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Jacobian Matrix – Introduction - Velocity Transformation

Problem

Given: Joint angles and velocities and links  geometry along  with the  transformation 

matrixes between the  joints.

Compute: The Jacobian matrix that maps between the joint velocities ሶΘ in the joint space       

to the end effector  velocities 𝜈 in the Cartesian  space  or the end effector  space   

Solution – There are two approaches to the solution:

• Velocity Propagation - A velocity propagation approach is taken in which velocities

are propagated stating form the stationary base all the way to the end effector. The

Jacobian is then extracted from the velocities of the end effector as a function of the

joint velocities.

• Time derivative of the end effector position and ordinations – The time

derivative of the explicit positional and orientation is taken given the forward

kinematics. The Jacobian is then extracted from the velocities of the end effector as

a function of the joint velocities.

Notes:

Spatial Description – The matrix is a function of the joint angle.

Singularities - At certain points, called singularities, this mapping is not invert-able and

the Jacobian Matrix J loosing its rank and therefore this mathematical expression is no

longer valid.

ሶΘ = 𝐉−1(Θ)𝜈

𝜈 = 𝐉 (Θ) ሶΘ

ሶΘ =

ሶ𝜃1
ሶ𝜃2
ሶ𝜃3
𝑑4
ሶ𝜃5
ሶ𝜃6

𝜈 =

𝑣𝑥
𝑣𝑦
𝑣𝑧
𝜔𝑥

𝜔𝑦

𝜔𝑧
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Jacobian Matrix – Introduction - Force Transformation

Problem

Given: Joint angles, links  geometry,  transformation matrixes  between the  joints, 

along with the external loads (forces and moments) typically applied on the end effector

Compute: The transpose Jacobian matrix that maps between the external loads (forces 

and moments) typically applied  at the end  effector spaceℱ joint torques at the  joint 

space 𝛕

Solution

• Force/Moment Propagation - A force/moment propagation approach is taken in

which forces and moments are propagated stating form the end effector where they

can be measured by a F/T sensor attached between the gripper and the arm all the

way to the base of the arm. The Jacobian transposed is then extracted from the joint

torques as a function of the force/moment applied on the end effector

Note

• Conditions: Static or quasi static conditions

τ = 𝐉𝑇ℱ

ሶΘ =

𝜏1
𝜏2
𝜏3
𝑓4
𝜏5
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ℱ =
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𝑓𝑧
𝜏 𝑥

𝜏𝑦
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𝛕

𝒇
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Sensation 1 – Simultaneous Linear and Rotational Velocities

• Given - Two frames i.e frame {A} and frame {B} as 

well as point Q.  

• Three actions take place simultaneously

– The origin of frame B moves as a function of 

time with respect to the origin of frame A

– Point Q moves with respect to frame B

– Frame B rotates with respect to frame A along 

an axis defined by

• Challenge – Express the velocity of point Q 

B

A
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Scenarios  1 – Implications for Serial Manipulators 
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Sensation 2 – Two Consecutive Rotation 

• Given - Three frames i.e frame {A} and frame {B} 

frame {C} all sharing the same origin. Frame {A} is 

stationary and Frames {B} and {C} rotate 

• Two actions take place simultaneously

– Frame B rotates with respect to frame A along 

an axis defined by the vector 𝐴Ω𝐵

– Frame C rotates with respect to frame B along 

an axis defined by the vector 𝐵Ω𝐶

• Challenge – Express the rotation of frame {C} with 

respect to frame {A} or alternatively express the 

vector 𝐴Ω𝐶
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Scenarios  2 – Implications for Serial Manipulators 
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Simultaneous Linear and Rotational Velocity - Scenario No.1 

• Vector Form (Method No. 1)

• Matrix Form (Method No. 2)

• Matrix Formulation – Homogeneous Transformation Form –

Method No. 3 

𝐴𝑉𝑄 = 𝐴𝑉𝐵𝑂𝑅𝐺 + 𝐵
𝐴𝑅𝐵𝑉𝑄 +
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𝐴𝑅𝐵𝑉𝑄 +

ሶ
𝐵
𝐴𝑅Ω 𝐵
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𝐴𝑉𝑄 = 𝑓(𝐵𝑃𝑄,
𝐵𝑉𝑄,
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𝐴Ω𝐵 , 𝐵

𝐴𝑅)

𝐴𝑉𝑄
0

=
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𝐵
𝐴𝑅Ω ⋅ 𝐵

𝐴𝑅 𝐴𝑉𝐵 𝑜𝑟𝑔

0 0 0 0

𝐵𝑃𝑄
1

+ 𝐵
𝐴𝑅 𝐴𝑃𝐵 𝑜𝑟𝑔

0 0 0 1

𝐵𝑉𝑄
0
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• Angular Velocity Representation in 

Various Frames 

– Vector Form

– Matrix Form

Angular Velocity – Changing the Frame of Representation – Scenario No.2 
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Scenarios  1

Simultaneous Linear and Rotational Velocity
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Linear & Angular Velocity – Derivation Method No. 1 & 2

Vector Form

Matrix Form 

Instructor: Jacob Rosen 
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Definitions - Linear Velocity 

• Linear velocity - The instantaneous rate of change in linear position of a point relative to some frame.

𝐴𝑉𝑄 =
𝑑

𝑑𝑡
𝐴𝑃𝑄 ≈ lim

Δ𝑡→0

𝐴𝑃𝑄(𝑡 + Δ𝑡) − 𝐴𝑃𝑄(𝑡)

Δ𝑡
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Definitions - Linear Velocity

• The position of point Q in frame {A} is represented by the linear position vector

• The velocity of a point Q relative to frame {A} is represented by the linear velocity vector
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Linear Velocity – Translation (No Rotation)- Problem 1 Derivation  

• Problem No. 1 – Change in a position of Point Q

• Conditions 

– Point Q is fixed in frame {B}

– Frame {B} translates with respect to Frame {A} 
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Linear Velocity – Translation (No Rotation) – Problem 2 Derivation  

• Problem No. 2 – Translation of frame {B}

• Conditions 

– Point Q is fixed in frame {B}

– Frame {B} translates with respect to Frame {A} 
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Linear Velocity – Translation (No Rotation) – Problem 1&2 - Summary   

• Problem No. 1 – Change in a position of Point Q

• Problem No. 2 – Translation of frame {B}
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Linear Velocity – Translation – Simultaneous Derivation  

• Differentiate with respect to coordinate system {A}
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Linear Velocities - Frames

• When describing the velocity (linear or angular) of an object, there are two important frames that are being 

used:

– Represented Frame (Reference Frame) : e.g. {A}

This is the frame used to represent (express) the object’s velocity.

– Computed Frame: e.g. {B}

This is the frame in which the velocity is measured (differentiate the position).
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Linear Velocities - Frames

• As with any vector, a velocity vector may be described in terms of any frame, and this frame of reference is 

noted with a leading superscript. 

• A velocity vector computed in frame {B} and represented in frame {A} would be written 
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Frame - Linear Velocity

• We can always remove the outer, leading superscript by explicitly including the rotation matrix which 

accomplishes the change in the reference frame 

• Note that in the general case                                          because        may be time-verging

• If the calculated velocity is written in terms of of the frame of differentiation the result could be indicated by a 

single leading superscript.

• In a similar fashion when the angular velocity is expresses and measured as a vector
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• Given: The driver of the car maintains a speed of 100 km/h (as shown to the driver by the car’s 

speedometer).

• Problem: Express the velocities                                                               in each section of the road A, B, C, 

D, E, F where {C} - Car frame, and {W} - World frame 

Frames - Linear Velocity - Example
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Frames - Linear Velocity - Example
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F
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Frames - Linear Velocity - Example
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Frames - Linear Velocity - Example

• is not time-varying (in this example)
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Frames - Linear Velocity - Example
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Frames - Linear Velocity - Example
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Frames - Linear Velocity - Example
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Frames - Linear Velocity - Example
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Linear Velocity - Free Vector

• Linear velocity vectors are insensitive to shifts in origin.  

• Consider the following example:

• The velocity of the object in {C} relative to both {A} and {B} is the same, that is

• As long as {A} and {B} remain fixed relative to each other (translational but not rotational), then the velocity 

vector remains unchanged (that is, a free vector).
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Angular Velocity - Rigid Body - Intuitive Approach
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Angular Velocity - Rigid Body

Q

Q

BP

• Given: Consider a frame {B} attached 

to a rigid body whereas frame {A} is 

fixed. The vector        is constant as 

view from frame {B} 

• Problem: describe the velocity of the 

vector       representing the the point 

Q relative to frame {A} 

• Solution: Even though the vector     

is constant as view from frame {B} it 

is clear that point Q will have a 

velocity as seen from frame {A} due 

to the rotational velocity 
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Angular Velocity - Rigid Body - Intuitive Approach
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• Pure 3D Rotation - The length of the vector Q does 

not change its length in frame B

• In general the vector 𝐴𝑃𝑄 can change with respect 

to frame {B}  

𝐵𝑉𝑄 = 0

𝐴𝑃𝑄 = 𝐶𝑂𝑁𝑆𝑇

Δ𝐴𝑃𝑄 = 𝐴𝑃𝑄 𝑠𝑖𝑛𝜃 𝐴Ω𝑄Δ𝑡

𝐴𝑉𝑄 = 𝐴Ω𝑄 ×
𝐴𝑃𝑄

𝐴𝑉𝑄 =
𝐴 𝐵V𝑄 + 𝐴Ω𝐵 ×

𝐴P𝑄
𝐴𝑉𝑄 = 𝐵

𝐴R𝐵𝑉𝑄 +
𝐴Ω𝐵 × 𝐵

𝐴R𝐵P𝑄
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Angular Velocity - Rigid Body - Intuitive Approach
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• Rotation in 2D

𝐴𝑉𝑄 =
𝐴 𝐵V𝑄 +

𝐴 𝐵V𝑄
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𝐴𝑃𝑄 = 𝐵
𝐴R 𝐵P𝑄
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Angular Velocity - Rigid Body - Intuitive Approach

• In the general case, the vector Q may also be changing with respect to the frame {B}. Adding this component 

we get.

• Using the rotation matrix to remove the dual-superscript, 
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Definitions - Angular Velocity

• Just as there are many ways to represent orientation (Euler Angles, Roll-Pitch-Yaw Angles, Rotation 

Matrices, etc.), there are also many ways to represent the rate of change in orientation.  

• The angular velocity vector is convenient to use because it has an easy to grasp physical meaning.  

However, the matrix form is useful when performing algebraic manipulations.

Angular Velocity

Representation

Angular Velocity

Vector
Angular Velocity

Matrix
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Definitions - Angular Velocity - Vector

• Angular Velocity Vector: A vector whose direction is the instantaneous axis of rotation of one frame relative 

to another and whose magnitude is the rate of rotation about that axis.

• The angular velocity vector           describes the instantaneous change of rotation of frame {B} relative to 

frame {A}
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Definitions - Angular Velocity - Matrix

• Angular Velocity Matrix:
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Definitions - Angular Velocity - Matrix

• The rotation matrix (       ) defines the orientation of frame {B} relative to frame {A}.  Specifically, the columns 

of       are the unit vectors of {B} represented in {A}.

• If we look at the derivative of the rotation matrix, the columns will be the velocity of each unit vector of {B} 

relative to {A}:
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Definitions - Angular Velocity - Matrix

• The relationship between the rotation matrix        and the derivative of the rotation matrix            can be 

expressed as follows:

• where          is defined as the angular velocity matrix
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Angular Velocity - Matrix & Vector Forms

Matrix Form                            Vector Form

Definition

Multiply by Constant

Multiply by Vector

Multiply by Matrix
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Simultaneous Linear and Rotational Velocity

• The final results for the derivative of a vector in a moving frame (linear and rotation velocities) as seen from a 

stationary frame

• Vector Form

• Matrix Form
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Velocity – Derivation Method No. 3

Homogeneous Transformation Form

Instructor: Jacob Rosen 
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Changing Frame of Representation - Linear Velocity 

• We have already used the homogeneous transform 

matrix to compute the location of position vectors in 

other frames:

• To compute the relationship between velocity vectors in 

different frames, we will take the derivative:
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Changing Frame of Representation - Linear Velocity

• Recall that

• so that the derivative is
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Changing Frame of Representation - Linear Velocity

• Substitute the previous results into the original equation                                    we get

• This expression is equivalent to the following three-part expression:
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Changing Frame of Representation - Linear Velocity

• Converting from matrix to vector form yields
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Time Derivative of the Rotation Matrix 

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA



Time Derivative of the Rotation Matrix 

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA



Time Derivative of the Rotation Matrix 

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA



Time Derivative of the Rotation Matrix 

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA



Time Derivative of the Rotation Matrix 

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA



Time Derivative of the Rotation Matrix 

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA



Time Derivative of the Rotation Matrix 

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA



Time Derivative of the Rotation Matrix 

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA
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Scenarios  2

Angular Velocity  

Changing the Frame of Representation 

Instructor: Jacob Rosen 
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Sensation 2 – Two Consecutive Rotation 

• Given - Three frames i.e frame {A} and frame {B} 

frame {C} all sharing the same origin. Frame {A} is 

stationary and Frames {B} and {C} rotate 

• Two actions take place simultaneously

– Frame B rotates with respect to frame A along 

an axis defined by the vector 𝐴Ω𝐵

– Frame C rotates with respect to frame B along 

an axis defined by the vector 𝐵Ω𝐶

• Challenge – Express the rotation of frame {C} with 

respect to frame {A} or alternatively express the 

vector 𝐴Ω𝐶
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• Angular Velocity Representation in 

Various Frames 

– Vector Form

– Matrix Form

Angular Velocity – Changing the Frame of Representation – Scenario No.2 
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Changing Frame of Representation - Angular Velocity

• We use rotation matrices to represent angular position so that we can compute the 

angular position of {C} in {A} if we know the angular position of {C} in {B} and {B} in 

{A} by

• To derive the relationship describing how angular velocity propagates between 

frames, we will take the derivative

• Substituting the angular velocity matrixes                                             

• we find
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Changing Frame of Representation - Angular Velocity

• Post-multiplying both sides by          ,which for rotation matrices, is equivalent to                             

• The above equation provides the relationship for changing the frame of representation of angular velocity 

matrices.  

• The vector form is given by

• To summarize, the angular velocities of frames may be added as long as they are expressed in the same 

frame.
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Summary
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Simultaneous Linear and Rotational Velocity - Scenario No.1 

• Vector Form (Method No. 1)

• Matrix Form (Method No. 2)

• Matrix Formulation – Homogeneous Transformation Form –

Method No. 3 

𝐴𝑉𝑄 = 𝐴𝑉𝐵𝑂𝑅𝐺 + 𝐵
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• Angular Velocity Representation in 

Various Frames 

– Vector Form

– Matrix Form

Angular Velocity – Changing the Frame of Representation – Scenario No.2 
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Linear Algebra - Review
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Brief Linear Algebra Review - 1/

• Inverse of Matrix A exists if and only if the determinant of A is non-zero.

Exists if and only if

• If the determinant of A is equal to zero, then the matrix A is a singular matrix

Singular

1A

0)(  AADet

0)(  AADet

A

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263 - Department of Mechanical & Aerospace Engineering - UCLA



Brief Linear Algebra Review - 2/

• The rank of the matrix A is the size of the largest squared Matrix S for which

• Example 1 -

• Example 2 -
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Brief Linear Algebra Review - 3/

• If two rows or columns of matrix A are equal or related by a constant, then

• Example 
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Brief Linear Algebra Review - 4/

• Eigenvalues

• Eigenvalues are the roots of the polynomial

• If                each solution to the characteristic equation      (Eigenvalue)  has a corresponding  Eigenvector    

XAX 

0)(  XIA 

)( IADet 

0X
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Brief Linear Algebra Review - 4/

• Wikipedai - https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors
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Brief Linear Algebra Review - 4/
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Brief Linear Algebra Review - 4/
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Brief Linear Algebra Review - 5/

• Any singular matrix  (                      ) has at least one Eigenvalue equal to zero0)( ADet
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Brief Linear Algebra Review - 6/

• If A is non-singular  (                        ), and        is an eigenvalue of  A with corresponding to eigenvector X, 

then 
0)( ADet 

XXA 11   
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Brief Linear Algebra Review - 7/

• If the n x n matrix A is of full rank (that is, Rank (A) = n), then the only solution to  

is the trivial one

• If A is of less than full rank (that is Rank (A) < n), then there are n-r linearly independent (orthogonal) 

solutions

for which

0AX

0X
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Brief Linear Algebra Review - 8/

• If A is square, then A and AT have the same eigenvalues
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