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Task Space Schemes 
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Task Space Scheme – Problem Definition 

Orientation Problem

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Task Space Scheme – Problem Definition 

Position / Orientation Problem – Trapezoid Velocity 

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Join Space Versus Task Space – Comparison 

Parameter Joint Space Task Space 

Interpolation Space  

intermediate points along the trajectory  

Joint Space Task Space 

Tool Trajectory Type / Length Curved Line / Long  Straight Lines / Short 

Invers Kinematics (IK) Usage Low High

Computation Expense (IK) Low 

(IK for Start/Finish & Via Points )

High 

(IK for every single point / time steo on the trajectory)

Passing through Via Points No 

(Correction by establishing Pseudo Points)

Yes 

Via Points Defined in the Task Space No Yes 

Path Dependency on a Specific Manipulator Yes No

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Cartesian Space Schemes – Introduction  

• Joint Space Schemes

– Advantages

• Path go through all the via and goal points 

• Points can be specified by Cartesian 

frames.

– Disadvantages -

• End effector moves along a curved line 

(not a straight line - shortest distance). 

• Path depends on the particular joint 

kinematics of the manipulator i.e. if the 

type of the manipulator changes the path 

between the via points will change too. 

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Cartesian Space Schemes – Introduction 

• Cartesian Space Scheme

– Advantage

• Most common path is straight line 

(shortest). Other shapes can also be used.  

– Disadvantage

• Computationally expansive to execute – At 

run time the inverse kinematics needs to 

be solved at path update rate (60-2000 

Hz)    

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Trajectory Generation – Roadmap Diagram
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Cartesian Space Scheme – Cartesian Straight Line  

• General Approach - Define the path (in the Cartesian space) as 

– Straight lines (linear functions)

– Parabolic lines (blends) 

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Task Space Scheme – Problem Definition 

Position / Orientation Problem

• General Approach (continue)

– Every point along the path is defined by 

position and orientation of the end effector 

– End Effector Position – Vector – Easy 

interpolation

– End Effector Ordination – Matrix –

Impossible to interpolate (interpolating the 

individual elements of the matrix violate the 

requirements that all column of the matrix 

must be orthogonal)     

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA
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Task Space Scheme – Problem Definition 

Orientation Problem - Equivalent Angle – Axis Representation

• Euler's Rotation Theorem 

– Any combination of rotations of a rigid body, is equivalent to 

a single rotation by  𝜃 about some axis that runs through the 

fixed point𝐴𝐾 .

– Equivalent Angle – Axis Representation

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA

𝐵
𝐴𝑅( 𝐾, 𝜃) 𝑜𝑟 𝑅𝐾(𝜃)



Task Space Scheme – Problem Definition 

Position / Orientation Problem - Equivalent Angle – Axis Representation

• Combining the angle-axis representation of orientation with the 3x1 Cartesian position representation we 

have a 6x1 representation of  Cartesian position and orientation.

• Consider a via point (Point A) specified relative to a station frame (S) as     

– Frame {A} specifies a via point 

• Position of the end effector given by

• Orientation of the end effector given by    

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Task Space Scheme – Problem Definition 

Orientation Problem - Equivalent Angle – Axis Representation

• Conversion 1 - Conversion for single angle axis representation to rotation matrix representation

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA

𝑃
𝜃, 𝐾

𝑃′ 𝑃′ = 𝑅𝐾 𝜃 𝑃

𝑅𝑘 𝜃 =

𝑘𝑥𝑘𝑥𝑣𝜃 + 𝑐𝜃 𝑘𝑦𝑘𝑥𝑣𝜃 − 𝑘𝑠𝑠𝜃 𝑘𝑥𝑘𝑍𝑣𝜃 + 𝑘𝑦𝑠𝜃

𝑘𝑥𝑘𝑦𝑣𝜃 + 𝑘𝑧𝑠𝜃 𝑘𝑦𝑘𝑦𝑣𝜃 + 𝑐𝜃 𝑘𝑦𝑘𝑧𝑣𝜃 + 𝑘𝑥𝑠𝜃

𝑘𝑥𝑘𝑧𝑣𝜃 − 𝑘𝑦𝑠𝜃 𝑘𝑦𝑘𝑧𝑣𝐴 + 𝑘𝑥𝑠𝜃 𝑘𝑧𝑘𝑧𝑣𝜃 + 𝑐𝜃

ቐ

𝑐𝜃 = cos 𝜃
𝑠𝜃 = sin 𝜃

𝑣𝜃 = 1 − cos 𝜃



Task Space Scheme – Problem Definition 

Orientation Problem - Equivalent Angle – Axis Representation

• Conversion 2 – Conversion from a rotation matrix representation single axis represtation

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA

𝑃′ = 𝑅𝐾 𝜃 𝑃 𝑃
𝜃, 𝐾

𝑃′



Task Space Scheme – Problem Definition 

Position / Orientation Problem - Equivalent Angle – Axis Representation

• Convert the rotation matrix into an angle axis representation

• Use the symbol       to represent 6x1 position and orientation

• Where            is formed by scaling the unite vector           by the amount of rotation      

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Task Space Scheme – Cartesian Straight Line 

• Process - For a given trajectory we describe a spline function that smoothly vary these six quantities from  

path point to path point as a function of time. 

• Spline type - Once the vector is defined every single interpolation that is applicable at the Joint Space is also 

applicable in the task space   

• Common Spline - Linear Spline with parabolic bland 

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Task Space Scheme – Cartesian Straight Line 

• The splines are composed of linear and parabolic blend 

section

• Constrain

– The transition between the linear segment and  the 

parabolic segment for all the DOF must take place at the 

same time. Therefore using Pseudo via points in the task 

space is mandatory    

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Task Space Scheme – Cartesian Straight Line 

• Complication – The angle-axis representation is 

not unique

• In going from via point {A} to a via point {B}, the total 

amount of rotation should be minimized

• Choose             such that    

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Path Generation – Summary   

Task Space

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Task Generation at Run Time – Task Space    

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Joint Space Schemes – Multiple Time Intervals – Via Points –

Linear Polynomials

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA

Time - 𝑡

J
o

in
t 
A

n
g

le
  
-
𝜃

(+) Known - Time Duration between Start / Via / End Points

(+) Known – Joint Angles 

𝒕𝒅𝟏𝟐

𝜽𝟏

𝜽𝟐

Slope
ሶ𝜽𝟏𝟐

𝜽𝒍

𝜽𝒌

𝜽𝒋

𝒕𝒅𝒌𝒍𝒕𝒅𝒋𝒌

Slope
ሶ𝜽𝒌𝒍

Slope
ሶ𝜽𝒋𝒌

𝜽𝒏−𝟏

𝜽𝒏

𝒕𝒅 𝒏−𝟏 𝒏

Slope
ሶ𝜽 𝒏−𝟏 𝒏

𝜃 0 = 𝜃0

𝜃 𝑡𝑓 = 𝜃𝑓



Joint Space Schemes – Multiple Time Intervals – Via Points –

Linear Polynomials

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA

𝜃 = 𝜃0 +
𝜃𝑓 − 𝜃0

𝑡𝑓
𝑡
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𝜃 𝑡𝑓 = 𝜃𝑓



Joint Space Schemes – Multiple Time Intervals – Via Points –

Cubic Polynomials – Non Zero Velocity

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA
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Joint Space Schemes – Multiple Time Intervals – Via Points –

Cubic Polynomials – Non Zero Velocity

𝜃(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2 + 𝑎3𝑡

3

ሶ𝜃(𝑡) = 𝑎1 + 2𝑎2𝑡 + 3𝑎3𝑡
2

ሷ𝜃(𝑡) = 2𝑎2 + 6𝑎3𝑡

𝜃(0) = 𝜃0
𝜃(𝑡𝑓) = 𝜃𝑓
ሶ𝜃(0) = ሶ𝜃0
ሶ𝜃(𝑡𝑓) = ሶ𝜃𝑓

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA
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Joint Space Schemes – Multiple Time Intervals – Via Points –

Quantic Polynomials - Non Zero Acceleration

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA
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Joint Space Schemes – Multiple Time Intervals – Via Points –

Quantic Polynomials - Non Zero Acceleration

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA

𝜃(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2 + 𝑎3𝑡

3 + 𝑎4𝑡
4 + 𝑎5𝑡

5

ሶ𝜃(𝑡) = 𝑎1 + 2𝑎2𝑡 + 3𝑎3𝑡
2 + 4𝑎4𝑡

3 + 5𝑎5𝑡
4

ሷ𝜃(𝑡) = 2𝑎2 + 6𝑎3𝑡 + 12𝑎4𝑡
2 + 20𝑎5𝑡

3

𝜃(0) = 𝜃0
𝜃(𝑡𝑓) = 𝜃𝑓
ሶ𝜃(0) = ሶ𝜃0
ሶ𝜃(𝑡𝑓) = ሶ𝜃𝑓
ሷ𝜃(0) = ሷ𝜃0
ሷ𝜃(𝑡𝑓) = ሷ𝜃𝑓

𝑎0 = 𝜃0
𝑎1 = ሶ𝜃0

𝑎2 =
ሷ𝜃0
2
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20𝜃𝑓 − 20𝜃0 − (8 ሶ𝜃𝑓 + 12 ሶ𝜃0)𝑡𝑓 − (3 ሷ𝜃0 − ሷ𝜃𝑓)𝑡𝑓

2

2𝑡𝑓
3

𝑎4 =
30𝜃0 − 30𝜃𝑓 + (14 ሶ𝜃𝑓 + 16 ሶ𝜃0)𝑡𝑓 + (3 ሷ𝜃0 − 2 ሷ𝜃𝑓)𝑡𝑓

2

2𝑡𝑓
4

𝑎5 =
12𝜃𝑓 − 12𝜃0 − (6 ሶ𝜃𝑓 + 6 ሶ𝜃0)𝑡𝑓 − ( ሷ𝜃0 − ሷ𝜃𝑓)𝑡𝑓

2

2𝑡𝑓
5



Joint Space Schemes – Multiple Time Intervals – Via Points –

Linear Function With Parabolic Blend 

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA
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ሶ𝜽 𝒏−𝟏 𝒏

𝒕 𝒏−𝟏 𝒏



Joint Space Schemes – Multiple Time Intervals – Via Points –

Linear Function With Parabolic Blend 

• Tasks No. 1 – Time Intervals / Velocity / 

Acceleration 

– Calculate the time intervals of the parabolic 

blending (marked in green) 

– Calculate the time intervals of the linear 

functions (marked in blue) 

– Calculate the direction of the acceleration 

during the linear bland 

– Calculate the velocity during the linear spline

• Task No. 2 – Functions 

– Define the Linear Functions (marked in 

black)

– Defined the parabolic blend functions 

(marked in gray)

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA

Assume 4 intervals

• First Interval: 1→2

• Intermediate Interval: 2 → 3 

• Last Interval: 2 → 3  



Joint Space Schemes – Multiple Time Intervals – Via Points –

Linear Function With Parabolic Blend 

• Tasks No. 1  

– First Interval - 1→2

𝑡1 = 𝑡𝑑12 − 𝑡𝑑12
2 −

2 𝜃2 − 𝜃1
ሷ𝜃1

ሷ𝜃1 = 𝑆𝐺𝑁 𝜃2 − 𝜃1 ሷ𝜃1

ሶ𝜃12 =
𝜃2 − 𝜃1

𝑡𝑑12 −
1
2
𝑡1

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Joint Space Schemes – Multiple Time Intervals – Via Points –

Linear Function With Parabolic Blend 

• Tasks No. 1  

– Intermediate Interval (Repeat for any 

intermediate interval ) - 2→3

ሶ𝜃𝑗𝑘 =
𝜃𝑘−𝜃𝑗

𝑡𝑑𝑗𝑘

ቊ
𝑗 = 2
𝑘 = 3

→ ሶ𝜃23 =
𝜃3−𝜃1

𝑡𝑑23

ሷ𝜃𝑘 = 𝑆𝐼𝐺 ሶ𝜃𝑘𝑙 − ሶ𝜃𝑗𝑘 ሷ𝜃𝑘

ቐ
𝑗 = 1
𝑘 = 2
𝑙 = 3

→ ሷ𝜃2 = 𝑆𝐼𝐺 ሶ𝜃23 − ሶ𝜃12 ሷ𝜃2

𝑡𝑘 =
ሶ𝜃𝑘𝑙− ሶ𝜃𝑗𝑘

ሷ𝜃𝑘

ቐ
𝑗 = 1
𝑘 = 2
𝑙 = 3

→ 𝑡2 =
ሶ𝜃23− ሶ𝜃12

ሷ𝜃2

𝑡𝑑12 − 𝑡1 −
1

2
𝑡2

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Joint Space Schemes – Multiple Time Intervals – Via Points –

Linear Function With Parabolic Blend 

• Tasks No. 1  

– Final Interval - 3→4

ሷ𝜃𝑛 = 𝑆𝐺𝑁 𝜃𝑛−1 − 𝜃𝑛 ሷ𝜃𝑛
n = 4 → ሷ𝜃4 = 𝑆𝐺𝑁 𝜃3 − 𝜃4 ሷ𝜃4

𝑡𝑛 = 𝑡𝑑 𝑛−1 𝑛 − 𝑡𝑑 𝑛−1 𝑛
2 −

2 𝜃𝑛−1 − 𝜃𝑛
ሷ𝜃𝑛

n = 4 → 𝑡4 = 𝑡𝑑34 − 𝑡𝑑34
2 −

2 𝜃3−𝜃4
ሷ𝜃4

ሶ𝜃 𝑛−1 𝑛 =
𝜃𝑛 − 𝜃𝑛−1

𝑡𝑑 𝑛−1 𝑛 −
1
2
𝑡𝑛

𝑛 = 4 → ሶ𝜃34 =
𝜃4−𝜃3

𝑡𝑑34−
1

2
𝑡4

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Joint Space Schemes – Multiple Time Intervals – Via Points –

Linear Function With Parabolic Blend 

• Tasks No. 1  

– Final Interval - 3→4 (Continue)

– (Interval Prior to the final interval)

ሷ𝜃𝑘 = 𝑆𝐺𝑁 ሶ𝜃𝑘𝑙 − ሶ𝜃𝑗𝑘 ሷ𝜃𝑘

ቐ
𝑗 = 2
𝑘 = 3
𝑙 = 4

→
ሷ𝜃3=𝑆𝐺𝑁 ሶ𝜃34− ሶ𝜃23 ሷ𝜃3

𝑡𝑘 =
ሶ𝜃𝑘𝑙− ሶ𝜃𝑗𝑘

ሷ𝜃𝑘

ቐ
𝑗 = 2
𝑘 = 3
𝑙 = 4

→ 𝑡3 =
ሶ𝜃34− ሶ𝜃23

ሷ𝜃3

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Joint Space Schemes – Multiple Time Intervals – Via Points –

Linear Function With Parabolic Blend 

• Tasks No. 1  

– Final Interval - 3→4 (Continue)

– (Interval Prior to final interval & Final Inetrval)

𝑡𝑗𝑘 = 𝑡𝑑𝑗𝑘 −
1

2
𝑡𝑗 −

1

2
𝑡𝑘

ቊ
𝑗 = 2
𝑘 = 3

→ 𝑡23 = 𝑡𝑑23 −
1

2
𝑡2 −

1

2
𝑡3

𝑡 𝑛−1 𝑛 = 𝑡𝑑 𝑛−1 𝑛 − 𝑡𝑛 −
1

2
𝑡𝑛−1

𝑛 = 4 → 𝑡34 = 𝑡𝑑34 − 𝑡4 −
1

2
𝑡3

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Joint Space Schemes – Multiple Time Intervals – Via Points –

Linear Function With Parabolic Blend – Example 

• Tasks No. 2 – Linear & parabolic functions

– First Segment

𝜃 = 𝜃1 + ሶ𝜃12𝑡

𝜃 = 𝜃0 +
1

2

ሶ𝜃12
𝑡1

𝑡2

𝑡𝑖𝑛𝑏=t

– Mid Segment
𝜃 = 𝜃𝑗 + ሶ𝜃𝑗𝑘𝑡

𝜃 = 𝜃𝑗 + ሶ𝜃𝑗𝑘 𝑡 − 𝑡𝑖𝑛𝑏 +
1

2
ሷ𝜃𝑘
2𝑡𝑖𝑛𝑏

𝑡𝑖𝑛𝑏 = 𝑡 −
1

2
𝑡𝑗 + 𝑡𝑗𝑘

– Last Segment
𝜃 = 𝜃𝑛−1 + ሶ𝜃 𝑛−1 𝑛𝑡

𝜃 = 𝜃𝑖𝑛𝑏 + 𝜃 𝑛−1 𝑛𝑡𝑖𝑛𝑏 −
1

2

ሶ𝜃 𝑛−1 𝑛

𝑡𝑖𝑛𝑏
𝑡𝑖𝑛𝑏
2

𝑡𝑖𝑛𝑏 = 𝑡 −
1

2
𝑡𝑛−1 + 𝑡 𝑛−1 𝑛

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA

𝑡 = 0
𝑡𝑖𝑛𝑏

𝑡𝑖𝑛𝑏
𝑡 = 0

𝑡𝑖𝑛𝑏
𝑡 = 0



Path Generation & Run Time – Summary   

Task Space

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Task Generation at Run Time – Task/Joint Space Mapping    

•

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Task Generation at Run Time – Task/Joint Space Mapping    

•

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Task Space Schemes 

Geometric Problems with Paths in Task Space 



Geometric Problems – Cartesian Paths 

• Problem Type 1 – Unreachable Intermediate Points

• The initial and the final point are in the reachable workspace 

however some point along the path may be out of the 

workspace. 

• Solution 

– Joint space path – unreachable

– Cartesian straight Path – reachable  

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Geometric Problems – Cartesian Paths 

• Problem Type 2 – High Joint Rate Near Singularity. 

• In singularity the velocity of one or more joint approach infinity. 

• The velocity of the mechanism are upper bounded, approaching 

singularity results in the manipulator’s deviation form the 

desired path.  

• Solution

– Slow down the velocity such that all the joint velocities will 

remain in their bounded velocities        

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Geometric Problems – Cartesian Paths 

• Problem Type 3 – Start and Goal reachable in different 

solutions 

• Joint limits may restrict the number of solutions that the 

manipulator may use given a goal point. 

• Solution 

– Switch between joint space (default) and Cartesian 

space trajectories (used only if needed)  

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Euler’s Theorem - Equivalent Axis

Derivation 

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Task Space Scheme – Problem Definition 

Orientation Problem - Equivalent Angle – Axis Representation

• Euler's Rotation Theorem 

– Any combination of rotations of a rigid body, is equivalent to 

a single rotation by  𝜃 about some axis 𝐴 𝐾 that runs through 

the fixed point.

– Equivalent Angle – Axis Representation

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA

𝐵
𝐴𝑅( 𝐾, 𝜃) 𝑜𝑟 𝑅𝐾(𝜃)



Task Space Scheme – Problem Definition 

Orientation Problem - Equivalent Angle – Axis Representation

• Start with the frame coincident with a know frame {A}; then 

rotate frame {B} about a vector          by an angle      

according to the right hand rule. 

• Equivalent Angle – Axis Representation

• Vector          is called the equivalent axis of a finite 

rotation.

• The specification of          requires two parameters since it 

length is always 1.

• The angle specify the third parameter              

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA



Task Space Scheme – Problem Definition 

Orientation Problem - Equivalent Angle – Axis Representation

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA

• Rotate a vector 𝑃 through an angle 𝜃 about an 

arbitrary axis whose direction is represented by a 

unite vector መ𝐴

• Types of Transformations 

– Transformation for a vector/angle form to a 

matrix form 

– Transformation from a matrix to a vector 

angle form 

𝑃
𝜃, መ𝐴

𝑃′ 𝑃′ = 𝑅𝐴 𝜃 𝑃

𝑃′ = 𝑅𝐴 𝜃 𝑃 𝑃
𝜃, መ𝐴

𝑃′

o

a

b

p

y

z

x

p＇

UNIT VECTOR

Â

A



Transformation for a vector/angle form to a matrix form 

Task Space Scheme – Problem Definition 

Orientation Problem - Equivalent Angle – Axis Representation

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA

𝑃
𝜃, 𝐴

𝑃′ 𝑃′ = 𝑅𝐴 𝜃 𝑃



Task Space Scheme – Problem Definition 

Orientation Problem - Equivalent Angle – Axis Representation

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA

• Decompose the vector P into two components that are:

– Parallel to A

– Perpendicular to A

𝑐𝑜 = 𝑃∥𝐴 = 𝑃 ⋅ 𝐴 𝐴 = 𝑃 cos 𝛼

𝑜𝑎 = 𝑃⊥𝐴 = 𝑃 − 𝑃 ⋅ 𝐴 𝐴 = 𝑃 ⋅ sin𝛼

o

a

p 

p

Â

C

p11

α



Task Space Scheme – Problem Definition 

Orientation Problem - Equivalent Angle – Axis Representation

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA

• Scalar multiplied by A

• Vector along A with a magnitude of the projection of P an A

• Note: A is a unite vector

Dot product PA cosα (scallar)

Projection of vector P on vector A

𝑃 = 𝑃⊥𝐴 + 𝑃∥𝐴

𝑃⊥𝐴 = 𝑃 − 𝑃∥𝐴 = 𝑃 − 𝑃 ⋅ Ԧ𝐴 Ԧ𝐴 = 𝑃 sin 𝛼

𝑃∥𝐴 = 𝑃 ⋅ Ԧ𝐴 Ԧ𝐴
o

a

p 

p

Â

C

p11

α



Task Space Scheme – Problem Definition 

Orientation Problem - Equivalent Angle – Axis Representation

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA

o

a

p A

Â

C

p11

α

b

A×p

p＇

p

θ

a

b

p A

p A

p A

A×p

O

θ

AApp )( 

• The cross product A×P creates a vector that is perpendicular to 

the plane COA (including the two vectors A and P ) therefor by 

definition  

𝐴 × 𝑃 = 𝑃 sin 𝛼

• As indicated before magnitude of 𝑜𝑎 = 𝑃⊥𝐴

𝑜𝑎 = 𝑃⊥𝐴 = 𝑃 sin 𝛼

• As a result we are allowed to equate the two terms 

𝑃⊥𝐴 = 𝐴 × 𝑃



Task Space Scheme – Problem Definition 

Orientation Problem - Equivalent Angle – Axis Representation

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA

o

a

p A

Â

C

p11

α

b

A×p

p＇

p

θ

a

b

p A

p A

p A

A×p

O

θ

AApp )( 

• Express the rotation of 𝑃⊥𝐴 through an angle 𝜃 as

• Base on the two expressions  

𝑃⊥𝐴 = 𝐴 × 𝑃
Ԧ𝑃⊥𝐴 = Ԧ𝑃 − 𝑃∥𝐴 = Ԧ𝑃 − Ԧ𝑃 ⋅ Ԧ𝐴 Ԧ𝐴 = 𝑃 sin 𝛼

• We can rewrite the expression 

𝑃⊥𝐴 = 𝑃⊥𝐴 cos 𝜃 + 𝑃⊥𝐴 sin 𝜃

𝑃⊥𝐴 = 𝑜𝑏 = 𝑃 − 𝑃 ⋅ 𝐴 𝐴 cos𝜃 + 𝐴 × 𝑃 sin 𝜃



Task Space Scheme – Problem Definition 

Orientation Problem - Equivalent Angle – Axis Representation

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA

• Example: Multiplying a vector (P) by a unit vector 

(A) creates a vector that is perpendicular to the 

plane of vector (A) and (P) and has the some 

magnitude as (P)

𝐴 × 𝑃 =
𝑖 𝑗 𝑘
0 1 0
5 0 0

= 0𝑖 + 0𝑗 − 5𝑘

𝐴 𝑃 sin 𝜃 = 1 ⋅ 5 ⋅ sin 90° = 5

A

y(5)

z(k)

5

P x(i)

O



Task Space Scheme – Problem Definition 

Orientation Problem - Equivalent Angle – Axis Representation

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA

• The new vector 𝑃′ which results from rotating 

vector P by A is expressed as

• Rearranging this expression resulted in 

𝑃′ = 𝑜𝑏 + 𝑃∥𝐴

𝑃′ = 𝑃 − 𝑃 ⋅ 𝐴 𝐴 cos 𝜃 + 𝐴 × 𝑃 sin 𝜃
𝑜𝑏

+ 𝑃 ⋅ 𝐴 𝐴
𝑃∥𝐴

𝑃′ = 𝑃 cos 𝜃 + 𝐴 × 𝑃 sin 𝜃 + 𝑃 ⋅ 𝐴 𝐴 1 − cos𝜃

O
θ

b

ap11A

p＇

p



Task Space Scheme – Problem Definition 

Orientation Problem - Equivalent Angle – Axis Representation

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA

• Cross Product of vector A with P (Matrix form)

• Projection of vector P on vector A (Matrix Form)

• Note: If A is a unit vector 𝐴 = 1

𝐴 × 𝑃 =

0 −𝐴𝑧 𝐴𝑦
𝐴𝑧 0 −𝐴𝑥
−𝐴𝑦 𝐴𝑥 0

𝑃𝑥
𝑃𝑦
𝑃𝑧

Project 𝑃 = 𝑃 ⋅ 𝐴 𝐴 =
1

𝐴 2

𝐴𝑥
2 𝐴𝑥𝐴𝑦 𝐴𝑥𝐴𝑧

𝐴𝑥𝐴𝑦 𝐴𝑦
2 𝐴𝑦𝐴𝑧

𝐴𝑥𝐴𝑧 𝐴𝑦𝐴𝑧 𝐴𝑧
3

𝑃𝑥
𝑃𝑦
𝑃𝑧

A×p

A

P

A

P

α

Project p on A

AAP ）（ 



Task Space Scheme – Problem Definition 

Orientation Problem - Equivalent Angle – Axis Representation

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA

• Plugging the matrix definitions into the expression of 

• Setting 

• Combing the terms gives us the formulation for matrix  𝑅𝐴 𝜃 that rotates a vector P by an angle 𝜃 about 

the  axis A

𝑃′ = 𝑃 cos 𝜃 + 𝐴 × 𝑃 sin 𝜃 + 𝑃 ⋅ 𝐴 𝐴 1 − cos 𝜃

𝑃′ =
1 0 0
0 1 0
0 0 1

𝑃 cos 𝜃 +

0 −𝐴𝑧 𝐴𝑦
𝐴𝑧 0 −𝐴𝑥
−𝐴𝑦 𝐴𝑥 0

𝑃 sin 𝜃 +

𝐴𝑥
2 𝐴𝑥𝐴𝑦 𝐴𝑥𝐴𝑧

𝐴𝑥𝐴𝑦 𝐴𝑦
2 𝐴𝑦𝐴𝑧

𝐴𝑥𝐴𝑧 𝐴𝑦𝐴𝑧 𝐴𝑧
2

𝑃 1 − cos 𝜃

ቊ
𝑐 = cos 𝜃
𝑠 = sin 𝜃



Task Space Scheme – Problem Definition 

Orientation Problem - Equivalent Angle – Axis Representation

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA

𝑃′ =
1 0 0
0 1 0
0 0 1

cos 𝜃 +

0 −𝐴𝑧 𝐴𝑦
𝐴𝑧 0 −𝐴𝑥
−𝐴𝑦 𝐴𝑥 0

sin 𝜃 +

𝐴𝑥
2 𝐴𝑥𝐴𝑦 𝐴𝑥𝐴𝑧

𝐴𝑥𝐴𝑦 𝐴𝑦
2 𝐴𝑦𝐴𝑧

𝐴𝑥𝐴𝑧 𝐴𝑦𝐴𝑧 𝐴𝑧
2

1 − cos 𝜃

𝑅𝐴 𝜃

𝑃

𝑃′ =

𝑐 + 1 − 𝑐 𝐴𝑥
2 1 − 𝑐 𝐴𝑥𝐴𝑦 − 𝑠𝐴𝑧 1 − 𝑐 𝐴𝑥𝐴𝑧 + 𝑆𝐴𝑦

1 − 𝑐 𝐴𝑥𝐴𝑦 + 𝑠𝐴𝑧 𝑐 + 1 − 𝑐 𝐴𝑦
2 1 − 𝑐 𝐴𝑦𝐴𝑧 − 𝑆𝐴𝑥

1 − 𝑐 𝐴𝑥𝐴𝑧 − 𝑠𝐴𝑦 1 − 𝑐 𝐴𝑦𝐴𝑧 + 𝑆𝐴𝑥 𝑐 + 1 − 𝑐 𝐴𝑧
2

𝑅𝐴 𝜃

𝑃



Task Space Scheme – Problem Definition 

Orientation Problem - Equivalent Angle – Axis Representation

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA

• Note: From the general rotation transformation around and arbitrary axis A we can obtain each one of 

the elementary rotation translation

𝑅 𝑥, 𝜃 = 𝑅
𝐴𝑥 𝐴𝑦 𝐴𝑧
1, 0, 0

, 𝜃

𝐴

=
𝑐 + 1 − 𝑐 1 0 0

0 𝑐 −𝑠
0 𝑠 𝑐

=
1 0 0
0 𝑐 −𝑠
0 𝑠 𝑐

𝑅 𝑦, 𝜃 = 𝑅 0,1,0

𝐴

, 𝜃

𝑅 𝑧, 𝜃 = 𝑅 0,0,1

𝐴

, 𝜃



Transformation for a a matrix form to a vector/angle form 

Task Space Scheme – Problem Definition 

Orientation Problem - Equivalent Angle – Axis Representation

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA

𝑃′ = 𝑅𝐴 𝜃 𝑃 𝑃
𝜃, 𝐴

𝑃′



Task Space Scheme – Problem Definition 

Orientation Problem - Equivalent Angle – Axis Representation

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA

• Given any arbitrary rotation transformation (𝑅 ) we can use the eq. expressing  (𝑅𝐴 𝜃 ) to obtain an axis 𝑘
about which an equivalent rotation θ by equating (𝑅 ) to 𝑅(𝑘, 𝐴)

𝑛𝑥 𝑜𝑥 𝑎𝑥
𝑛𝑦 𝑜𝑦 𝑎𝑦
𝑛𝑧 𝑜𝑧 𝑎𝑧

𝑔𝑖𝑣𝑒𝑛

=

𝑘𝑥
2𝑣𝜃 + 𝑐 𝑘𝑥𝑘𝑦𝑣𝜃 − 𝑘𝑧𝑠 𝑘𝑥𝑘𝑧𝑣𝜃 + 𝑘𝑦𝑠

𝑘𝑥𝑘𝑦𝑣𝜃 + 𝑘𝑧𝑠 𝑘𝑦
2𝑣𝜃 + 𝑐 𝑘𝑦𝑘𝑧𝑣𝜃 − 𝑘𝑥𝑠

𝑘𝑥𝑘𝑧𝑣𝜃 − 𝑘𝑦𝑠 𝑘𝑦𝑘𝑧𝑣𝜃 + 𝑘𝑥𝑠 𝑘𝑧
2𝑣𝜃 + 𝑐

find 𝑘,𝜃

Eq. 1

𝑛𝑥 = 𝑘𝑥
2𝑣𝜃 + 𝑐

𝑜𝑦= 𝑘𝑦
2𝑣𝜃 + 𝑐

𝑎𝑧= 𝑘𝑧
2𝑣𝜃 + 𝑐



• Summing the diagonal terms of Eq. 1 we obtain

𝑘 is a Unit Vector

• Solving for C i.e. the cosine of the angle of the rotation is resulted in 

Task Space Scheme – Problem Definition 

Orientation Problem - Equivalent Angle – Axis Representation

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA

1,1 + 2,2 + 3,3 →

𝑛𝑥 + 𝑜𝑦 + 𝑎𝑧 = 𝑘𝑥
2𝑣𝜃 + 𝑐 + 𝑘𝑦

2𝑣𝜃 + 𝑐 + 𝑘𝑧
2𝑣𝜃 + 𝑐

𝑛𝑥 + 𝑜𝑦 + 𝑎𝑧 = 𝑘𝑥
2 + 𝑘𝑦

2 + 𝑘𝑧
2

1

ด𝑣𝜃
1−𝑐

+ 3𝑐 = 1 + 2𝑐

𝑐 = cos 𝜃 =
1

2
𝑛𝑥 + 𝑜𝑦 + 𝑎𝑧 − 1



Task Space Scheme – Problem Definition 

Orientation Problem - Equivalent Angle – Axis Representation

Instructor: Jacob Rosen 
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• Differencing pairs of the off-diagonal terms in Eq. 1 we obtain

• Squaring and adding the previous equations we obtain an expression for sin 𝜃 that we will further refer to 

as Eq. 2

3,2 − 2,3 → 𝑜𝑧 − 𝑎𝑦 = 2𝑘𝑥𝑠 ⇒ 𝑘𝑥 =
𝑜𝑧 − 𝑎𝑦

2𝑠

1,3 − 3,1 → 𝑎𝑥 − 𝑛𝑧 = 2𝑘𝑦𝑆 ⇒ 𝑘𝑦 =
𝑎𝑥 − 𝑛𝑧
2𝑠

2,1 − 1,2 → 𝑛𝑦 − 𝑜𝑥 = 2𝑘𝑧𝑠 ⇒ 𝑘𝑧 =
𝑛𝑦 − 𝑜𝑥

2𝑠

𝑜𝑧 − 𝑎𝑦
2
+ 𝑎𝑥 − 𝑛𝑧

2 + 𝑛𝑦 − 𝑜𝑥
2
= 4 𝑘𝑥

2 + 𝑘𝑦
2 + 𝑘𝑧

2

1

𝑠2

𝑠 = sin 𝜃 = ±
1

2
𝑜𝑧 − 𝑎𝑦

2
+ 𝑎𝑥 − 𝑛𝑧

2 + 𝑛𝑦 − 𝑜𝑥
2

Eq. 3

Eq. 2



Task Space Scheme – Problem Definition 

Orientation Problem - Equivalent Angle – Axis Representation

Instructor: Jacob Rosen 
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• We may define the rotation to be positive about the vector 𝑘 such that 0 < 𝜃 < 180.

• In this case the ＋ sign is appropriate in Eq. 3  and thus the angle of the rotation θ is uniquely 

define as

ቚtan 𝜃
0<𝜃<180

=
𝑜𝑧 − 𝑎𝑦

2
+ 𝑎𝑥 − 𝑛𝑧

2 + 𝑛𝑦 − 𝑜𝑥
2

𝑛𝑥 + 𝑜𝑦 + 𝑎𝑧 − 1

𝑐 = cos𝜃 =
1

2
𝑛𝑥 + 𝑜𝑦 + 𝑎𝑧 − 1

𝑠 = sin 𝜃 = ±
1

2
𝑜𝑧 − 𝑎𝑦

2
+ 𝑎𝑥 − 𝑛𝑧

2 + 𝑛𝑦 − 𝑜𝑥
2



Task Space Scheme – Problem Definition 

Orientation Problem - Equivalent Angle – Axis Representation
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• The component of k may be obtained from Eq. 2

* 

𝑘𝑥 =
𝑜𝑧 − 𝑎𝑦

2𝑠

𝑘𝑦 =
𝑎𝑥 − 𝑛𝑧
2𝑠

𝑘𝑧 =
𝑛𝑦 − 𝑜𝑥

2𝑠 For 0 <𝜃<90

O

180

0＜θ＜90

Eq. 4



• Pathological Case  1 – Normalizing K for θ→0 or θ→180 

– When the angle of rotation (A) approaches θ→0 or θ→180 the axis of rotation is physically not well 

defined due to the small magnitude of both the numerator and the dominator in Eq.  4

– The vector 𝑘 should be renormalized to ensure that 𝑘 = 1

• If θ→0; θ→180

• Then  

𝑘 = 𝑘𝑥
2 + 𝑘𝑦

2 + 𝑘𝑧
2

𝑘 =
𝑘𝑥
𝑘

;
𝑘𝑦

𝑘
;
𝑘𝑧
𝑘
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O 180

；

；
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• Pathological Case 2 – Singularity at θ=0 or θ=180 

– At  θ=0 or θ=180 Eq. 4 are taking the form of  
0

0
yielding no information at all about a physical 

defection vector k

– If                                                          θ=0   θ=180 

– Then                                                    𝑘 =
0

0
;
0

0
;
0

0

↑

Undefined

– Resulting in Singularity



• If the angle of rotation is greater than 0, 90 < 𝜃 < 180, than we must follow a different approach in 

determining k otherwise we will get the same values since the sine has the same value in both regines.

• Equating the diagonal elements of Eq 1

• Solving for 𝑘𝑥 , 𝑘𝑦 , 𝑘𝑧
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18090

𝑛𝑥 = 𝑘𝑥
2𝑣𝜃 + 𝑐 = 𝑘𝑥

2 (1 − 𝑐) + 𝑐
𝑜𝑦= 𝑘𝑦

2𝑣𝜃 + 𝑐 = 𝑘𝑦
2(1 − 𝑐) + 𝑐

𝑎𝑧= 𝑘𝑧
2𝑣𝜃 + 𝑐 = 𝑘𝑧

2(1 − 𝑐) + 𝑐

O

180

0＜θ＜90



• resulting in

What should be the sign
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𝑘𝑥 = ±
𝑛𝑥 − cos 𝜃

1 − cos 𝜃

𝑘𝑦 = ±
𝑜𝑦 − cos𝜃

1 − cos𝐴

𝑘𝑧 = ±
𝑎𝑧 − cos 𝜃

1 − cos𝜃
For 90<𝜃<180

Eq. 5
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• The largest component of k defined by equation Eq. 5  corresponds to the most positive components of 

𝑛𝑥 , 𝑜𝑦, 𝑎𝑧.                 

• For this largest element, the sign of the radical can be obtained from Eq. 2 

• As the sine of the angle of rotation θ must be positive, then the sign of the component of k defined by Eq. 2     

must be the same as the left hand side of these equations. 

• Thus we may combined Eq. 5  with the information contained in Eq. 2  as follows 



• Since 𝜃 → 90 → 180 The sine function is always positive sin 𝜃 > 0

• Rewriting Eq. 5
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𝑘𝑥 =
𝑜𝑧 − 𝑎𝑦

2𝑠
sgn 𝑘𝑥 = sgn 𝑜𝑧 − 𝑎𝑦

𝑘𝑦 =
𝑎𝑥 − 𝑛𝑧
2𝑠

sgn 𝑘𝑦 = sgn 𝑎𝑥 − 𝑛𝑧

𝑘𝑧 =
𝑛𝑦 − 𝑜𝑥

2𝑠
sgn 𝑘𝑧 = sgn 𝑛𝑦 − 𝑜𝑥

90 180

SinA

𝑘𝑥 = sgn 𝑜𝑧 − 𝑎𝑦
𝑛𝑥 − cos 𝜃

1 − cos 𝜃

𝑘𝑦 = sgn 𝑎𝑥 − 𝑛𝑧
𝑜𝑦 − cos 𝜃

1 − cos 𝜃

𝑘𝑧 = sgn 𝑛𝑦 − 𝑜𝑥
𝑎𝑧 − cos 𝜃

1 − cos 𝜃

sgn 𝑒 = +1
𝑒 > 0

sgn 𝑒 = −1
𝑒 < 0

Eq. 6
Fine the largest component of K



• Only the longest element of k is determined from Eq .6 corresponding to the most positive element of 

𝑛𝑥 , 𝑜𝑦, and 𝑎𝑧. 

• The  remaining element are more accurately determined by the following equations formed by summing 

pairs of off-diagonal element of Eq. 1 
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൞

𝑛𝑦 + 𝑜𝑥 = 2𝑘𝑥𝑘𝑦𝑣𝜃

𝑜𝑧 + 𝑎𝑦 = 2𝑘𝑦𝑘𝑧𝑣𝜃

𝑛𝑧 + 𝑎𝑥 = 2𝑘𝑧𝑘𝑥𝑣𝜃

Eq. 71

Eq. 72

Eq. 73
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• If         is the largest  

• If         is the largest  

• If         is the largest

𝑘𝑥

𝑘𝑦

𝑘𝑧

𝑘𝑦 =
𝑛𝑦 + 𝑜𝑥
2𝑘𝑥𝑣𝜃

from Eq 71

𝑘𝑧 =
𝑎𝑥 + 𝑛𝑧
2𝑘𝑥𝑣𝜃

from Eq 73

𝑘𝑥 =
𝑛𝑦 + 𝑜𝑥
2𝑘𝑦𝑣𝜃

from Eq 71

𝑘𝑧 =
𝑜𝑧 + 𝑎𝑦
2𝑘𝑦𝑣𝜃

from Eq 72

𝑘𝑥 =
𝑎𝑥 + 𝑛𝑧
2𝑘𝑧𝑣𝜃

from Eq 73

𝑘𝑦 =
𝑜𝑧 + 𝑎𝑦
2𝑘𝑧𝑣𝜃

from Eq 72



• Example: Determine the equivalent axis 𝑘 and angle 𝜃 of the following rotation matrix

Step 1 - Determine cos 𝜃 and the  sin 𝜃
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Rot 𝑦, 90 Rot 𝑧, 90 =
0 0 1
1 0 0
0 1 0

𝑐 = cos 𝜃 =
1

2
𝑛𝑥 + 𝑜𝑦 + 𝑎𝑧 − 1 =

1

2
0 + 0 + 0 − 1 = −

1

2

𝑠 = sin 𝜃 = ±
1

2
𝑜𝑧 − 𝑎𝑦

2
+ 𝑎𝑥 − 𝑛𝑧

2 + 𝑛𝑦 − 𝑜𝑥
2
= ±

1

2
1 − 0 2 + 1 − 0 2 + 1 − 0 2 =

3

2

𝜃 = 𝑡𝑎𝑛−1
3/2

−1/2
= 120°



• Step 2 - As θ>90, we determine the largest component of k corresponding to the largest element or the 

diagonal. As all the diagonal elements are equal in this example we may pick anyone of them 

• For the purpose of this example we will pick 𝑘𝑥 given in eq
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𝑘𝑥 = sgn 𝜃𝑧 − 𝑎𝑦
𝑛𝑥 − cos𝜃

1 − cos 𝜃

𝑘𝑥 = +
0 + 0.5

1 + 0.5
=

1

3



• Step 3 - Since we have selected 𝑘𝑥 to be than largest we may determine 𝑘𝑦 and 𝑘𝑧 respectively
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𝑘𝑦 =
𝑛𝑦 + 𝑜𝑥

2𝑘𝑥𝑣𝜃
↑

1−𝑐

=
1 + 0

2
1

3
1 + 0.5

=
1

3

3

=
1

3

𝑘𝑧 =
𝑎𝑥 + 𝑛𝑧
2𝑘𝑦𝑣𝜃

=
1 + 0

2
1

3
1 + 0.5

=
1

3

3

=
1

3
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• In summary then

 

3

1

3

1

3

1

Rot 𝑦, 90 Rot 𝑧, 90 = 𝑅
1

3
𝑖 +

1

3
𝑗 +

1

3
𝑘

𝑘

, 120
↓
𝜃
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2A
2B A

K̂

yp

yA

xA

xA

 A

 B

• ① Start with the frame {B} coincident with known from {A}

• ② Rotate {B} about the vector 𝑘 by an angle (θ) 

according to the right rule (note 𝑘 is a unit vector   

• 𝑘𝑥
2 + 𝑘𝑦

2 + 𝑘𝑧
2 = 1 )



Equivalent Angle – Axis Representation – Summary 

• Conversion 1 - Conversion for single angle axis representation to rotation matrix representation
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𝑃
𝜃, 𝐾

𝑃′ 𝑃′ = 𝑅𝐾 𝜃 𝑃
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𝑃′ = 𝑅𝐾 𝜃 𝑃 𝑃
𝜃, 𝐾

𝑃′

𝑛𝑥 𝑜𝑥 𝑎𝑥
𝑛𝑦 𝑜𝑦 𝑎𝑦
𝑛𝑧 𝑜𝑧 𝑎𝑧

𝑔𝑖𝑣𝑒𝑛

ቚtan 𝜃
0<𝜃<180

=
𝑜𝑧 − 𝑎𝑦

2
+ 𝑎𝑥 − 𝑛𝑧

2 + 𝑛𝑦 − 𝑜𝑥
2

𝑛𝑥 + 𝑜𝑦 + 𝑎𝑧 − 1

0 < 𝜃 < 9090 < 𝜃 < 180
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0 < 𝜃 < 9090 < 𝜃 < 180

𝑘𝑥 = sgn 𝑜𝑧 − 𝑎𝑦
𝑛𝑥 − cos 𝜃

1 − cos 𝜃

𝑘𝑦 = sgn 𝑎𝑥 − 𝑛𝑧
𝑜𝑦 − cos 𝜃

1 − cos 𝜃

𝑘𝑧 = sgn 𝑛𝑦 − 𝑜𝑥
𝑎𝑧 − cos 𝜃

1 − cos 𝜃

sgn 𝑒 = +1
𝑒 > 0

sgn 𝑒 = −1
𝑒 < 0

𝑘𝑥 =
𝑜𝑧 − 𝑎𝑦
2𝑠

𝑘𝑦 =
𝑎𝑥 − 𝑛𝑧
2𝑠

𝑘𝑧 =
𝑛𝑦 − 𝑜𝑥
2𝑠 For 0 <𝜃<90

𝐼𝑓 𝑘𝑥 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑎𝑟𝑔𝑒𝑠𝑡

𝑘𝑦 =
𝑛𝑦 + 𝑜𝑥

2𝑘𝑥𝑣𝜃

𝑘𝑧 =
𝑎𝑥 + 𝑛𝑧
2𝑘𝑥𝑣𝜃

𝐼𝑓 𝑘𝑦 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑎𝑟𝑔𝑒𝑠𝑡

𝑘𝑥 =
𝑛𝑦 + 𝑜𝑥
2𝑘𝑦𝑣𝜃

𝑘𝑧 =
𝑜𝑧 + 𝑎𝑦
2𝑘𝑦𝑣𝜃

𝐼𝑓 𝑘𝑍 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑎𝑟𝑔𝑒𝑠𝑡

𝑘𝑥 =
𝑎𝑥 + 𝑛𝑧
2𝑘𝑧𝑣𝜃

𝑘𝑦 =
𝑜𝑧 + 𝑎𝑦
2𝑘𝑧𝑣𝜃


