.

(Method 1)

¥

Jacobian Matrix

Instructor: Jacob Rosen
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Jacobian Matrix — Introduction - Velocity Transformation

Problem f@l\

Given: Joint angles and velocities and links geometry along with the transformation
matrixes between the joints. H 2

Compute: The Jacobian matrix that maps between the joint velocities © in the joint space
to the end effector velocities v in the Cartesian space or the end effector space

v =](0)0
0 =] 1O)W

Solution — There are two approaches to the solution:
* Velocity Propagation - A velocity propagation approach is taken in which velocities

are propagated stating form the stationary base all the way to the end effector. The v
Jacobian is then extracted from the velocities of the end effector as a function of the y
joint velocities. v
+ Time derivative of the end effector position and ordinations — The time _ < zZ >
derivative of the explicit positional and orientation is taken given the forward vV = )
kinematics. The Jacobian is then extracted from the velocities of the end effector as X
a function of the joint velocities. W
Notes: y
Spatial Description — The matrix is a function of the joint angle. kw )
Z

Singularities - At certain points, called singularities, this mapping is not invert-able and
the Jacobian Matrix J loosing its rank and therefore this mathematical expression is no
longer valid.

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Jacobian Matrix — Introduction - Force Transformation

Problem

Given:  Joint angles, links geometry, transformation matrixes between the joints,
along with the external loads (forces and moments) typically applied on the end effector

Compute: The transpose Jacobian matrix that maps between the external loads (forces
and moments) typically applied at the end effector spaceF joint torques at the joint
space t

t=JI'F

Solution

+ Force/Moment Propagation - A force/moment propagation approach is taken in
which forces and moments are propagated stating form the end effector where they
can be measured by a F/T sensor attached between the gripper and the arm all the
way to the base of the arm. The Jacobian transposed is then extracted from the joint
torques as a function of the force/moment applied on the end effector

Note
+ Conditions: Static or quasi static conditions

T3

k—/ )n

T2

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA



Sensation 1 — Simultaneous Linear and Rotational Velocities

« Given - Two frames i.e frame {A} and frame {B} as
well as point Q.

« Three actions take place simultaneously

— The origin of frame B moves as a function of
time with respect to the origin of frame A

— Point Q moves with respect to frame B

— Frame B rotates with respect to frame A along
an axis defined by *Q

« Challenge — Express the velocity of point Q

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Scenarios 1 - Implications for Serial Manipulators

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Sensation 2 — Two Consecutive Rotation

* Given - Three frames i.e frame {A} and frame {B}
frame {C} all sharing the same origin. Frame {A} is
stationary and Frames {B} and {C} rotate

« Two actions take place simultaneously

— Frame B rotates with respect to frame A along
an axis defined by the vector 40

— Frame C rotates with respect to frame B along
an axis defined by the vector 20,

« Challenge — Express the rotation of frame {C} with
respect to frame {A} or alternatively express the
vector Q.

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Scenarios 2 - Implications for Serial Manipulators

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Simultaneous Linear and Rotational Velocity - Scenario No.1

AVQ = f(BPQr BVQ» AVBORG' 4Qp, gR)

 Vector Form (Method No. 1)

{A}

AVQ —_ AVBORG + gRBVQ + AQB X éRBPQ

A
Pporc

* Matrix Form (Method No. 2)

AVQ — AVBORG + gRBVQ + éRQ(éRBPQ)

« Matrix Formulation — Homogeneous Transformation Form —

Method No. 3
[[%1] [[Af;no OR [AVBO‘”“"]] [[BI;Q 1]+[O[é§1) [Apglorgll [[Bgd]

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA UCLA




Angular Velocity — Changing the Frame of Representation — Scenario No.2

« Angular Velocity Representation in
Various Frames

A A Ap B
— Vector Form Q.="Q,+,R Q)

— Matrix Form AR _ AR Ap B ApPpT
CRQ_BRQ+BRCRQBR

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Scenarios 1
Simultaneous Linear and Rotational Velocity

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Linear & Angular Velocity — Derivation Method No. 1 & 2

Vector Form
Matrix Form

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Vo ="Vgora+eREV,+Q x 2REP, Vo ="Vooro RV +2R, (2R°P, )

Definitions - Linear Velocity

- Linear velocity - The instantaneous rate of change in linear position of a point relative to some frame.

APy (t + At) = 4Py (t) + VAt .

AP, (t + At) — 4Py (1)

d >
A _ T A ~ i A
Vo = g¢ "Fo ™ jim, At /

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA UCLA



A
VBORG

+/R

—I-AQBXE/?RBPQ

A
A\/Q — VBORG

+/R

Definitions - Linear Velocity

+§RQ(£RBPQ)

A —
Py =

A —
Vo =

dt

The position of point Q in frame {A} is represented by the linear position vector

Instructor: Jacob Rosen

Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA

UCLA



Linear Velocity — Translation (No Rotation)- Problem 1 Derivation

 Problem No. 1 — Change in a position of Point Q
« Conditions
— Point Q is fixed in frame {B}
— Frame {B} translates with respect to Frame {A}

=0

AP, (t+ AD)-"P, (t
~ Q( ) Q() :B(BVQ)
At—0 At

=0

A Ara A
_(AI:)Q)z im [ Q At Q — (AVQ):AVQ:AVBORG

A
Pgorc

{B}

Q

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA
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Linear Velocity — Translation (No Rotation) — Problem 2 Derivation

* Problem No. 2 — Translation of frame {B}
« Conditions
— Point Q is fixed in frame {B}
— Frame {B} translates with respect to Frame {A}

A -0

Const A A
Ad : PB ORG (t + At)_ PB ORG (t) A
W APBORG ~lim = (AVBORG ):AVBORG =0

dt At—0 At

A Arg B
d . P,(t+At)—"P,(t) | a
dt (BPQ)zL'E% ( Q At Q J: (BVQ)

A ApB
V,=2R®V,

A
Pgorc

{B}

Q

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA

UCLA



Linear Velocity — Translation (No Rotation) — Problem 1&2 - Summary

» | Problem No. 1 — Change in a position of Point Q

* | Problem No. 2 — Translation of frame {B}

A\/Q = AVBORG + A(BVQ )I: AVBORG +l§\R BVQ

{A}

A
Pgorc

{B}

°P

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA

UCLA




Linear Velocity — Translation — Simultaneous Derivation

A A B
PQ: PBORG+ PQ

Differentiate with respect to coordinate system {A}

d Ad Ad
at (APQ ): E(APBORG )+ E(BPQ)

(4R " (Paore (5P )
(Ve " (WVaore 1+ (Vo)

aY

Q :AVBORG + A(BVQ ):AVBORG + I? R BVQ

{A}

A
Pporac

{B}

°p

Instructor: Jacob Rosen

Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA

UCLA




Vo ="Vgors HuR Vo ' Qyx R°P,

N, ="V

Q

BORG ¥

PREV,

+§RQ(£RBPQ)

Linear Velocities - Frames

 When describing the velocity (linear or angular) of an object, there are two important frames that are being

used:

— Represented Frame (Reference Frame) : e.g. {A}

This is the frame used to represent (express) the object’s velocity.

— Computed Frame: e.g. {B}

This is the frame in which the velocity is measured (differentiate the position).

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA

UCLA



Ao ="Viors HEREV, Q< ARPP, Vo ="Vgors HoR Vo 2R, (2R°P, )

Linear Velocities - Frames

« As with any vector, a velocity vector may be described in terms of any frame, and this frame of reference is
noted with a leading superscript.

« A velocity vector computed in frame {B} and represented in frame {A} would be written

Represented
(Reference Frame) -— Projected on
Represented d
Represented (Computedv ) _ Computed P
Computed

(Measured) - Differentiate with respect to

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Ao ="Viors HEREV, Q< ARPP, Vo ="Vgors HoR Vo 2R, (2R°P, )

Frame - Linear Velocity

« We can always remove the outer, leading superscript by explicitly including the rotation matrix which
accomplishes the change in the reference frame

A3V, )=2R®V,,

- Note that in the general case A(BVQ)=E’5RBVQ;'&AVQ because ;R may be time-verging QR #0

« If the calculated velocity is written in terms of of the frame of differentiation the result could be indicated by a
single leading superscript.

A(AvQ ):AvQ

« In a similar fashion when the angular velocity is expresses and measured as a vector

(*Qe)=gRQ

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Ao ="Viors HEREV, Q< ARPP, Vo ="Vgors HoR Vo 2R, (2R°P, )

Frames - Linear Velocity - Example

« Given: The driver of the car maintains a speed of 100 km/h (as shown to the driver by the car’s
speedometer).

« Problem: Express the velocities C[CVC] " [WVC] W [CVC] C[WVC] in each section of the road A, B, C,
D, E, F where {C} - Car frame, and {W} - World frame

Represented
¢ (Reference Frame)
AY / Computed
= B 5 (Measured)
{C} /4
p &Y
X
{w}

Object Frame

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Frames - Linear Velocity - Example

=)

O

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Ny =Vgons HORPV, QX ARPP,  Vo="Vgors 1oR™Vo R, (#R%P, )

Frames - Linear Velocity - Example

cd —s@ 0]
*R=Rot(2,0)=|s® cOH O
0 0O 1

[0.707 —0.707 0.000
Rot(2,+45°) =| 0.707 0.707  0.000
10.000 0.000 1.000]

[ 0.707 0.707 0.000°
Rot(2,-45°) =| —0.707 0.707 0.000
| 0.000 0.000 1.000]

0 -1 0] 0
Rot(2,490°)=|1 0 0| Rot(2,-90°)=|-1 0
0 0 1] 0 0 1

Instructor: Jacob Rosen A
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA UCL



N ="Vaore TaR Vo i+ Qp xs R°P, Vo ="Vgors HsR "V,

+§RQ(£RBPQ)

Frames - Linear Velocity - Example

A(BVQ):QRBVQ
QR =0 is not time-varying (in this example)
" (*Ve)=cR*V, = I[0] =[0]
T (V)= R Ve =11V,
" ("Ve)=cR"V:=cRI0]=[0]

(V)R

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA

UCLA
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- el ~(Ve)=cRV, = 1[0]=[0]
Velocity
Road Section C[CVC] W[WVC] W[CVC] C[WVC]
- CRCV, = 1€V, = -8-
0.
VN 0
B ') CRCvo =1V, =0
0.

Vo

C x SCRCV.=1%V. =0
) o]

e "

D Vi, i\ | SRV, =1V =0
e ) 10

3

ER Ve =1V =

= | ER CVC =1 CVC

Il
3
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e ALY (PVo) = AREV,
e x s oal y N £
[2r « 55 Obyec } W /W C WpW W
J (Vo )=y RV =17V,
Velocity
: S - - .
Road Section [CVC] [WVC] [CVC] [WVC]
0] 100
[0 0
: o
/ i cRCy. =1%.=|o 71
B ) e ¢ WR"Ve = 1"V = |71
'O- O
o 0] 71
C \ ER CVC =1 CVC =10 %RWVC = IWVC = —7ll
/ 0] 0
N [0 0
D 1 i |7 | RV =1V = |o| PR"Ve = 1"Ve = |~100
! it / ; .'.’ 1<) _0_ O
r'\\‘ ) : _71_
22 0
] WRWV, =1V, = [-71
E /\ CRVo =1V, = 8 wR"Vc o= |71
- -
P ’} CRCy. =1 =|o| wpwy. = jwy. = 100
) ¢ ¢ c 0 wR Ve =17V, = 0
| 0. 0
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/() ‘ . } W /C < W % V\(/2
R Obyect, — = —
) (°Ve)=¢RV=¢R[0] = [0]
Velocity
Road Section C[c ] w [W ] w [c ] C[w ]
VC VC VC VC
. . 0] 100 0]
A SRVe =1V, =|0| |[WRYV, =1"V, = ol WR V. = |0
0] 0 0]
P de 0] 0]
~ ’ CpCy —7Cy. — 71
B | R Ve =1"Ve=0fwpwy, _ wy, — I71] "CR Ve = [0
L0 0 0.
N\ 0 71 0]
C \ ER Ve =1, =|o| WR"Ve=1"Vc = —7ll "R Ve =0
0. 0
1 \ ‘0‘ 0 0
D 1 i | 7| ER V=1V =0 WR"Ve =1"Ve = |-100]  wpcy _|g
LI 4 L0 0 o 0
l 0] | wrwy, = wy, = _;1 wecy _|o]
E \ gR CVC — I CVC — O w- Cc — c — |~ CR VC = 0
0 0
/ o
- -
'} ROV, =1V, = |o| rwv = v =| 0 | MR “[o
E ) C c — c — WR VC =] VC = 0 CR VC =10
0] 0 0
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P 0 C (W CpW
hpect (Ve )=y RV,
Velocity
i C w w C
Road Section [CVC] [WVC] [CVC] [WVC]
cpcC c 011, w 100 0] 1001 [[100
AT J ¢R"Ve =1"Ve = [0f |wR"Ve =1"Ve =] 0 TR Ve =10 R(2,0)=1| 0 || 0
0. 0 0] 0 | 0
PN 0 - 0] 71 '.7$7 -.707 0][71] [100
B *) ER Ve =1V = 0| wpwy_— wy, — |7 WRCy. = |0 R(2,45) (71| =|.707 .707 o0||71|=] 0
, 0] 0 0] ol L d o 1llo 0
o ™ 0 71 0] 71 707 707 0][71] [100
C \ CRCV. =1V, =0 WRWY. = 1"V, = _71l "RV, = |0 R(2z,—45)|71| =|4.707 .707 oOf|71[{=]| 0
) n 0 0 0 o 1llo 0
: 07 0 o0 0 0 -1 0]] © 100
D i i | 7| RV =1V =0 WRYVe = 1"V, =|-100 wRrCy, = o R(2,90) |-100|=|[1 0 0||-100{=] 0
Wl 4 3¢ N 0 0 0 o o 1l o 0
] 0] | wpw w —74 0]
e \ ROV =1V, = |of [WR Ve =TV = =7 R Ve =0
/ 0 0. 0l
= ' cpC c ] —100
F % GRVe=1Ve=|0| WRWV, =1V, =| o "RV =0
" 0 0 0

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Ao ="Vions +EREV+ QxS RPP, Vo ="Vgons +eRV, 2R, (2R°P, )

Linear Velocity - Free Vector

« Linear velocity vectors are insensitive to shifts in origin.

* Consider the following example:

« The velocity of the object in {C} relative to both {A} and {B} is the same, that is

LY

« Aslong as {A} and {B} remain fixed relative to each other (translational but not rotational), then the velocity
vector remains unchanged (that is, a free vector).

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Ao ="Vons +EREV, +* Qg RPP, Vo ="Vgons +eRV,+2R, (2R°P, )

Angular Velocity - Rigid Body - Intuitive Approach

aY

A APl B A Al B
0= Viore &R VQ+ QxR PQ

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Vo ="Vgons +eR®V, + Qg x 2RP, Vo ="Vaors +eR Vo + 2R, (4R°P, )

Angular Velocity - Rigid Body

« Given: Consider a frame {B} attached
to a rigid body whereas frame {A} is
fixed. The vector Bp_ is constant as
view from frame {B} BVQ -0

 Problem: describe the velocity of the
vector®P. representing the the point
Q relative to frame {A}

- Solution: Even though the vector Bp
is constant as view from frame {B} it
IS clear that point Q will have a
velocity as seen from frame {A} due
to the rotational velocity AQB

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA UCLA



AVQ:AVBORG +§RBVQ+AQBX$RBPQ AVQ:AVBORG+$RBVQ+§RQ(£RBPQ)
J Angular Velocity - Rigid Body - Intuitive Approach

* Pure 3D Rotation - The length of the vector Q does
not change its length in frame B

AP, = CONST

BVQ =0
AVQ — AQQ X APQ

* In general the vector APQ can change with respect
to frame {B}

Ay, = (V) + 405 x 4P,
Vo = 5RPV, + 40p x 5RPP,

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Ao ="Vons +EREV, +* Qg RPP, Vo ="Vgons +eRV,+2R, (2R°P, )

Angular Velocity - Rigid Body - Intuitive Approach

 Rotation in 2D

gaiibde, ROTATON 21>
A
8 S TP
K \'L\\lo Sy *Ps
R P Po = BR "Fo
G d
y 07) <P ) o INER YL ApGulal VEL
A 3] . WV A i
== A A
1 A - B B
LINEAR | LV VQ - ( VQ) + ( VQ)
P AR A A,
[ 'a \ ® A — B B B
- Vo =" (BVo) + (P9 x Ry)
| :
"l\,”\')a AVQ = gRBVQ + AQB X éRBPQ

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA

UCLA



A% :AVBORG +BAR BVQ +AQB ><E/:RBF)Q AVQ:AVBORG +BAR BVQ +BARQ(E/:RBPQ)

Angular Velocity - Rigid Body - Intuitive Approach

« Inthe general case, the vector Q may also be changing with respect to the frame {B}. Adding this component
we get.

Vo =" (BV, QX P,

« Using the rotation matrix to remove the dual-superscript,

V=RV + Qg xgR PP,

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Vo ="Vgons +oR®V, 4" Qp x 2RP, Vo ="Vpors +ER®V, +R, (2R°P, )

Definitions - Angular Velocity

« Just as there are many ways to represent orientation (Euler Angles, Roll-Pitch-Yaw Angles, Rotation
Matrices, etc.), there are also many ways to represent the rate of change in orientation.

Angular Velocity
Representation

3

Angular Velocity
Matrix

« The angular velocity vector is convenient to use because it has an easy to grasp physical meaning.
However, the matrix form is useful when performing algebraic manipulations.

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Ao ="Vions +EREV, +* Q< RPP, Vo ="Vgons +eRV,+2R, (2R°P, )

Definitions - Angular Velocity - Vector

« Angular Velocity Vector: A vector whose direction is the instantaneous axis of rotation of one frame relative
to another and whose magnitude is the rate of rotation about that axis.

_ - AQp

« The angular velocity vector 4Qy describes the instantaneous change of rotation of frame {B} relative to
frame {A}

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Ny = Vo IRV, +HAQ xR, Vo="Voors +eR Vo HeR, (4R%P)
J Definitions - Angular Velocity - Matrix

Angular Velocity Matrix:

X [0 _'QZ .Qy ] X —.sz + .QyZ
[4Ra] {y} H= e — s
Z —Qyx + O,y

Z

X i j w Qyz =0,y
A0p X y‘ =[Qx Q) Q| =—-Qxz+Q,x
Z X Yy Z Oy — Qyx

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA UCLA



aY

Q :AVBORG +|3AR BVQ +AQB ><E'EARBF)Q AVQ:AVBORG +§R BVQ +§RQ(£RBPQ)

Definitions - Angular Velocity - Matrix

. The rotation matrix ( 4 "R ) defines the orientation of frame {B} relative to frame {A}. Specifically, the columns
of g "R are the unit vectors of {B} represented in {A}.

A_ —_

sR=|[R] [°R] [P]

« If we look at the derivative of the rotation matrix, the columns will be the velocity of each unit vector of {B}
relative to {A}.

A_ —_

R= Rk ] ] ]

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Vo ="Vgope +oRV, +4 Qg < R®P, Ao ="Vponrs +ER®V, +R, (2R°P, )

Definitions - Angular Velocity - Matrix

+  The relationship between the rotation matrix . R and the derivative of the rotation matrix QF\" can be
expressed as follows:

sR=gRo R

RARNARA

— AR
=gRq

A_

Rl PR [°R]

 where QRQ is defined as the angular velocity matrix

0 -Q, Q Q,
Ro=| Q, 0 -Q | "Q,=Q,
-Q, Q, 0 Q,

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA

UCLA



A% :AVBORG +BAR BVQ +AQB ><E/:RBF)Q AVQ:AVBORG +BAR BVQ +BARQ(E/?RBPQ)

Q
& Angular Velocity - Matrix & Vector Forms
Matrix Form Vector Form
o 0 -0, Q] ) Q]
Definition ARy = | Q, 0 —-Q, Op = [y
-Q, Q, 0 |27
Multiply by Constant k [éRQ] k [4Q5]
Multiply by Vect ' y *
uttiply by vector [gRQ] y A x|yl=w x 7
Z Z
Multiply by Matrix [ SR ] [ gRQ ] [SR]T [ SR ][ 4Qp ]

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Simultaneous Linear and Rotational Velocity

« The final results for the derivative of a vector in a moving frame (linear and rotation velocities) as seen from a
stationary frame

« Vector Form

A Ap B A ApB
AVQ— Viors +aR Vo + Qg x RP, AT

A
Pgorc

« Matrix Form

Vo ="Vgors +eR%V,+2R, (2R°P, )

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Velocity — Derivation Method No. 3

Homogeneous Transformation Form

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Changing Frame of Representation - Linear Velocity

 We have already used the homogeneous transform
matrix to compute the location of position vectors in
other frames:

A A
P, =AT P,

« To compute the relationship between velocity vectors in
different frames, we will take the derivative:

EAP

d ra
dt Q]:_[BTBPQ]

dt

AR AT A -
P, =4T %P, +A4T %,

{A}

A
Pporc

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA

UCLA



AR AT A -
P, =T P, +4T P,

‘ Changing Frame of Representation - Linear Velocity
Recall that
AT _ [éR] [APB org]
AT =
0o 0 0 1

so that the derivative is

d - [éR] [APB org]- - [éR] [APB org]- | [éRQéR] [AVB 07‘9]-

0 0 O 1 1 1o 0 0 0 . L0 0 0 0

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA UCLA



AR AT A -
P, =T P, +4T P,

J Changing Frame of Representation - Linear Velocity

g—l- — [QRQQR] [A\/Borg]

0 0 0 0

«  Substitute the previous results into the original equation APQ=/§T BPQJF’QT BPQ we get

R e e T

« This expression is equivalent to the following three-part expression:

Vo =tRo (AREP, JAVy o +2REV,

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Changing Frame of Representation - Linear Velocity

V=R, (8R®P, JAVy o +2REV,

« Converting from matrix to vector form yields

Vo= x(2RPP, AV, +aR%V,

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Time Derivative of the Rotation Matrix

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Time Derivative of the Rotation Matrix
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Time Derivative of the Rotation Matrix
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Time Derivative of the Rotation Matrix
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Time Derivative of the Rotation Matrix
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Time Derivative of the Rotation Matrix
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‘ Time Derivative of the Rotation Matrix
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Time Derivative of the Rotation Matrix
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Time Derivative of the Rotation Matrix
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Scenarios 2
Angular Velocity
Changing the Frame of Representation

Instructor: Jacob Rosen
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Sensation 2 — Two Consecutive Rotation

* Given - Three frames i.e frame {A} and frame {B}
frame {C} all sharing the same origin. Frame {A} is
stationary and Frames {B} and {C} rotate

« Two actions take place simultaneously

— Frame B rotates with respect to frame A along
an axis defined by the vector 40

— Frame C rotates with respect to frame B along
an axis defined by the vector 20,

« Challenge — Express the rotation of frame {C} with
respect to frame {A} or alternatively express the
vector Q.

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Angular Velocity — Changing the Frame of Representation — Scenario No.2

« Angular Velocity Representation in
Various Frames

A A ApB
— Vector Form Q.="Q;+,R"Q,

— Matrix Form A AR AR By ApPpT
CRQ_BRQ+BRCRQBR

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA UCLA



AQC:AQB"'BARBQC CARQ:BARQ"'QRgRQBART

Changing Frame of Representation - Angular Velocity

« We use rotation matrices to represent angular position so that we can compute the
angular position of {C} in {A} if we know the angular position of {C} in {B} and {B} in
{A} by

A Ap B
c R=gRcR

« To derive the relationship describing how angular velocity propagates between
frames, we will take the derivative

Ap_ Ap B Ap B
«R=gR:R+;R:R
«  Substituting the angular velocity matrixes
ADp_Ap A By B B Ay AN A
BR_BRQBR CR:CRQCR CR_CRQCR
 we find SRLER=LR, IRER+LRER, SR

§R99R2£R9€R+BAR5RQSR

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Changing Frame of Representation - Angular Velocity

- Post-multiplying both sides by “R" ,which for rotation matrices, is equivalentto *R™

ERGERERT=4R, CRERT+5RCR, CRERT

A ApS Ap B ART
CRQ:BRQ+BRCRQBR

« The above equation provides the relationship for changing the frame of representation of angular velocity
matrices.

« The vector form is given by

Q. ="Q +LR°Q

« To summarize, the angular velocities of frames may be added as long as they are expressed in the same
frame.

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Summary
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Simultaneous Linear and Rotational Velocity - Scenario No.1

AVQ = f(BPQr BVQ» AVBORG' 4Qp, gR)

 Vector Form (Method No. 1)

{A}

AVQ —_ AVBORG + gRBVQ + AQB X éRBPQ

A
Pporc

* Matrix Form (Method No. 2)

AVQ — AVBORG + gRBVQ + éRQ(éRBPQ)

« Matrix Formulation — Homogeneous Transformation Form —

Method No. 3
[[%1] [[Af;no OR [AVBO‘”“"]] [[BI;Q 1]+[O[é§1) [Apglorgll [[Bgd]

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA UCLA




Angular Velocity — Changing the Frame of Representation — Scenario No.2

« Angular Velocity Representation in
Various Frames

A A ApB
— Vector Form Q.="Q;+,R"Q,

— Matrix Form A AR AR By ApPpT
CRQ_BRQ+BRCRQBR

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Linear Algebra - Review
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Brief Linear Algebra Review - 1/

* Inverse of Matrix A exists if and only if the determinant of A is non-zero.
A Exists if and only if
Det(A) =|A/ =0
« If the determinant of A is equal to zero, then the matrix A is a singular matrix
Det(A) =|A/=0

A Singular

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA UCLA



; Brief Linear Algebra Review - 2/

« The rank of the matrix A is the size of the largest squared Matrix S for which

Det(S) #0
2 -1 2 -1
Example 1 - A= A=S = ‘A‘:‘S‘:IB Rank(A) =2
-1 2 -1 2
(1 1 1 1]
1111
Example 2 - A= = S|=1 Rank(A) =1
p 111 S =[] S| (A
111 1)

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA UCLA



; Brief Linear Algebra Review - 3/

« If two rows or columns of matrix A are equal or related by a constant, then

Det(A) =0
Example _ _
2 0 -1
A=6 -3 -3
_10 -6 —5_

-3 —3‘ ‘6 —3‘ J_‘G -3
—0 _

det(A) =|Al=2 =6+0-6=0
-6 -5 [10 -5 10 -6

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA

UCLA



Brief Linear Algebra Review - 4/

« Eigenvalues
AX =X

(A—A1)X =0

« Eigenvalues are the roots of the polynomial
Det(A—Al)

« If X #0 each solution to the characteristic equation A (Eigenvalue) has a corresponding Eigenvector

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Brief Linear Algebra Review - 4/

« Wikipedai - https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

..........

..........

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Brief Linear Algebra Review - 4/

2

A=

1 2

(A—M)x{z_’l L }{Xl}:o
1 2-1|X,

2- 4
Det(A—AI):‘

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Brief Linear Algebra Review - 4/
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Brief Linear Algebra Review - 5/

 Any singular matrix ( Det(A) =0 ) has at least one Eigenvalue equal to zero

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Brief Linear Algebra Review - 6/

« If Ais non-singular ( Det(A)=0 ),and A is an eigenvalue of A with corresponding to eigenvector X,
then

A*X =1*X

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Brief Linear Algebra Review - 7/

« Ifthe N X N matrix A is of full rank (that is, Rank (A) = n), then the only solution to
AX =0
Is the trivial one
X =0

« If Ais of less than full rank (that is Rank (A) < N), then there are N-I linearly independent (orthogonal)
solutions

for which X 0<j<n-r

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Brief Linear Algebra Review - 8/

« If Ais square, then A and AT have the same eigenvalues

Instructor: Jacob Rosen
Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA UCLA



