Manipulator Dynamics 1
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Introduction

Forward / Inverse Dynamics

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA



, L;,“}fi’; Forward Dynamics
Problem -
Link;(x,y,z)
Given:  Joint torques and links ) Zli
geometry, mass, inertia, Pe;
friction, joint torques fft
Compute: Angular acceleration of the g
links (solve differential e
equations) C
Solution
solve a set of differential equations
Dynamic Equations —
— Newton-Euler method

— Lagrangian Dynamics

T=M(0)0 +V(0,0) + G(O) + F(0,0)

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA



Inverse Dynamics

Problem

Given: Angular acceleration, velocity and
angels of the links in addition to
the links geometry, mass, inertia,
friction

Compute: Joint torques

Solution
Solve a set of algebraic equations
Dynamic Equations —

— Newton-Euler method

— Lagrangian Dynamics

(0
0
C]
Link;(x,y,2)

T=M(®)0 +V(0,0)+ G(0) + F(0,0)

Instructor: Jacob Rosen

Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA

UCLA



Applications

Human Arm Dynamics — Exoskeleton Design
Control

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA



A . Dynamics Modeling Application — Motivation
TELN Exoskeleton Design

Instructor: Jacob Rosen
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA
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Dynamics Modeling Application — Motivation
Exoskeleton Design

« Activities of Daily Living

1.
. Arm reach to head level

. Arm reach to right, head level

. Arm reach to left, head level

. Arm reach right, move object to left side
. Open door

. Open Drawer/Close Drawer

. Move object at waist level

© 0 N O 01 & WODN

Arm in lap

. Pick up phone on table/hang up

10. Pick up phone on wall/hang up
11. Eat with fork

12. Eat with spoon

13. Eat with hands

[ 1 Rosen Jacob, Joel C. Perry, Nathan Manning, Stephen Burns, Blake Hannaford,

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

Drink with cup

Eat with spoon

Pour from bottle

Brush teeth

Comb hair

Wash face

Wash neck

Shave

Eat with fork (power — disabled grasp)
Eat with spoon (power — disabled grasp)
Full workspace motion

The Human Arm Kinematics and Dynamics During Daily Activities — Toward a 7 DOF Upper Limb Powered Exoskeleton, -
ICAR 2005 - Seattle WA, July 2005

Instructor: Jacob Rosen

Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA

UCLA


http://bionics.seas.ucla.edu/publications/CP_19.pdf

Dynamics Modeling Application — Motivation
Exoskeleton Design

[ 1 Rosen Jacob, Joel C. Perry, Nathan Manning, Stephen Burns, Blake Hannaford,
The Human Arm Kinematics and Dynamics During Daily Activities — Toward a 7 DOF Upper Limb Powered Exoskeleton, -
ICAR 2005 - Seattle WA, July 2005

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA


http://bionics.seas.ucla.edu/publications/CP_19.pdf
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Dynamics Modeling Application — Motivation
Exoskeleton Design

Axis 3 (shz)

Axis 2 (shx)

Axis 1 (shy) #

Axis 4 (elbow)

Axis 7 (wristz)

Axis 5 (wristy)

[ 1 Rosen Jacob, Joel C. Perry, Nathan Manning, Stephen Burns, Blake Hannaford,
The Human Arm Kinematics and Dynamics During Daily Activities — Toward a 7 DOF Upper Limb Powered Exoskeleton, -
ICAR 2005 - Seattle WA, July 2005

Instructor: Jacob Rosen
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA
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Dynamics Modeling Application — Motivation

Exoskeleton Design
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The Human Arm Kinematics and Dynamics During Daily Activities — Toward a 7 DOF Upper Limb Powered Exoskeleton, -
ICAR 2005 - Seattle WA, July 2005

Time histories and statistics of the kinematics and
dynamics of the human arm during an arm reach to
head level (action 2): (a) Time histories of the joint
kinematics and dynamics (b) Statistical distribution
of the joint kinematics and dynamics. The three
torgue curves in (a) illustrate the total joint axis
torgue (cyan), in comparison to the gravitational
torque (black) and the combined torque due to
inertial, centrifugal, and coriolis terms (magenta).
The line box plots of (b) indicate the lower quartile,
median, and upper quartile values. The dashed
lines extend beyond the upper and lower quartiles
by one and a half times the interquartile range.
Data that lies outside of this range is displayed
with the symbol ‘X’.

Instructor: Jacob Rosen
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA

UCLA


http://bionics.seas.ucla.edu/publications/CP_19.pdf
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5 Dynamics Modeling Application — Motivation
2 Exoskeleton Design
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1 Rosen Jacob, Joel C. Perry, Nathan Manning, Stephen Burns, Blake Hannaford,
The Human Arm Kinematics and Dynamics During Daily Activities — Toward a 7 DOF Upper Limb Powered Exoskeleton, -
ICAR 2005 - Seattle WA, July 2005

Time histories and statistics of the kinematics and
dynamics of the human arm during an arm reach to
head level (action 2): (a) Time histories of the joint
kinematics and dynamics (b) Statistical distribution
of the joint kinematics and dynamics. The three
torgue curves in (a) illustrate the total joint axis
torgue (cyan), in comparison to the gravitational
torque (black) and the combined torque due to
inertial, centrifugal, and coriolis terms (magenta).
The line box plots of (b) indicate the lower quartile,
median, and upper quartile values. The dashed
lines extend beyond the upper and lower quartiles
by one and a half times the interquartile range.
Data that lies outside of this range is displayed
with the symbol X’.

Instructor: Jacob Rosen
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Dynamics Model Application — Motivation
Position Control

External
Forces
Torque

L
=

7; j’ G
Trajectory K D
Planning Controller Z Driver (Iscla?or(])tt)

v

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA
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Manipulator Dynamics — Newton Euler Equations

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA
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| i‘ lterative Newton Euler Equations
n 2 Steps of the Algorithm

* | (1) Outward lterations (i = 0->n—1)

— Starting With velocities and accelerations of the base

we =0, %wyg =0, %y =0, %y = +g2

— Calculate velocities accelerations, along with forces
and torques (at the CM)

w,w,V,vey, F,N

* | (2) Inward Iteration (i =n — 1)
— Starting with forces and torques (at the CM)

F,N

— Calculate forces and torques at the joints

fin

(i=0-n-1)

0(1.)0:0

04, =

/ Jo=
0.1/0 = +gZA

(i=n-1)

Instructor: Jacob Rosen
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA

UCLA



ﬁ\h\;‘ lterative Newton-Euler Equations - Solution Procedure
-%"4»’3\& Phase 1: Outward Iteration

Outward Iteration: i: 0 » 5

Calculate the link velocities and accelerations iteratively from the robot’s base to the end effector
iy = TR w; + 04044

i+1, — i+1pi - i+1pi . i+17 ) i+17%
Wiy1 = (Rwi+ TR0y X 041" Ziq +0i41"7 Ziga

i+1. i+1pri. i i i i i
Vi1 iR(tw; X 'Piyg +'w; X (fw; X "Piyq) + ')

i+1. _ i+1, i+1 i+1 i+1 i+1 i+1.
Veiy1 = Wit1 X Poipg 7w X (Mg X TP ) Vit1

Calculate the force and torques applied on the CM of each link using the Newton and Euler equations

i+1 — i+1.
Fiy1 =m0 " 0c;

i+1 _C i+1 i+1 - i+1 Cin i+1
I\Ii+1_ Ii+1 a)i+1+ a)i+1>< Ii+1 a)i+1

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA



\hé? Iterative Newton-Euler Equations - Solution Procedure
Ty Phase 2: Inward Iteration
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Inward Iteration: i: 6 - 1

« Use the forces and torques generated at the joints starting with forces and torques generating by interacting
with the environment (that is, tools, work stations, parts etc.) at the end effector all the way the robot’s base.

S .
fi= iR i +'F

i i ipi+l i T ip i+1
ng ="'Ny+ ;R g +'Pey X 'Fp + Py X R 7 fia

L — i+1,T i7.
Ti ni

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA
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Dynamics - Newton-Euler Equations

-®

To solve the Newton and Euler equations, we’ll need to develop mathematical terms for:

v. - The linear acceleration of the center of mass

w - The angular acceleration

°I - The Inertia tensor (moment of inertia)

F - The sum of all the forces applied on the center of mass

N - The sum of all the moments applied on the center of mass

F =mv,

N=lo+wX°lw

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA



Newton Euler Equations
Derivation Based on Momentum

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA
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Newton Equation

« For arigid body (like a robot link) whose center of
mass is experiencing an acceleration, the force
acting at the center of mass that caused the
acceleration is given by Newton’s equation

d(mv,)
F= dt

« For our robot manipulators, whose link masses are
constant, this equation simplifies to

F=mv, =ma,

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA
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Dynamics - Newton-Euler Equations

i
§

Eular Equation

« For a rotating rigid body, the moment that causes
an angular acceleration is given by Euler’s
equation

d(‘lw)
N=——2
dt

« For our robot manipulators, whose link moment of
Inertia is constant, this equation simplifies to

N=°w+wX°lw

* The second term on the right will be non-zero when
the link’s angular velocity vector is not coincident
with the link’s principle axis of inertia.

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA
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, h\a, Linear Momentum — Particle

« The liner momentum of a particle is defined as the mass of the
particle times its linear velocity or the time derivative of its position

o dP
—mv—mdt

« The time derivative of the linear momentum is equal to the sum of
all the external forces applied on the particle

dL d d?P
dt dt — (mv) = t2 — Z fi exterenai

 |tis than van be summarized as Newton’s second law

§ fl exterenal — Ma

Instructor: Jacob Rosen
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA

UCLA
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“\a, Linear Momentum — Rigid Body

ﬁi’gp

« In a similar fashion a rigid body can be view as an assembly of
particles

d2
=dm;——
Zfl exterenal — [ d t2

* Integrate over the entire volume of the rigid body is resulted in

F d? [ Pdm
T dt2)] M
v __
Pcm
d2
F = dtz PCM = MAcym

Instructor: Jacob Rosen
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA

UCLA



e, Angular Momentum — Particle
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« The rigid body is a composition of infinitesimal particles i with a
mass m; in a location defined by the vector P;; with respect to a
coordinate system with the origin at the CM . Each particle i has a
linear velocity v;; as a result of the rotation of the entire rigid body
with an angular velocity defined by the vector w . The angular
momentum of the particle H;; is defined by

H.-

lg = PiG X miviG

« The particle’s i linear velocity v, is defined by

1_7>l'G - (T)) X PiG
« Substituting the expression of linear velocity v;; in the equation

defined the angular momentum of the particle H,; is resulted by

—

HiG = ﬁiG X ml(ﬁ X ﬁiG) = miﬁiG X (5 X ﬁiG)

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA
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! a, Angular Momentum - Rigid Body
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H; = YH;, = z m;P;. X (& % P;)
{

m; = pdv

HG=ij6xdev=WfP(—P)pdv=51

v v

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA



_?g,“\%; Angular Momentum — Rigid Body

dYT=1lw+ w X Ilw

Instructor: Jacob Rosen
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA

UCLA



Any” Transport Theorem —
3 \, e Differentiation of a Vector in a Rotating Frame of Reference

« The transport theorem is a vector equation that relates the time
derivative of a Euclidean vector as evaluated in a non-rotating

(inertial) coordinate system to its time derivative in a rotating
frame.

A

dA dA d
(%) = (%) raxa=|(2) +Qx
dt/ nertial dt/ Rotating dt/ Rotating

« Additional names
— transport equation,
— rate of change transport theorem
— basic kinematic equation
— Bour's formula, (Edmond Bour)

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA



Transport Theorem —
Differentiation of a Vector in a Rotating Frame of Reference

A Euclidean vector represents a certain magnitude and direction
in space that is independent of the coordinate system in which it is
measured.

* When taking a time derivative of such a vector one actually takes
the difference between two vectors measured at two different
times t and t+dt.

* In a rotating coordinate system, the coordinate axes can have
different directions at these two times, such that even a constant
vector can have a non-zero time derivative.

* As a consequence, the time derivative of a vector measured in a
rotating coordinate system can be different from the time derivative
of the same vector in a non-rotating reference system.

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA
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\hu_ Transport Theorem —
A Differentiation of a Vector in a Rotating Frame of Reference

w‘q’gp

« The velocity vector of an airplane as evaluated using a coordinate
system that is fixed to the earth (a rotating reference system) is
different from its velocity as evaluated using a coordinate system
that is fixed in space.

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA
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 We need to develop a relationship between the total derivative of a vector in an inertial reference frame and
the corresponding derivative in a rotating system

« Let A be an arbitrary vector with Cartesian components

A=A 1+ A J+ Ak

in an inertial frame of reference

« The same vector A can be expressed in a rotating frame of reference as

A=A T + AL ] +AL K

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA
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e, Transport Theorem — Derivation
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 |f the vector A4 is an inertial frame of reference, then the time derivative of this vector is

da d )

E = E(Axl + Ax] + Axk)
dA dAxA_I_diA . dAyA_I_de . dAZEeriEA
dt \dr " Tdartx dt 1 Tacy dt dt %

 Since the coordinate axes are in an inertial frame of reference the time derivative of the unite vectors are
equal to zero,

di_dj_dfc_o
dt dt dt

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA
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i Transport Theorem — Derivation

*‘,,2/

* Therefore the time derivative of this vector can be rewritten as

dA _dA,  dAy. dA, .
dt  dr - ad ) T ar

e |f the same vector is described in the rotated
A=A U+ AL +AL K

« Then the time derivative of this vector is

dA_ (dd, d (4 (A AR
at \ar " T dr at . T ae dt dt

Eq. 1

Instructor: Jacob Rosen
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA

Eq. 2
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“\a, Transport Theorem — Derivation
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« Since the left hand sides of equation 1 and 2 are identical then we can equate the right and side of these to
equations to form

—Ei+ 2]+
dt ]

dAz dA% o : day ., , dj’ ., dAg 7 dk’
R= (S + 9o ) + (S + Ly ) + (SR + A

* Regrouping the terms

dAyx . , dAy . dAy¢|_|(dAy , | dAy ,, dAL 7, , di’ , dk’
FTIALNPTI AT k_(dt T dtk | 4x +A3’dt+AZ dt
dA dA , f _
1 | R | Effect of Rotation
Inertial Rotataing

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA
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Y Transport Theorem — Derivation
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* In order to provide an interpretation to the terms

di’ dj’ dk’
Ag—+ Ay ——+ A —

-« Assume that each unite vector i’ ,j’, k' is a position vector r rotating with an angular velocity

V=a=ﬂxr
« Thus
v aj' dr’
— =00 x1 —=0Qx] == I
dt L dt J dt—ka

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA



_?g,“\éf Transport Theorem — Derivation

* The combined equation can be rewritten as

dAx A dAy n 1. _ dA;C N dA, N dA; T / ~ / !
dtl+ —=] —(dtz+dty1 dtk)+(A QA x1 )+Ay(Q><])++AZ(Q><k))
(dA) (dA) 0
dt Inertial dt Rotating Effect of Rotation

A

dA dA d
(%) = (%) +axa=|(2) +Qx
dt/ ertial dt/ Rotating dt/ Rotating

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA
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* Applying the Transport Theorem to the Euler Equationin case A = Ilw and Q = w

dA dA d
—_ = | — OX A = — OX|A
(dt)lnertial (dt)Rotating + !(dt)Rotating "
d o = d ;
27 = g fle = gl

dlw _(dlw o X T = d v wxl
dt o\ dt At A V7 A e
Inertial Rotating Rotating

dYt=lw+owXlw

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA



Manipulator Dynamics — Newton Euler Equations

The Angular Acceleration

w

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA
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Dynamics - Newton-Euler Equations
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To solve the Newton and Euler equations, we’ll need to develop mathematical terms for:

v. - The linear acceleration of the center of mass
w - The angular acceleration
°I - The Inertia tensor (moment of inertia)

F - The sum of all the forces applied on the center of mass

N - The sum of all the moments applied on the center of mass

N =‘lo/+w X lw

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA
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Deriving Angular Acceleration — Matrix Approach

(*) Review at home

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA
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% Matrix Approach

IS Propagation of Acceleration — Angular

i = TRw; + [0 0 6447

Applying the chain rule, we find:

i+1 . _ i+lpi
Wiy = Rw; +

Recall that

Substitution of this result yields

To derive a general formula for the angular acceleration, we will differentiate the angular velocity

“Riwi+[0 0 64417

A
B

Ro 4R

Instructor: Jacob Rosen
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA

UCLA



?gﬂ%’ Propagation of Acceleration - Angular

Matrix form (Revolute Joint) i+1a')l-+1 — l+1iRid)i + l+1iRQl+1iRiwi +[0 0 éi+1]T

« Converting from matrix to vector form gives the angular acceleration vector

01 o
i+1, __ i+1pi, i+1pi
Vector form (Revolute Joint) Wiy1 = TR0+ TR @ X .0 + ..0
0iv1]  [Oi+1

« Ifjoint I+1 is prismatic, the angular terms are zero ( 6:+1 =641 =0 ) and the above equation simplifies to:

Matrix form (Prismatic Joint) i+1 - i+1mi.
Wit = R w;

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA



Deriving Angular Acceleration — Vector Approach (*)

(*) Review at home

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA



.’i \ Propagation of Acceleration — Angular
Y G i,
5% Vector Approach

3 Frames {B} rotates relative to {A} with 4Qp
{C} rotates relative to {B} with 2Q,
Calculate AQc

A0 =40p + FREQ: (%)

: : d
AQC — A.Q.B + E(gRBﬂc)

dA dA d
(%) = (%) +axa=|(2) +Qx
dt/ nertial dt/ Rotating dt/ Rotating

d .
—=(8RQc) = RPQc + “Qp X 5RPQc

A

AQC — AQB + éRBQC + AQB X éRBQC

A

A-0
B -
C-i+1

Instructor: Jacob Rosen
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA

UCLA
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\“\;i. Propagation of Acceleration — Angular
A Vector Approach

w‘q’gp

-®

%041 = °0; + GR'Qyyq + °Q; X (R4

Multiply both side of the equation from the left by ‘*IR

RO |=| RO H FAROR Q1 +TTER (0 X R4 1)

i+1 . ||+l |4 i+ 1pif i+1p0 i+1p0pi
Wit1 = ot R Qg+ T 0RO XTTGRGR Q44

i1 | |itle o i+Lpig i+1 i+1pi
Wit1|=| Wi+ TR Qg T XTI R A4
0 0
o= TR0+ | 0 [+ iR'w;x]| 0O
10;+1] 1041

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA
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Manipulator Dynamics — Newton Euler Equations

The Liner Acceleration of the Center of Mass

Ve

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA
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Dynamics - Newton-Euler Equations

§
~®

To solve the Newton and Euler equations, we’ll need to develop mathematical terms for:

v. - The linear acceleration of the center of mass
w - The angular acceleration

°I - The Inertia tensor (moment of inertia)

F - The sum of all the forces applied on the center of mass

N - The sum of all the moments applied on the center of mass

F =mp,

N=lo+wX°lw

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA
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‘ i‘ Propagation of Acceleration - Linear
%, Simultaneous Linear and Rotational Velocity

AVQ — f(BPQ» BVQ» AVBORGr AQB» éR)

« Vector Form

AVQ — AVBORG + éRBVQ + AQB X éRBPQ

« Matrix Form

Wo = Wsore + 8RBV + B8R (AREP,)

{A}

Instructor: Jacob Rosen
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA

UCLA
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Deriving Linear Acceleration — Matrix Approach

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA



< i}\ Propagation of Acceleration — Linear
\ (;r\\ﬁ‘ .
TELR Matrix Approach

o
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« To derive a general formula for the linear acceleration, we will differentiate the linear velocity. However,
instead of differentiating the recursive equation like we did for the angular acceleration derivation, we’ll begin
at a slightly earlier step. Recall the three-part expression:

Wo = 8Ra(BRBPy org) + Vg org + BREV,

* Re-assigning the linkframes ( A -0 B-i Q-i+1 ), we find

Wisr =[ R (ORPiy1 )|+ Vi + RV 44

« Differentiating using the chain rule gives:

Wit1 = %RQ?Ri i+1 T %RQ?RQ%Ri i+1 T %RQ%RiPiﬂ t+ OV + ?RQ?Ri iv1 + ORW 4

o~

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA
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Propagation of Acceleration — Linear
Matrix Approach

0 _0p Opi 0p O0p Opi 0p Opij
Vit1 = {Rq iR Pix1 + iRqiRq iR P41 +|;RqiR'"Pi4q

t+ O, +

« Combining the two like terms, we find:

0] _ 0p Opi
Vier = R iR Piyq +

‘'RGORQ IR Py + OV +

0p Opi
iRa iR Vit +

20R0 RV +

« Pre-multiplying both sides of the equation by i+éR gives:

i+1plo _li+1pl0op Opi
oRViy1 =|""oR RQ R°P;yq +

l+1
oR[;

0 0 Opi l+1
RORaIR'Pryq +| 3R

« Expanding term *1R into “*1R(R gives

i+1p0) _li+1pip0Op Opi
oR"Viy1 = " iRoR[jRq iR "Pi1q1 +

i+1pip0p Op Opi i+1
iRoRjRq Rq iR P11+ R

0piT
iRVi1q

O0pif
iR'Wiiq

O; + 2H48ROR0 SR Wiy +HSRORW; 4

o~

oV, + 2" IRERPRG R W + T ERORV 44

Instructor: Jacob Rosen

Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA

UCLA



Propagation of Acceleration — Linear

Matrix Approach

i+1p0) _
oR"Vit1 =

« Simplifying the previous equation using (Note:

e we have

+1p i+l
Vit1 = iR[

i+1_R

iRORR!

Pir1+ IR

fRBARQtSRT:fRAQB )

EROR0OR = (R9Ra{RT = §ROQ; = {Ra; =|'e;

iROR0°RaOR =|iw; X lw;

ROV, = TIRGROV; =

¢R %kn R =

o~y

oR°w; = ‘w;

i+1piy
iR

d)i X lPi+1 + ‘a)l- X l(,()l'

X WPpq + Wy + 2%w; X

(l;R?RQ?RQ?RiPiH + HIROV, + 2i+%RéR?Fn?R

i+1

i+1p0pi7
ol iRWisq

+1

Vi+1

+1.:
Vit1

Instructor: Jacob Rosen

Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA

UCLA
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Propagation of Acceleration — Linear
Matrix Approach

i

+1. __i+1p i, i i i i i i+1 i+1 i+1.
Viy1 = R [ Wi X Py +w; X 'w; X "Piyq + Ui] + 277 Wi X TV H T V4

« This equation can be written equivalently as:

General form

i+1

Vit1

= "IR[!@; X Piyy + fwy X twy X WPypq + Wy + 2wy X || O

. Ifjoint 1+1 is revolute joint, the linear velocity terms are zero and the above equation simplifies to:

Revolute Joint

i+1 _ i+1p|i, i i i i iy
Vit = iR[wiX i+1 T W X Wi X Piyq + Vi] "‘@Jf@

Instructor: Jacob Rosen

Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA

UCLA
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h\i}\ Propagation of Acceleration — Linear
J e, Matrix Approach

e

&

-®

i+1.  _ i+1p[i. i i i i i
Viy1 = iR[(UiX i41 T Wy X "Wy X "Fijyq + Vi]

* Note that frame {i} and the frame at the center of mass {C} are parallel to each other. Therefore the rotation
matrix of frame {i} with respect to frame at the center of mass {C} is equal to identity C;ZR = [I]

*  Substituting in the above equation i + 1 = i, and multiplying both side by CiR resulting in
‘RCive = JRYR[l; X TP, + Loy X lw; X P, + L]
C; C; C;i*' i l C; L L C; L

* Since

ipC; — i
CR vai — vC

l l

Instructor: Jacob Rosen UCLA

Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA



?gﬂ%’ Propagation of Acceleration - Linear

« From the general equation, we can also get the solution for the acceleration of the center of mass for link i.
Appropriate frame substitution and elimination of prismatic terms gives we find:

lfﬂ(;l. = l(l:)i X lPCl- + l(l)i X l(,l)i X lPCl- + l1.7i

« Frame {C;} attached to each link with its origin located at the Center of mass of the link, and with the same
orientation as the link frame {i}

* Increasing the index i by 1 to i+1 resulted in the equation used in the algorithm

+1. — i+1, i+1 i+1 i+1 i+1 i+1.
Vciyq =  Wig1 X Peipg + T w1 X (7w X TP ) F Vit1

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA



Deriving Linear Acceleration — Vector Approach (*)

(*) Review at home

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA



ﬁ\h\i‘»‘ Propagation of Acceleration — Linear
TEx Vector Approach

Vo = “Viore + 8RBV, + 40 x AREP,

(Eq. 1)
If the origins are coincident Vgpre = 0

d
AV, = E(gRBPQ) = 8RBV, + 405 X 4RBP, (Eq.2a)

Differentiating the term $R®V,,

: d .
B(AaQ) — B(AVQ) = E(éRBVQ) — ARBVQ + A'Q'B X éRBVQ (Eq 28.)

Differentiating Eq. 1 (Assuming Vgore = 0 ) and applying Eq. 2 for the first and the third term

.
Vo

d . d
- (ARPV,) |+ 4Qp X AREP, +4Qp X E(éRBPQ)

Vo =|8RBV, + Qg X 8RBV, |+ 405 X AREP, + 405 X [ARBV, + 405 X AREP,]

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA
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Propagation of Acceleration — Linear
Vector Approach

AV = GRBV, + 2405 X §RBV, + 405 X ARBP, + 405 X (4Qp X AREP,)

A _ Arx
aq = “Vg

Av
VBORG

_|_

5RPV,

+ 2405 X gRBV, +

4a, = 4V, = Absolute acc. of point Q expressed in frame A

405 X §REP,

AVsorc - Absolute acc. of the origin of frame B expressed in frame A

éRBVQ - Acc. of point Q with respect to frame B and expressed in frame A

+ 405 % (10p X AREP,)

2405 X gRBVQ(CorioIis Acc.) — Combined effect of point Q moving with a velocity ?V,, relative to frame B and the

rotation of frame B wrt frame A

AQ0p X ‘,_E}RBPQ - Angular acc. effect caused by the rotation of frame B wrt frame A

A0p X (AQB X g‘RBPQ) - Centrifugal Acc. — Angular Acc. caused by the rotation of frame B wrt frame A

Instructor: Jacob Rosen

Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA

UCLA



. Propagation of Acceleration — Linear
“\ﬁi‘, Vector Approach

”‘,92/

Special Case P, is constant

Bp _ By _—
Py=58V,=0

Bp _ By _—_ B, _

0 0
Aay = Vo = Wpore + gREV, + 2405 X gRl%Q +40p X ARBP, + 405 x (405 X AREP,)
Aay = Vy = Wpore + B X §REPy + 405 x (405 X #REP,)
Wivr = OV 4 00 X IR'Piyq + °Q; x (°Q; X IR'Py4)
Multiply by “*3R
i+%R0Vi+1 — i+1R0V_ + i+1R(OQ- X ORl i+1) + i+1R0.Q- X (OQ X ORl i+1)
i+1Vi+1 — l+1V 4 l+1R0R(0ROR xl l+1)+ l+1ROR[éROQ X lROQ xl l+1]

l+1Vl+1 — l+1R [ vl -I— a)l X l+1] + wl X ( wl l l+1)




Manipulator Dynamics — Newton Euler Equations

Forces & Torques
Applied at the Centerof Mass F N

Applied at the Joints  lf; oy

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA



_?g,“\:éi{ Dynamics - Newton-Euler Equations

« To solve the Newton and Euler equations, we’ll need to develop mathematical terms for:

v. - The linear acceleration of the center of mass

w - The angular acceleration

¢l - The Inertia tensor (moment of inertia)

F - The sum of all the forces applied on the center of mass

N - The sum of all the moments applied on the center of mass

Fl=mp,

Ni=lw+wXClw

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA



?gﬂ%’ Expression of Force & Torque With Respect to the CM

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA
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lterative Newton-Euler Equations

i
§

« The Newton and Euler equations are re-written for the forces and moments at each link:

ir _ i
F; =m;lv,

inf _ ciryi. i ciri
Ni_ Ii (,()l'+ (Ul'X Ii Wi

Where {C;} is a frame who has its origin at the link’s center of mass and has the same orientation as the link
frame {i}.

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA



e, Sum of Forces and Moment on a Link

s
~®

-

d\u’gp

« In addition to calculating the forces and torques arising from link accelerations, we also need to account for
how they affect the neighboring links as well as the end effectors interactions with the environment.

« Balancing the forces shown in the above figure, we can find the total force and torque on each link.

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA
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“\;L‘ Sum of Forces and Moment on a Link

W‘Jp

2 =f; = fii1 = fi — 14 iRYfi4

= lN = lnl - nl 1+( lp ) X lfl (_ifpci + i+1) X ifi+1
—fi-1

ny -« 1

i —_N.:
Piiq / i
fiv
rj .
L

n;

f,{'

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA



?gﬂ%’ Sum of Forces and Moment on a Link

i . i — Ciy, c
lFizmvCl. Ni_ Ia)l-+wl->< Ia)l-

g | — 1 l |1 i+1
Fil= i = Yier = i = iR i
'Np ="y — g + (=P) Xy = (P + PPiyr) X i

i — 1 i+1 i i i i+1 i i+1
N; ="y — 1 R g = Poy X Uy 4 WPoy X iR g = TPy X iR iy

—ipci X (ifi L+1Rl+1fl+1)

—lp . X 'F;

[ — 1 i+1 i ] i i+1
N;="n; — 1+1R Niyq|— Pey X “Fij|— "Pjpq X l+1R fi+1

Instructor: Jacob Rosen
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA

UCLA



_?g,“\%; Sum of Forces and Moment on a Link

« Rearranging the force / torque equations so that they appear as iterative relationship from higher number
neighbor to lower number neighbor. The total force and torque on each link.

lfi = l+1Rl+1fl+1 lFi

i — i i+1 i i i i+1
n; ="N;|+ z+1R Niyq +HPoy X “Fi|+ l+1xl+1R fi+1

« Compare with the same equation for the static conditions

lfi — l+1R l+1fl+1

i i+1 ] [
n; = l+1R Niyq + i+1 X fl+1

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA



-

N '\\"‘h

) a, Sum of Forces and Moment on a Link
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« The joint torque is simply the component of torque that projects onto the joint axis (Z axis by definition)

' 0
Tl-=‘nl-- 0
1

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA
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) a, Sum of Forces and Moment on a Link
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« For arobot moving in free space

N+1fN+1 =0

N+1 _
Ny+1 =0

« If the robot is contacting the environment, the forces/ torques due to this contact may be included in the
equations

NHlfui1#0

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA



Manipulator Dynamics — Newton Euler Equations

Equation Formulation Procedure

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA



\hé? lterative Newton Euler Equations
o, Steps of the Algorithm

-

ﬁ\vd’zﬁv

* | (1) Outward lterations (i = 0->n—1)
— Starting With velocities and accelerations of the base

i=0->n-1)

we =0, %wy =0, vy =0, %Yy = +g2 v

(1)020

(1)020

/ 1/0 = 0
'vo =+g2

o o, o

— Calculate velocities accelerations, along with forces N
and torques (at the CM)

[=}

w,w,V,vey, F,N

* | (2) Inward lteration (i =n — 1) (i=n-1)

— Starting with forces and torques (at the CM) {Z
F,N

— Calculate forces and torques at the joints

fin

Instructor: Jacob Rosen UCLA

Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA



ﬁ\h\;‘ lterative Newton-Euler Equations - Solution Procedure
-%"4»’3\& Phase 1: Outward Iteration

Outward Iteration: i: 0 » 5

Calculate the link velocities and accelerations iteratively from the robot’s base to the end effector
iy = TR w; + 04044

i+1, — i+1pi - i+1pi . i+17 ) i+17%
Wiy1 = (Rwi+ TR0y X 041" Ziq +0i41"7 Ziga

i+1. i+1pri. i i i i i
Vi1 iR(tw; X 'Piyg +'w; X (fw; X "Piyq) + ')

i+1. _ i+1, i+1 i+1 i+1 i+1 i+1.
Veiy1 = Wit1 X Poipg 7w X (Mg X TP ) Vit1

Calculate the force and torques applied on the CM of each link using the Newton and Euler equations

i+1 — i+1.
Fiy1 =m0 " 0c;

i+1 _C i+1 i+1 - i+1 Cin i+1
I\Ii+1_ Ii+1 a)i+1+ a)i+1>< Ii+1 a)i+1

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA



\hé? Iterative Newton-Euler Equations - Solution Procedure
Ty Phase 2: Inward Iteration

-

ﬁ\vd’zﬁv

Inward Iteration: i: 6 - 1

« Use the forces and torques generated at the joints starting with forces and torques generating by interacting
with the environment (that is, tools, work stations, parts etc.) at the end effector al the way the robot’s base.

S .
fi= iR i +'F

i i ipi+l i T ip i+1
ng ="'Ny+ ;R g +'Pey X 'Fp + Py X R 7 fia

L — i+1,T i7.
Ti ni

Instructor: Jacob Rosen UCLA
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA
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(;\a, Iterative Newton-Euler Equations - Solution Procedure

-

e

-

-®

« Error Checking - Check the units of each term in the resulting equations

. Gravity Effect - The effect of gravity can be included by setting v, = g . This is the equivalent to saying
that the base of the robot is accelerating upward at 1 g. The result of this accelerating is the same as

accelerating all the links individually as gravity does.

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA



