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Jacobian Methods of Derivation & the 

Corresponding Reference Frame   – Summary 

Method Jacobian

Matrix 

Reference 

Frame 

Transformation to Base Frame (Frame 0)

Explicit

(Diff. the Forward 

Kinematic Eq.)

None

Iterative Velocity Eq. Transform Method 1:

Transform Method 2: 

Iterative Force Eq. Transpose

Transform 
𝑁𝐽𝑁

𝑇

𝑁𝐽𝑁

0𝐽𝑁

𝑁𝐽𝑁 = [𝑁𝐽𝑁
𝑇]𝑇

0𝑣𝑁 = 𝑁
0𝑅 𝑁𝑣𝑁

0𝜔𝑁 = 𝑁
0𝑅 𝑁𝜔𝑁

0𝐽𝑁 𝜃 = 𝑁
0𝑅 0

0 𝑁
0𝑅

𝑁𝐽𝑁 𝜃

0𝐽𝑁 𝜃 = 𝑁
0𝑅 0

0 𝑁
0𝑅

𝑁𝐽𝑁 𝜃
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Propagation to the Tip of the Tool – Problem Definition  

• Problem

– Practical Configuration of a robotic arm  - The robotic arm typically includes the 

following 

• F/T Sensor 

• Gripper / End Effector 

• Tool

– Analysis – The generic analysis of the robotic arm mapping position, velocities and 

forces / torques between the base and the wrist (last frame of the manipulators)

– Rational –

• Generic Analysis versus task specific elements (F/T sensor, gripper tool) -

The analysis is conducted by the robot arm manufacturer however the F/T 

sensor, the gripper and the tool are task specific and selected by the user.

• Tool Change – The same arm performing different tasks may need different tools 

that are changed during the course of its operation    

– Need – The need is typically to 

• Trace the position and orientation and velocities (linear and angular) of the tool tip 

as it follows a trajectory 

• Express force and torques applied on the environment by the tool tip and vice 

versa by a force sensor measuring these parameters in a different location  

• Solution – Expressing position, velocity forces and torques from the last frame (Frame 6 at the 

wrist) to the tip of the tool  
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Propagation to the Tip of the Tool 

Position 
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Jacobian Propagation to the Tip of the Tool – Position 

• In a case where the tool tips follows a trajectory, the path defines 

the goal position and orientation

• Since the tool is attached to the end effector its position does not 

change as a function of time with respect to frame 6

• Multiply both sides of the equations by 

• Solve the Inverse Kinematics 

𝑇𝑝𝑎𝑡ℎ = 1
0𝑇2

1𝑇3
2𝑇4

3𝑇5
4𝑇6

5𝑇𝑇
6𝑇

Known

𝑇𝑝𝑎𝑡ℎ 𝑇
6𝑇

−1
= 1

0𝑇2
1𝑇3

2𝑇4
3𝑇5

4𝑇6
5𝑇𝑇

6𝑇 𝑇
6𝑇

−1

𝑇
6𝑇 −1 = 6

𝑇𝑇

𝑇𝑝𝑎𝑡ℎ 6
𝑇𝑇 = 1

0𝑇2
1𝑇3

2𝑇4
3𝑇5

4𝑇6
5𝑇
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Jacobian Propagation to the Tip of the Tool 
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Jacobian Propagation to the Tip of the Tool 

Forces/Torques Velocities (Linear and Angular)
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Jacobian Propagation to the Tip of the Tool 

Velocity 
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Jacobian Propagation to the Tip of the Tool – Position 

• Position 

Matrix Form Vector Form 

𝐴𝑃𝑄 = 𝐴𝑃𝐵𝑂𝑅𝐺 + 𝐵
𝐴𝑅𝐵𝑃𝑄

𝑖𝑃𝑄 = 𝑖𝑃𝑖+1𝑂𝑅𝐺 + 𝑖+1
𝑖𝑅𝑖+1𝑃𝑄

𝐴𝑃𝑄 =
𝐵
𝐴𝑅 𝐴𝑃𝐵𝑂𝑅𝐺

0 0 0 1

𝐵𝑃𝑄

𝑖𝑃𝑄 =
𝑖+1

𝑖𝑅 𝑖𝑃𝑖+1𝑂𝑅𝐺

0 0 0 1

𝑖+1𝑃𝑄
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Jacobian Propagation to the Tip of the Tool - Velocities

• Velocity of two rigidly connected frames (rigid body)

• Vector Form

• Matrix Form 

• Note: The equations are formulated as a forward 

propagation i.e propagating from frame {i} to {i+1}. 

Challenge: We know the linear and angular velocities at 

the tip of the tool i.e. frame {T} and we wish to express the 

velocities by backwards propagation to the wrist i.e. frame 

{6} or frame {w}

• Solution: Find the expressions for 6𝜔6
6𝑣6 as a function of 

𝑇𝜔𝑇
𝑇𝑣𝑇

Instructor: Jacob Rosen 
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𝑖+1𝜔𝑖+1 = 𝑖
𝑖+1𝑅𝑖𝜔𝑖 + ሶ𝜃𝑖+1

𝑖+1𝑍𝑖+1
𝑖+1𝑣𝑖+1 = 𝑖

𝑖+1𝑅 𝑖𝑣𝑖 +
𝑖𝜔𝑖 ×

𝑖𝑃𝑖+1

𝑖+1𝑣𝑖+1
𝑖+1𝜔𝑖+1

= 𝑖
𝑖+1𝑅 𝑖

𝑖+1𝑅 □ × 𝑖𝑃𝑖+1

0 𝑖
𝑖+1𝑅

𝑖𝑣𝑖
𝑖𝜔𝑖

ቊ
𝑖 → 6,𝑊(𝑊𝑟𝑖𝑠𝑡)
𝑖 + 1 → 𝑇(𝑇𝑜𝑜𝑙)

0 (Rigid)



Jacobian Propagation to the Tip of the Tool - Velocities

• Expressing the equations in a back propagation fashion given the linear and angular velocities in frame {i} or 

frame {w} as a function of the linear and angular velocities in frame {i+1} or frame {T}

• Finding expressions for 𝑖𝜔𝑖 and 𝑖𝑣𝑖 → Multiply both sides of the equation by 𝑖+1
𝑖𝑅

• Resulting in vector form 

• and a matrix form 

Instructor: Jacob Rosen 
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𝑖+1
𝑖𝑅 𝑖+1𝜔𝑖+1 = 𝑖+1

𝑖𝑅 𝑖
𝑖+1𝑅𝑖𝜔𝑖

𝑖+1
𝑖𝑅 𝑖+1𝑣𝑖+1 = 𝑖+1

𝑖𝑅 𝑖
𝑖+1𝑅 𝑖𝑣𝑖 +

𝑖𝜔𝑖 ×
𝑖𝑃𝑖+1

𝑖𝜔𝑖 = 𝑖+1
𝑖𝑅 𝑖+1𝜔𝑖+1

𝑖𝑣𝑖 = 𝑖+1
𝑖𝑅 𝑖+1𝑣𝑖+1 −

𝑖𝜔𝑖 ×
𝑖𝑃𝑖+1

𝑖𝑣𝑖
𝑖𝜔𝑖

= 𝑖+1
𝑖𝑅 −□ × 𝑖𝑃𝑖+1

0 𝑖+1
𝑖𝑅

𝑖+1𝑣𝑖+1
𝑖+1𝜔𝑖+1



Jacobian Propagation to the Tip of the Tool – Velocities - Summary

• Preform the following replacement of indexes 

• Resulting in vector form 

• and a matrix form 

Instructor: Jacob Rosen 
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6𝜔6 = 𝑇
6𝑅 𝑇𝜔𝑇

6𝑣6 = 𝑇
6𝑅 𝑇𝑣𝑇 −

6𝜔6 ×
6𝑃𝑇

6𝑣6
6𝜔6

= 𝑇
6𝑅 −□ × 6𝑃𝑇
0 𝑇

6𝑅

𝑇𝑣𝑇
𝑇𝜔𝑇

ቊ
𝑖 → 6 𝑜𝑟 𝑊(𝑊𝑟𝑖𝑠𝑡)
𝑖 + 1 → 𝑇(𝑇𝑜𝑜𝑙)



Jacobian Propagation to the Tip of the Tool – Forces/Torques

• Force and torque applied on a rigid body

• Vector Form

• Matrix Form 

• Note: The equations are formulated as a backward 

propagation i.e propagating from frame {i+1} to {i}. 

Challenge: The Force/Torque (F/T) sensor i.e. frame {S} is 

located between the tool tip  i.e. frame {T} and  the wrist i.e. 

frame {6} or frame {w}

• Solution: Find an expression for the forces and torque 

applied on the tool tip but measured by the sensor
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ቊ
𝑖 → 6,𝑊(𝑊𝑟𝑖𝑠𝑡)
𝑖 + 1 → 𝑇(𝑇𝑜𝑜𝑙)

𝑖𝑓𝑖 = 𝑖+1
𝑖𝑅𝑖+1𝑓𝑖+1

𝑖𝑛𝑖 = 𝑖+1
𝑖𝑅𝑖+1𝑛𝑖+1 +

𝑖𝑃𝑖+1 ×
𝑖𝑓𝑖+1

𝑖𝑓𝑖
𝑖𝑛𝑖

= 𝑖+1
𝑖𝑅 0

𝑖𝑃𝑖+1 × 𝑖+1
𝑖𝑅□ 𝑖+1

𝑖𝑅

𝑖+1𝑓𝑖+1
𝑖+1𝑛𝑖+1



Jacobian Propagation to the Tip of the Tool 

• The end effector holds a tool on which forces and 

torques are applied

• A force/torque sensor is attached close to the wrist 

that is expected to measure the forces and torque 

applied on the tool
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𝑇𝑓𝑇
𝑇𝑛𝑇

= 𝑆
𝑇𝑅 0

𝑇𝑃𝑆𝑂𝑅𝐺 × 𝑆
𝑇𝑅 □ 𝑆

𝑇𝑅

𝑆𝑓𝑆
𝑆𝑛𝑆



Jacobian – Singularity

Problem Definition

Instructor: Jacob Rosen 
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Inverse Jacobian 

• Given 

– Tool tip path (defined mathematically)

– Tool tip position/orientation 

– Tool tip velocity

– Jacobian Matrix 

• Problem: Calculate the joint velocities

• Solution:

– Compute the inverse Jacobian matrix

– Use the following equation to compute the joint 

velocity

ሶ𝜃 = 𝐽 𝜃 −1 ሶ𝑥

ሶ𝑥 = 𝐽 𝜃 ሶ𝜃

Instructor: Jacob Rosen 
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Singularity - The Concept

• Motivation:  We would like the hand of a robot (end 

effecror) to move with a certain velocity vector in 

Cartesian space. Using linear transformation 

relating the joint velocity to the Cartesian velocity we 

could calculate the necessary joint rates at each 

instance along the path.  

• Given: a linear transformation relating the joint 

velocity to the Cartesian velocity (usually the end 

effector)

• Questions:  

– Is the Jacobian matrix invertible? (Or) Is it 

nonsingular?

– Is the Jacobian invertible for all values of 𝜃?

– If not, where is it not invertible?

ሶ𝜃 = 𝐽 𝜃
−1

ሶ𝑥

Instructor: Jacob Rosen 
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Inverse Jacobian

• Cases in which the Jacobian matrix             is not 

inevitable (𝐽 𝜃 −1 does not exists). 

• Non invertible matrix is called singular matrix

– Case 1 - The Jacobian matrix is not squared

In general the 6xN Jacobian matrix may be 

non-square in which case the inverse is not 

defined

– Case 2 - The determinant det 𝐽 𝜃 is equal to 

zero

𝐽 𝜃

Instructor: Jacob Rosen 
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Singularity - The Concept

• Answer (Conceptual): Most manipulator have  values of    where the Jacobian becomes singular . Such 

locations are called singularities of the mechanism or singularities for short 

𝜃

Singularities of the mechanism

Workspace interior SingularitiesWorkspace boundary singularities

End 

Effector
Workspace

Boundary

- Stretched out

- Folded back
- Two or more joints are lining up

Instructor: Jacob Rosen 
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Singularity - The Concept

• Lost of DOF - Losing one or more DOF means that there is a some direction (or subspace) in Cartesian 

space along which it is impossible to move the hand of the robot (end effector) no matter which joint rate 

are selected 

• Load Balance – A finite force can be applied to the end effector that produces no torque at the robot’s 

joints

• Joint Velocity – A zero end effector velocity will cause high joint velocity  

Manipulator 

Singular 

Configuration 

Losing 

One or More DOF 

General 

Configuration 

All DOF 

Are Available 

Problematic 

Load Balance
Problematic 

Joint Velocity

Instructor: Jacob Rosen 
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Singularity – Physical Interpretation - Examples

• Type of Singularities 

– Wrist 

– Elbow

– Shoulder 

Instructor: Jacob Rosen 
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Singularity – Physical Interpretation - Examples

Instructor: Jacob Rosen 
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Instructor: Jacob Rosen 

Advanced Robotic Manipulation - EE 544 - Department of Electrical Engineering - University of WashingtonSingularities

https://youtu.be/lD2HQcxeNoA
https://youtu.be/lD2HQcxeNoA


Instructor: Jacob Rosen 

Advanced Robotic Manipulation - EE 544 - Department of Electrical Engineering - University of Washington

Singularities 

https://youtu.be/BJnZvwAE0PY
https://youtu.be/BJnZvwAE0PY


Instructor: Jacob Rosen 

Advanced Robotic Manipulation - EE 544 - Department of Electrical Engineering - University of Washington

Singularities 

https://youtu.be/L7J_9OSxGvA
https://youtu.be/L7J_9OSxGvA


Jacobian – Singularity

Example 1 – 2R 

Elbow Singularity

Singularity at the Edge of the Workspace 

Instructor: Jacob Rosen 
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Jacobian Matrix by Differanciation - 3R - 1/4

• Consider the following 3 DOF Planar manipulator

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Jacobian Matrix by Differanciation - 3R - 4/4

• Using a matrix form we get

• The Jacobian provides a linear transformation, giving a velocity map and a force map for a robot manipulator.  

For the simple example above, the equations are trivial, but can easily become more complicated with robots 

that have additional degrees a freedom.  Before tackling these problems, consider this brief review of linear 

algebra. 

ሶ𝑥 = 0𝐽 𝜃 ሶ𝜃

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA

𝑣𝑥
𝑣𝑦

=
−𝐿1𝑠1 − 𝐿2𝑠12 −𝐿2𝑠12
𝐿1𝑐1 + 𝐿2𝑐12 𝐿2𝑐12

ሶ𝜃1
ሶ𝜃2



Properties of the Jacobian -

Velocity Mapping and Singularities

• Example: Planar 3R

• Note that det( 𝐽(𝜃)) is not a function of 𝜃1

det( 𝐽(𝜃)) =
−𝐿1𝑠1 − 𝐿2𝑠12 −𝐿2𝑠12
𝐿1𝑐1 + 𝐿2𝑐12 𝐿2𝑐12

= 𝐿1𝐿2𝑠2

det( 𝐽(𝜃)) = 𝐿1𝐿2𝑠2 = 0

Instructor: Jacob Rosen 
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Properties of the Jacobian -

Velocity Mapping and Singularities

• The manipulator loses 1 DOF. The end effector can only move along the tangent direction of the arm. Motion 

along the radial direction is not possible. 

singular configuration ቊ
𝜃2 = 0 Stretched Out
𝜃2 = 𝜋 Fold Back

Instructor: Jacob Rosen 
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Properties of the Jacobian -

Force Mapping and Singularities

• The relationship between joint torque and end effector force and moments is  given by:

• The rank of 𝐽 𝜃 𝑇 is equals the rank of 𝐽 𝜃

• At a singular configuration there exists a non trivial force 𝐹 such that 

• In other words, a finite force can be applied to the end effector that produces no torque at the robot’s joints.  

In the singular configuration, the manipulator can “lock up.”   

𝜏 = 𝐽 𝜃
𝑇
𝐹

𝐽 𝜃
𝑇
𝐹 = 0

Instructor: Jacob Rosen 
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Properties of the Jacobian -

Force Mapping and Singularities

• Example: Planar 3R

• In this case the force acting on the end effector (relative to the {0} frame) is given by

𝐹

𝜃1

𝜃1 = 𝜃; 𝜃2 = 0

0𝐹 =
𝐹𝑐1
𝐹𝑠1

Instructor: Jacob Rosen 
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Properties of the Jacobian -

Force Mapping and Singularities

• For                                                   we get

0𝜏 = 0𝐽 𝜃
𝑇0𝐹 =

−𝐿1𝑠1 − 𝐿2𝑠12 𝐿1𝑐1 + 𝐿2𝑐12
−𝐿2𝑠12 𝐿2𝑐12

𝜃1 = 𝜃; 𝜃2 = 0

0𝜏 = 0𝐽 𝜃
𝑇0𝐹 =

−𝐿1𝑠1 − 𝐿2𝑠12 𝐿1𝑐1 + 𝐿2𝑐12
−𝐿2𝑠12 𝐿2𝑐12

𝐹𝑐1
𝐹𝑠1

=

−𝐹𝑠1𝑐1(𝐿1 + 𝐿2) + 𝐹𝑠1𝑐1(𝐿1 + 𝐿2)
−𝐹𝑠1𝑐1(𝐿2) + 𝐹𝑠1𝑐1(𝐿2)

=
0
0

Instructor: Jacob Rosen 
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Jacobian – Singularity

Example 2 – 3R

Shoulder Singulaity 

Singularity Inside the Workspace  

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Models of Robot Manipulation - EE 543 - Department of Electrical Engineering - University of Washington



Jacobian: Singular Configuration - 3R Example 

• If we want to use the inverse Jacobian to compute the joint angular velocities we need to first find out at what 

points the inverse exists.

• Considering the 3R robot

• The determinate of the Jacobian is defined as follows 

4𝐽 𝜃 =
0 𝐿2𝑠3 0
0 𝐿2𝑐3 + 𝐿3 𝐿3

−𝐿1 − 𝐿2𝑐2 − 𝐿3𝑐23 0 0

4𝐽 𝜃 = −(𝐿1 + 𝐿2𝑐2 + 𝐿3𝑐23)(𝐿2𝑠3)𝐿3

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA

ሶ𝑥 = 4𝐽 𝜃 ሶ𝜃



Jacobian: Singular Configuration - 3R Example

• The reduced Jacbian matrix is singular when it determinate is equal to zero

• The singular condition occur when either of the following are true

4𝐽 𝜃 = −(𝐿1 + 𝐿2𝑐2 + 𝐿3𝑐23)(𝐿2𝑠3)𝐿3

−(𝐿1 + 𝐿2𝑐2 + 𝐿3𝑐23)(𝐿2𝑠3)𝐿3 = 0

𝑠3 = 0

−𝐿1 − 𝐿2𝑐2 − 𝐿3𝑐23 = 0

Instructor: Jacob Rosen 
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Jacobian: Singular Configuration - 3R Example

• Case 1:

• The first row of the Jacobian is zero

• The 3R robot is loosing one DOF. 

• The robot can no longer move along the X-axis of 

frame {4} 

𝑠3 = 0

𝑠3 = 0 ⇒ ቊ
𝜃3 = 0𝑜

𝜃3 = 180𝑜

4𝐽 𝜃 =
0 𝐿2𝑠3 0
0 𝐿2𝑐3 + 𝐿3 𝐿3

−𝐿1 − 𝐿2𝑐2 − 𝐿3𝑐23 0 0

Instructor: Jacob Rosen 
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Jacobian: Singular Configuration - 3R Example

• Case 2:

• Occur only if

• The third row of the Jacobian is zero

• The origin of frame {4} intersects the Z-axis of 

frame {1}

• The 3R robot is loosing one DOF. 

• The robot can no longer move along the Z-axis of 

frame {4} 

−𝐿1 − 𝐿2𝑐2 − 𝐿3𝑐23 = 0

4𝐽 𝜃 =
0 𝐿2𝑠3 0
0 𝐿2𝑐3 + 𝐿3 𝐿3

−𝐿1 − 𝐿2𝑐2 − 𝐿3𝑐23 0 0

𝐿2 + 𝐿3 ≥ 𝐿1

𝐿1 = −𝐿2𝑐2 − 𝐿3𝑐23

Instructor: Jacob Rosen 
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Joint Velocity Near Singular Position - 3R Example

• Robot : 3R robot  

• Task: Visual inspection

• Control   

Control RobotOperator
ሶ𝜃 = 𝐽 𝜃 −1 ሶ𝑥

Instructor: Jacob Rosen 
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Joint Velocity Near Singular Position - 3R Example

• Singularity (Case 2)- The origin of frame {4} intersects the Z-axis of frame {1}

• Solve for ሶ𝜃1 in terms of ሶ𝑧 we find 

ሶ𝑥
ሶ𝑦
ሶ𝑧
=

0 𝐿2𝑠3 0
0 𝐿2𝑐3 + 𝐿3 𝐿3

−𝐿1 − 𝐿2𝑐2 − 𝐿3𝑐23 0 0

ሶ𝜃1
ሶ𝜃2
ሶ𝜃3

ሶ𝜃1 =
ሶ𝑧

−𝐿1 − 𝐿2𝑐2 − 𝐿3𝑐23

ሶ𝜃1 → ∞

−𝐿1 − 𝐿2𝑐2 − 𝐿3𝑐23 = 0

Instructor: Jacob Rosen 
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Joint Velocity Near Singular Position - 3R Example

• Singularity  -

• Problems:

– Motor Constrains - The robot is physically limited from moving in unusual high joint velocities by motor 

power constrains. Therefore, the robot will be unable to track the required joint velocity trajectory exactly 

resulting in some perturbation to the commanded Cartesian velocity trajectory. 

– Gears and Shafts - The derivative of the angular velocity is the  angular acceleration. The high 

acceleration of the joint resulting form approaching too close to a singularity may cause damage to the 

gear/shafts. 

– DOF - At a singular configuration (specific point in space) the manipulator loses one or more DOF. 

• Consequences – Certain tasks can not be performed at a singular configuration 

det 𝐽 𝜃 = 0

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Jacobian – Singularity

Example 3 – 3R

Wrist Singularity 

Singularity Inside the Workspace  

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA



Mapping - Rotated Frames - Z-Y-Z Euler Angles

Start with frame {4}. 

• Rotate frame {4} about      by an angle 𝛼

• Rotate frame {4} about      by an angle 𝛽

• Rotate frame {4} about      by an angle 𝛾

Note - Each rotation is preformed about an axis of the moving reference frame, rather then a fixed reference.

𝑌𝐵

መ𝑍4 ሽ Euler Angles
መ𝑍4

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Mapping - Rotated Frames - Z-Y-Z Euler Angles

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Mapping - Rotated Frames - Z-Y-Z Euler Angles

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA

𝑅𝐸𝑢𝑙𝑒𝑟 = 𝑅𝑧4 𝜃4 𝑅𝑦4 −𝜃5 𝑅𝑧4 𝜃6



Mapping - Rotated Frames - Z-Y-Z Euler Angles

𝑅𝑍′𝑌′𝑍′(𝛼, 𝛽, 𝛾) = 𝑅𝑍(𝛼)𝑅𝑌(𝛽)𝑅𝑍(𝛾) =
𝑐𝛼 −𝑠𝛼 0
𝑠𝛼 𝑐𝛼 0
0 0 1

𝑐𝛽 0 𝑠𝛽
0 1 0

−𝑠𝛽 0 𝑐𝛽

𝑐𝛾 −𝑠𝛾 0
𝑠𝛾 𝑐𝛾 0
0 0 1

𝑅𝑍′𝑌′𝑍′(𝛼, 𝛽, 𝛾) =

𝑐𝛼𝑐𝛽𝑐𝛾 − 𝑠𝛼𝑠𝛾 −𝑐𝛼𝑐𝛽𝑠𝛾 − 𝑠𝛼𝑐𝛾 𝑐𝛼𝑠𝛽
𝑠𝛼𝑐𝛽𝑐𝛾 + 𝑐𝛼𝑠𝛾 −𝑠𝛼𝑐𝛽𝑠𝛾 + 𝑐𝛼𝑐𝛾 𝑠𝛼𝑠𝛽

−𝑠𝛽𝑐𝛾 𝑠𝛽𝑠𝛾 𝑐𝛽

𝐵
𝐴𝑅𝑋′𝑌′𝑍′(𝛼, 𝛽, 𝛾) = 6

4𝑅𝜃4=0

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Three consecutive Axes Intersect - wrist

Goal Direct Kinematics

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

=

𝑐𝛼𝑐𝛽𝑐𝛾 − 𝑠𝛼𝑠𝛾 −𝑐𝛼𝑐𝛽𝑠𝛾 − 𝑠𝛼𝑐𝛾 𝑐𝛼𝑠𝛽
𝑠𝛼𝑐𝛽𝑐𝛾 + 𝑐𝛼𝑠𝛾 −𝑠𝛼𝑐𝛽𝑠𝛾 + 𝑐𝛼𝑐𝛾 𝑠𝛼𝑠𝛽

−𝑠𝛽𝑐𝛾 𝑠𝛽𝑠𝛾 𝑐𝛽

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Three consecutive Axes Intersect - wrist

• Solve for 𝛽

• using element 𝑟31, 𝑟32, 𝑟33

• Using the Atan2 function, we find

𝑟31
2 + 𝑟32

2 = 𝑠𝛽2 𝑐𝛼2 + 𝑠𝛼2

𝑟33 = 𝑐𝛽

𝑠𝛽 = ± 𝑟31
2 + 𝑟32

2

𝛽 = Atan2 ± 𝑟31
2 + 𝑟32

2 , 𝑟33

𝑟31 = −𝑠𝛽𝑐𝛼
𝑟32 = 𝑠𝛽𝑠𝛼
𝑟33 = 𝑐𝛽

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

=

𝑐𝛼𝑐𝛽𝑐𝛾 − 𝑠𝛼𝑠𝛾 −𝑐𝛼𝑐𝛽𝑠𝛾 − 𝑠𝛼𝑐𝛾 𝑐𝛼𝑠𝛽
𝑠𝛼𝑐𝛽𝑐𝛾 + 𝑐𝛼𝑠𝛾 −𝑠𝛼𝑐𝛽𝑠𝛾 + 𝑐𝛼𝑐𝛾 𝑠𝛼𝑠𝛽

−𝑠𝛽𝑐𝛾 𝑠𝛽𝑠𝛾 𝑐𝛽

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Three consecutive Axes Intersect - wrist

• Solve for 𝛼 using elements 𝑟23, 𝑟13

𝑟23 = 𝑠𝛼𝑠𝛽

𝑟13 = 𝑐𝛼𝑠𝛽

𝛼 = Atan2 𝑟23/𝑠𝛽, 𝑟13/𝑠𝛽

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

=

𝑐𝛼𝑐𝛽𝑐𝛾 − 𝑠𝛼𝑠𝛾 −𝑐𝛼𝑐𝛽𝑠𝛾 − 𝑠𝛼𝑐𝛾 𝑐𝛼𝑠𝛽
𝑠𝛼𝑐𝛽𝑐𝛾 + 𝑐𝛼𝑠𝛾 −𝑠𝛼𝑐𝛽𝑠𝛾 + 𝑐𝛼𝑐𝛾 𝑠𝛼𝑠𝛽

−𝑠𝛽𝑐𝛾 𝑠𝛽𝑠𝛾 𝑐𝛽



Three consecutive Axes Intersect - wrist

• Solve for 𝛾 using elements 𝑟32, 𝑟31

𝑟32 = 𝑠𝛽𝑠𝛾

𝑟31 = −𝑠𝛽𝑐𝛾

𝛾 = Atan2 𝑟32/𝑠𝛽,−𝑟31/𝑠𝛽

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

=

𝑐𝛼𝑐𝛽𝑐𝛾 − 𝑠𝛼𝑠𝛾 −𝑐𝛼𝑐𝛽𝑠𝛾 − 𝑠𝛼𝑐𝛾 𝑐𝛼𝑠𝛽
𝑠𝛼𝑐𝛽𝑐𝛾 + 𝑐𝛼𝑠𝛾 −𝑠𝛼𝑐𝛽𝑠𝛾 + 𝑐𝛼𝑐𝛾 𝑠𝛼𝑠𝛽

−𝑠𝛽𝑐𝛾 𝑠𝛽𝑠𝛾 𝑐𝛽

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Three consecutive Axes Intersect - wrist

• Note: Two answers exist for angle  𝛽 which will result in two answers each for angles 𝛼 and  𝛾

• If                                                                    the solution degenerates                         

𝛽 = Atan2 ± 𝑟31
2 + 𝑟32

2 , 𝑟33

𝛼 = Atan2 𝑟23/𝑠𝛽, 𝑟13/𝑠𝛽

𝛾 = Atan2 𝑟32/𝑠𝛽,−𝑟31/𝑠𝛽

𝛽 = 0𝑜, 𝛽 = 180𝑜 ⇒ 𝑠𝛽 = 0

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Three consecutive Axes Intersect - wrist

• We are left with                  for every case.  This means we can’t solve for either, just their sum. 𝛾 + 𝛼

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

=

𝑐𝛼𝑐𝛽𝑐𝛾 − 𝑠𝛼𝑠𝛾 −𝑐𝛼𝑐𝛽𝑠𝛾 − 𝑠𝛼𝑐𝛾 𝑐𝛼𝑠𝛽
𝑠𝛼𝑐𝛽𝑐𝛾 + 𝑐𝛼𝑠𝛾 −𝑠𝛼𝑐𝛽𝑠𝛾 + 𝑐𝛼𝑐𝛾 𝑠𝛼𝑠𝛽

−𝑠𝛽𝑐𝛾 𝑠𝛽𝑠𝛾 𝑐𝛽

𝛽 = 0𝑜

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

=
𝑐𝛼𝑐𝛾 − 𝑠𝛼𝑠𝛾 −𝑐𝛼𝑠𝛾 − 𝑠𝛼𝑐𝛾 0
𝑠𝛼𝑐𝛾 + 𝑐𝛼𝑠𝛾 −𝑠𝛼𝑠𝛾 + 𝑐𝛼𝑐𝛾 0

0 0 1
=

𝑐(𝛼 + 𝛾) −𝑠(𝛼 + 𝛾) 0
𝑠(𝛼 + 𝛾) 𝑐(𝛼 + 𝛾) 0

0 0 1

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Three consecutive Axes Intersect - wrist

• One possible convention is to choose  𝛼 = 0𝑜

• The solution can be calculated to be 

𝛽 = 0

𝛼 = 0

𝛾 = Atan2 −𝑟12, 𝑟11 = Atan2 𝑠𝛾, 𝑐𝛾

𝛽 = 180

𝛼 = 0

𝛾 = Atan2 𝑟12, −𝑟11 = Atan2 𝑠𝛾, 𝑐𝛾

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Three consecutive Axes Intersect - wrist

• For this example, the singular case results in the capability for self-rotation.  That is, the middle link can rotate 

while the end effector’s orientation never changes.

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Gimbal Lock 

Normal situation 

The three gimbals are independent

Gimbal lock: 

Two out of the three gimbals are in the 

same plane, one degree of freedom is lost

http://youtu.be/zc8b2Jo7mno

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA

http://youtu.be/zc8b2Jo7mno


Gimbal Lock – Robotics  

• In robotics, gimbal lock is commonly referred to as "wrist flip", due to the use of a "triple-roll wrist" in robotic 

arms, where three axes of the wrist, controlling yaw, pitch, and roll, all pass through a common point.

• An example of a wrist flip, also called a wrist singularity, is when the path through which the robot is traveling 

causes the first and third axes of the robot's wrist to line up. The second wrist axis then attempts to spin 180°

in zero time to maintain the orientation of the end effector. The result of a singularity can be quite dramatic 

and can have adverse effects on the robot arm, the end effector, and the process.

• The importance of non-singularities in robotics has led the American National Standard for Industrial Robots 

and Robot Systems — Safety Requirements to define it as "a condition caused by the collinear alignment of 

two or more robot axes resulting in unpredictable robot motion and velocities".

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Properties of the Jacobian -

Force Mapping and Singularities

• This situation is an old and famous one in mechanical engineering. 

• For example, in the steam locomotive, “top dead center” refers to the following condition

• The piston force, F, cannot generate any torque around the drive wheel axis because the linkage is singular 

in the position shown.

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Properties of the Jacobian -

Velocity Mapping and Singularities

• We have shown the relationship between joint space velocity and end effector velocity, given by

• It is interesting to determine the inverse of this relationship, namely

ሶ𝑥 = 𝐽 𝜃 ሶ𝜃

ሶ𝜃 = 𝐽 𝜃
−1

ሶ𝑥

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Properties of the Jacobian -

Velocity Mapping and Singularities

• Consider the square 6x6 case for            .  

• If rank  < 6  (                           )    , then there is no solution to the inverse equation (see Brief Linear Algebra 

Review - 1,7).  

• However, if the rank = 5, then there is at least one non-trivial solution to the forward equation (see Brief 

Linear Algebra Review - 7). That is, for

𝑅𝑎𝑛𝑘 𝐽 𝜃 < 6

𝐽 𝜃

𝐷𝑒𝑡 𝐽 𝜃 = 0

ሶ𝜃 = 𝐽 𝜃
−1

ሶ𝑥

ሶ𝑥 = 𝐽 𝜃 ሶ𝜃 = 0

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Properties of the Jacobian -

Velocity Mapping and Singularities

• The solution is a direction          in the in joint velocity space for which joint motion produces no end effector 

motion.

• We call any joint configuration               for which

a singular configuration.

𝜃

𝑅𝑎𝑛𝑘 𝐽 𝜃 < 6

𝜃 = 𝑄

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Properties of the Jacobian -

Velocity Mapping and Singularities

• For certain directions of end effector motion ,

where:

– are the eigenvalues of   

– are the eigenvectors of

• If             is fully ranked (see Brief Linear Algebra Review - 6/ ), we have      

ሶ𝑥 = 𝐽 𝜃 ሶ𝜃 = 𝜆𝑖 𝜃 𝜔𝑖

ሶ𝑥𝑖 1 ≤ 𝑖 ≤ 6

𝜆𝑖
𝜔𝑖

𝐽 𝜃

𝐽 𝜃

𝐽 𝜃

𝜔𝑖 = 𝐽 𝜃 −1 ሶ𝑥 = 𝜆𝑖 𝜃
−1

ሶ𝑥

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Properties of the Jacobian -

Velocity Mapping and Singularities

• As the joint approach a singular configuration                there is at least one eigenvalue for which                . 

This results in  

• In other word, as the joints approach the singular configuration, the end effector motion in a particular task 

direction       causes the joint velocities to approach infinity.  However, there are task velocities that can have 

solutions.  

• If            loses rank by only one, then there are n-1 eigenvectors in the task velocity space (    ) for which 

solutions do exist.  However, there can be multiple solutions. 

𝜃 = 𝑄 𝜆𝑖 → 0

𝜔𝑖 =
ሶ𝑥

𝜆𝑖 𝜃
→

ሶ𝑥

0
→ ∞

ሶ𝑥𝑗

𝐽 𝜃 ሶ𝑥𝑗

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Physical Expressions of Singularity – Summary 

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Physical Expressions of Singularity

• DOF

– Phenomena -

– Kinematic Deficiency –

– Mechanical Risk -

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA

Shoulder Elbow Wrist



Physical Expressions of Singularity

• DOF

– Phenomena - Losing one or more DOF

– Kinematic Deficiency – Inability to move in a specific direction  

– Mechanical Risk - None 

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA

Shoulder Elbow Wrist



Physical Expressions of Singularity

• Velocity

– Phenomena -

– Kinematic Deficiency –

– Mechanical Risk -

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA
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Physical Expressions of Singularity

• Velocity

– Phenomena - High velocities (theoretically infinity) of some joints, and zero velocities in other directions 

– Kinematic Deficiency – Inability to provide the required joint velocity to support the end effector velocity 

– Mechanical Risk - High demand of joint velocities may damage the actuator/gear/joint

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA
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Physical Expressions of Singularity

• Forces / Torques

– Phenomena -

– Kinematic Deficiency –

– Mechanical Risk -

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA

Shoulder Elbow Wrist



Physical Expressions of Singularity

• Forces / Torques

– Phenomena - High external loads applied on the end effector resulted with zero joint torques generated 

at the joint. 

– Kinematic Deficiency - None

– Mechanical Risk - The high loads deform the links and can potential damage them   

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA

Shoulder Elbow Wrist



Jacobian – Duality

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Jacobian – Duality 

is a linear mapping of the joint space velocities       which is a n - dimensional 

vector space   to the end effector velocities        which is a m – dimensional vector 

space 

Joint Space End-Effector Space 
𝐽 ሶ𝜃

ሶ𝜃
ሶ𝑋𝑆1 𝑆2

ሶ𝜃 ∈ ℜ𝑛 ሶ𝑋 ∈ ℜ𝑚
𝑅(𝐽)

ሶ𝑋 = 𝐽 ሶ𝜃 ሶ𝜃

ሶ𝜃 ∈ ℜ𝑛 ሶ𝑋

ሶ𝑋 ∈ ℜ𝑚

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Jacobian – Duality 

The subset of all the end effector velocities        resulting from the mapping              

represents all the possible end effector velocities that can be generated by the n joints 

given the arm configuration 

ሶ𝑋 ሶ𝑋 = 𝐽 ሶ𝜃

Joint Space End-Effector Space 
𝐽 ሶ𝜃

ሶ𝜃
ሶ𝑋𝑆1 𝑆2

ሶ𝜃 ∈ ℜ𝑛 ሶ𝑋 ∈ ℜ𝑚
𝑅(𝐽)

Accessible  

None Accessible  

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Jacobian – Duality 

If the rank of the Jacobian matrix      is at full of row rank (square matrix) the joint space     

covers the entire end effector vector          otherwise there is at least one direction in which 

the end effector can not be moved    

Joint Space End-Effector Space 
𝐽 ሶ𝜃

ሶ𝜃
ሶ𝑋𝑆1 𝑆2

ሶ𝜃 ∈ ℜ𝑛 ሶ𝑋 ∈ ℜ𝑚
𝑅(𝐽)

In at least on direction 

ሶ𝑋 = 𝐽 ሶ𝜃 = 0

Accessible  

None Accessible  

ሶ𝜃𝐽

ሶ𝑋

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Jacobian – Duality 

The subset             is the null space of the linear mapping. Any element in this subspace is 

mapped into a zero vector in         such that                 therefore any joint velocity vector    

that belongs to the null space does not produce any velocity at the end effector    

Joint Space End-Effector Space 
𝐽 ሶ𝜃

ሶ𝜃
ሶ𝑋𝑆1 𝑆2

ሶ𝜃 ∈ ℜ𝑛 ሶ𝑋 ∈ ℜ𝑚
𝑁(𝐽)

𝑅(𝐽)

In at least on direction 

ሶ𝑋 = 𝐽 ሶ𝜃 = 0

Accessible  

None Accessible  

𝑁(𝐽)

ℜ𝑚 ሶ𝑋 = 𝐽 ሶ𝜃 = 0 ሶ𝜃

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Jacobian – Duality 

If the Jacobian of a manipulator is full rank the dimension of the null space                  is the 

same as the redundant degrees of freedom (n-m). For example the human arm has 7 DOF 

whereas the hand may have 6 linear and angular velocities therefore the null dimension is 

one (n-m=7-1=1)  

Joint Space End-Effector Space 
𝐽 ሶ𝜃

ሶ𝜃
ሶ𝑋𝑆1 𝑆2

ሶ𝜃 ∈ ℜ𝑛 ሶ𝑋 ∈ ℜ𝑚
𝑁(𝐽)

𝑅(𝐽)

In at least on direction 

ሶ𝑋 = 𝐽 ሶ𝜃 = 0

Accessible  

None Accessible  

dim(𝑁(𝐽))

ሶ𝑥
ሶ𝑦
ሶ𝑧

𝜔𝑥

𝜔𝑦

𝜔𝑧

=

6𝑋7
𝐽(𝜃)

ሶ𝜃1
ሶ𝜃2
ሶ𝜃3
ሶ𝜃4
ሶ𝜃5
ሶ𝜃6
ሶ𝜃7

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Jacobian – Duality 

If the Jacobian of a manipulator is full rank (i.e. n>m full row rank where the rows are linearly 

independent)  the dimension of the null space                  is the same as the redundant 

degrees of freedom (n-m). For example the human arm has 7 DOF whereas the hand may 

have 6 linear and angular velocities therefore the null dimension is one (n-m=7-1=1)  

Joint Space End-Effector Space 
𝐽 ሶ𝜃

ሶ𝜃
ሶ𝑋𝑆1 𝑆2

ሶ𝜃 ∈ ℜ𝑛 ሶ𝑋 ∈ ℜ𝑚
𝑁(𝐽)

𝑅(𝐽)

In at least on direction 

ሶ𝑋 = 𝐽 ሶ𝜃 = 0

Accessible  

None Accessible  

dim(𝑁(𝐽))

ሶ𝑥
ሶ𝑦
ሶ𝑧

𝜔𝑥

𝜔𝑦

𝜔𝑧

=

6𝑋7
𝐽(𝜃)

ሶ𝜃1
ሶ𝜃2
ሶ𝜃3
ሶ𝜃4
ሶ𝜃5
ሶ𝜃6
ሶ𝜃7

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Jacobian – Duality 

If the Jacobian of a manipulator is full rank (i.e. for redundant manipulator n>m full row rank 

where the rows are linearly independent)  the dimension of the null space                  is the 

same as the redundant degrees of freedom (n-m). For example the human arm has 7 DOF 

whereas the end effector (hand) may have 6 linear and angular velocities therefore the null 

dimension is one (n-m=7-1=1)  

Joint Space End-Effector Space 
𝐽 ሶ𝜃

ሶ𝜃
ሶ𝑋𝑆1 𝑆2

ሶ𝜃 ∈ ℜ𝑛 ሶ𝑋 ∈ ℜ𝑚
𝑁(𝐽)

𝑅(𝐽)

In at least on direction 

ሶ𝑋 = 𝐽 ሶ𝜃 = 0

Accessible  

None Accessible  

dim(𝑁(𝐽))

ሶ𝑥
ሶ𝑦
ሶ𝑧

𝜔𝑥

𝜔𝑦

𝜔𝑧

=

6𝑋7
𝐽(𝜃)

ሶ𝜃1
ሶ𝜃2
ሶ𝜃3
ሶ𝜃4
ሶ𝜃5
ሶ𝜃6
ሶ𝜃7

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Jacobian – Duality 

When the Jacobian matrix degenerates (i.e. not full rank e.g. due to singularity) the 

dimension of the range space                  decreases at the same time as the dimension of the 

null space increases                     by the same amount. The sum of the two is always equal to 

n 

Joint Space End-Effector Space 
𝐽 ሶ𝜃

ሶ𝜃
ሶ𝑋𝑆1 𝑆2

ሶ𝜃 ∈ ℜ𝑛 ሶ𝑋 ∈ ℜ𝑚
𝑁(𝐽)

𝑅(𝐽)

In at least on direction 

ሶ𝑋 = 𝐽 ሶ𝜃 = 0

Accessible  

None Accessible  

dim( 𝑅(𝐽))

dim(𝑁(𝐽))

dim( 𝑅(𝐽)) + dim(𝑁(𝐽)) = 𝑛

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Jacobian – Duality 

If the null space is not empty set, the instantaneous kinematic equation has an infinite number 

of solutions that cause the same end effector velocities (recall the 3 axis end effector) 

Joint Space End-Effector Space 
𝐽 ሶ𝜃

ሶ𝜃
ሶ𝑋𝑆1 𝑆2

ሶ𝜃 ∈ ℜ𝑛 ሶ𝑋 ∈ ℜ𝑚
𝑁(𝐽)

𝑅(𝐽)

In at least on direction 

ሶ𝑋 = 𝐽 ሶ𝜃 = 0

Accessible  

None Accessible  

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Jacobian – Duality 

Joint Space End-Effector Space 
𝐽 ሶ𝜃

ሶ𝜃
ሶ𝑋

𝜏 𝑓𝑒𝑥𝑡

𝑆1

𝑆3 𝑆4

𝑆2

𝐽𝑇𝑓𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙

ሶ𝜃 ∈ ℜ𝑛 ሶ𝑋 ∈ ℜ𝑚

𝜏 ∈ ℜ𝑛
𝑓𝑒𝑥𝑡 ∈ ℜ𝑚

𝑁(𝐽)
𝑅(𝐽)

𝑅(𝐽𝑇)

In at least on direction 

ሶ𝑋 = 𝐽 ሶ𝜃 = 0

𝜏 = 0

Accessible  

None Accessible  

Accessible  

None Accessible  

Unlike the mapping of the instantaneous kinematics the mapping of the static external forces 

is from the m-th vector space                  associated with the end effector coordinates to the n-

th dimensional vector space              associated with the torques at the joint space. Therefore 

the joint torque are always determined uniquely from any end effector point force  

𝑓𝑒𝑥𝑡 ∈ ℜ𝑚

𝜏 ∈ ℜ𝑛

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Jacobian – Duality 

Joint Space End-Effector Space 
𝐽 ሶ𝜃

ሶ𝜃
ሶ𝑋

𝜏 𝑓𝑒𝑥𝑡

𝑆1

𝑆3 𝑆4

𝑆2

𝐽𝑇𝑓𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙

ሶ𝜃 ∈ ℜ𝑛 ሶ𝑋 ∈ ℜ𝑚

𝜏 ∈ ℜ𝑛
𝑓𝑒𝑥𝑡 ∈ ℜ𝑚

𝑁(𝐽)
𝑅(𝐽)

𝑅(𝐽𝑇) 𝑁(𝐽𝑇)

In at least on direction 

ሶ𝑋 = 𝐽 ሶ𝜃 = 0

𝜏 = 0

Accessible  

None Accessible  

Accessible  

None Accessible  

The null space               represents the set of all end point forces that do not require any 

torques at the joints to bear the corresponding load      (e.g. 2R fully stretched or collapsed 

elbow).  

𝑁(𝐽𝑇)

Instructor: Jacob Rosen 
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Jacobian – Duality 

Joint Space End-Effector Space 
𝐽 ሶ𝜃

ሶ𝜃
ሶ𝑋

𝜏 𝑓𝑒𝑥𝑡

𝑆1

𝑆3 𝑆4

𝑆2

𝐽𝑇𝑓𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙

ሶ𝜃 ∈ ℜ𝑛 ሶ𝑋 ∈ ℜ𝑚

𝜏 ∈ ℜ𝑛
𝑓𝑒𝑥𝑡 ∈ ℜ𝑚

𝑁(𝐽)
𝑅(𝐽)

𝑅(𝐽𝑇) 𝑁(𝐽𝑇)

In at least on direction 

ሶ𝑋 = 𝐽 ሶ𝜃 = 0

𝜏 = 0

Accessible  

None Accessible  

Accessible  

None Accessible  

When the Jacobian matrix is degenerated or the arm is in a singular configuration external 

endpoint force is borne entirely by the structure and not by the joint torque.  

Instructor: Jacob Rosen 
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