

MAE263B: Dynamics of Robotic Systems Discussion Section - Week2

: Forward & Inverse Kinematics (Yasukawa Motoman L-3)

Seungmin Jung 01.17.2020.

- Forward Kinematics
- Inverse Kinematics
- Special case

(Actuator space ≠ Joint space)

- When the actuator space is not coincident to the joint space, how can we solve it?
- Ex. Chain belt

Forward Kinematics

Problem

Given: Joint angles and links geometry *Compute:* Position and orientation of the end effector relative to the base frame

Solution

Kinematic Equations - Linear Transformation (4x4 matrix) which is a function of the joint positions (angles & displacements) and specifies the EE configuration in the base frame.

The homogeneous transform is a 4x4 matrix casting the *rotation* and *translation* of a general transform into a single matrix.

 $\begin{array}{l} a_{i-1} \ - \ {\rm Link} \ {\rm Length} \ - \ {\rm The} \ {\rm distance} \ {\rm from} \hat{Z}_{i-1} {\rm to} \ \hat{Z}_i \ {\rm measured} \ {\rm along} \hat{X}_{i-1} \\ \alpha_{i-1} \ - \ {\rm Link} \ {\rm Twist} \ - \ {\rm The} \ {\rm angle} \ {\rm between} \hat{Z}_{i-1} \ {\rm and} \ \hat{Z}_i \ {\rm measured} \ {\rm about} \ \hat{X}_{i-1} \\ d_i \ - \ {\rm Link} \ {\rm Offset} \ - \ {\rm The} \ {\rm distance} \ {\rm from} \ \hat{X}_{i-1} \ {\rm to} \ \hat{X}_i \ {\rm measured} \ {\rm about} \ \hat{X}_{i-1} \\ d_i \ - \ {\rm Link} \ {\rm Offset} \ - \ {\rm The} \ {\rm distance} \ {\rm from} \ \hat{X}_{i-1} \ {\rm to} \ \hat{X}_i \ {\rm measured} \ {\rm along} \ \hat{Z}_i \\ \theta_i \ - \ {\rm Link} \ {\rm Angle} \ - \ {\rm The} \ {\rm angle} \ {\rm between} \ \hat{X}_{i-1} \ {\rm and} \ \hat{X}_i \ {\rm measured} \ {\rm along} \ \hat{Z}_i \\ \theta_i \ - \ {\rm Link} \ {\rm Angle} \ - \ {\rm The} \ {\rm angle} \ {\rm between} \ \hat{X}_{i-1} \ {\rm and} \ \hat{X}_i \ {\rm measured} \ {\rm along} \ \hat{Z}_i \\ {\rm Note:} \ a_i \ge 0 \ \alpha_i \ d_i \ \theta_i \ {\rm are} \ {\rm singed} \ {\rm quantities} \end{array}$

Derivation of link Homogeneous Transformation

Problem: Determine the transformation which defines frame $\{i-1\}$ relative to the frame $\{i\}$ ${i-1 \atop i}T$

Note: For any given link of a robot, ${}^{i-1}_{i}T$ will be a function of only one variable out of $a_{i-1} \alpha_{i-1} d_i \theta_i$ The other three parameters being fixed by mechanical design.

Revolute Joint -> θ_i Prismatic Joint -> d_i

FIGURE 3.22: The Yasukawa Motoman L-3. Courtesy of Yasukawa.

The **Yasukawa Motoman L-3** is an industrial manipulator with **5-axis** (5DOFs).

Overall, the robot behaves as an open kinematic chain.

Configuration (0°,-90°,90°,90°,0°)

į	$\alpha_i - 1$	<i>a_i</i> – 1	di	θι
1	0	0	0	θ1
2	-90°	0	0	θ2
3	0	L_2	0	θ_3
4	0	L_3	0	θ4
5	90°	0	0	$ heta_5$

Configuration (0°,-90°,90°,90°,0°)

Link parameters of the Yasukawa L-3 manipulator.						${}^{0}T = \begin{bmatrix} c\theta_1 & -s\theta_1 & 0 & 0 \\ s\theta_1 & c\theta_1 & 0 & 0 \end{bmatrix}$
i	$\alpha_i - 1$	$a_i - 1$	di	θ_i		$\begin{bmatrix} 1^{-} & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$
1	0	0	0	θ_1		${}_{2}^{1}T = \begin{bmatrix} c\theta_{2} & -s\theta_{2} & 0 & 0\\ 0 & 0 & 1 & 0\\ -s\theta_{2} & -c\theta_{2} & 0 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$
2	-90°	0	0	θ2		${}_{3}^{2}T = \begin{bmatrix} c\theta_{3} & -s\theta_{3} & 0 & l_{2} \\ s\theta_{3} & c\theta_{3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$
3	0	L_2	0	θ_3		${}_{4}^{3}T = \begin{bmatrix} c\theta_{4} & -s\theta_{4} & 0 & l_{3} \\ s\theta_{4} & c\theta_{4} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
4	0	L_3	0	θ_4		
5	90°	0	. 0	θ ₅		${}_{5}^{4}T = \begin{bmatrix} c\theta_{5} & -s\theta_{5} & 0 & 0 \\ 0 & 0 & -1 & 0 \\ s\theta_{5} & c\theta_{5} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

UCLA

And calculating all the products we obtain

$${}_{5}^{0}T = \begin{bmatrix} r_{11} & r_{12} & r_{13} & p_{x} \\ r_{21} & r_{22} & r_{23} & p_{y} \\ r_{31} & r_{32} & r_{33} & p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Where $c_{234}=cos(\theta_2+\theta_3+\theta_4)$.

$$p_x = c_1(l_2c_2 + l_3c_{23}),$$

$$p_y = s_1(l_2c_2 + l_3c_{23}),$$

$$p_z = -l_2s_2 - l_3s_{23}.$$

- $r_{11} = c_1 c_{234} c_5 s_1 s_5,$
- $r_{21} = s_1 c_{234} c_5 + c_1 s_5,$
- $r_{31} = -s_{234}c_5,$
- $r_{12} = -c_1 c_{234} s_5 s_1 c_5,$
- $r_{22} = -s_1 c_{234} s_5 + c_1 c_5,$
- $r_{32} = s_{234}s_5,$
- $r_{13} = c_1 s_{234},$
- $r_{23} = s_1 s_{234},$

$$r_{33} = c_{234},$$

Configuration (0°,-90°,90°,90°,0°)

Task Oriented Space Operational Space

However, if we look at the actuation system (Actuator-Space) we discover that:

- Joint 2 and Joint 3 are coupled with a four-linkages mechanism actuated by two linear actuators.

- Joint 4 and Joint 5 are actuated by a chain drive.

 We will solve for joint angles from actuator positions
 (Actuator-Space → Joint-Space).

Task Oriented Space Operational Space

FIGURE 3.23: Kinematic details of the Yasukawa actuator-2 linkage.

UCLA

FIGURE 3.23: Kinematic details of the Yasukawa actuator-2 linkage.

UCLA

FIGURE 3.23: Kinematic details of the Yasukawa actuator-2 linkage.

The linear **actuator 2** effects the **Link 2** and the **Link 3** of the robot:

Constants?

 $\gamma_2 = AB, \, \phi_2 = AC, \, \alpha_2 = BC,$

$$\beta_2 = BD, \, \Omega_2 = \angle JBD, \, l_2 = BJ,$$

Variables?

$$\theta_2 = -\angle JBQ, \psi_2 = \angle CBD, g_2 = DC.$$

FIGURE 3.23: Kinematic details of the Yasukawa actuator-2 linkage.

UCLA

- Actuator 3 changes the orientation of Link 3 with respect to Link 1 (rather than relative to Link 2).

Obs.When the **actuator 3** keeps its position also the orientation of **Link 3** will be constant (relative to **Link 1**), independently from the position of **Joint 2** (**Actuator 2**).

The Actuator 4 and the Actuator 5, that move Joint 4 and Joint 5 respectively, are attached to Link 1 and their rotational axes are aligned with the Joint 2 axis.

The forces are transmitted by chains in a way that:
Actuator 4 positions Joint 4 and orientates Link 4 relative to Link 1 (rather than Link 3).
Again it realizes a sort of "absolute" adjustment of the orientation of Link 4 relative to Link 1 frame.
Actuator 5 positions Joint 5, but this time relative to Link 4.

The equations that map the actuators positions $[A_1 A_2 A_3 A_4 A_5]^T$ to the joint positions $[\theta_1 \theta_2 \theta_3 \theta_4 \theta_5]^T$ can be calculated by analysing the robot's geometry: Obs.: for Joint 1 and Joint 5 we have a simple linear relationships between the actuator and the joint position, where ki is a scaling factor due to the gear system and λ_i is representing an offset most probably due to how the position sensor was installed. Obs.: notice that the position of Joint 3 depends on A3 and also A2

$$\begin{split} \theta_1 &= k_1 A_1 + \lambda_1, \\ \theta_2 &= \cos^{-1} \left(\frac{(k_2 A_2 + \lambda_2)^2 - \alpha_2^2 - \beta_2^2}{-2\alpha_2 \beta_2} \right) + \tan^{-1} \left(\frac{\phi_2}{\gamma_2} \right) + \Omega_2 - 270^\circ, \\ \theta_3 &= \cos^{-1} \left(\frac{(k_3 A_3 + \lambda_3)^2 - \alpha_3^2 - \beta_3^2}{-2\alpha_3 \beta_3} \right) - \theta_2 + \tan^{-1} \left(\frac{\phi_3}{\gamma_3} \right) - 90^\circ, \\ \theta_4 &= -k_4 A_4 - \theta_2 - \theta_3 + \lambda_4 + 180^\circ, \\ \theta_5 &= -k_5 A_5 + \lambda_5. \end{split}$$

Task Oriented Space Operational Space

Inverse Kinematics

Problem

Given: Position and orientation of the end effector relative to the base frame *Compute:* All possible sets of joint angles and links geometry which could be used to attain the given position and orientation of the end effetor

Solution

There are three approaches for the solution:

• Analytical Approach - Kinematic Equations - Linear Transformation (4x4 matrix) which is a function of the joint positions (angles & displacements) and specifies the EE configuration in the base frame. This linear transformation defines 12 non linear equations A subset of these equations are used for obtaining the invers kinematics

• **Geometric Approach** – Projecting the arm configurations on specific planes and using geometrical consideration to obtain the invers kinematics

• **Hybrid Approach** - Synthesizing the analytical and the geometrical approaches

And calculating all the products we obtain

$${}^{0}_{5}T = {}^{0}_{1}T {}^{1}_{2}T {}^{2}_{3}T {}^{3}_{4}T {}^{4}_{5}T.$$
$${}^{0}_{5}T = \begin{bmatrix} r_{11} & r_{12} & r_{13} & p_{x} \\ r_{21} & r_{22} & r_{23} & p_{y} \\ r_{31} & r_{32} & r_{33} & p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Where $c_{234}=cos(\theta_2+\theta_3+\theta_4)$.

 $p_x = c_1(l_2c_2 + l_3c_{23}),$ $p_y = s_1(l_2c_2 + l_3c_{23}),$ $p_z = -l_2s_2 - l_3s_{23}.$

- $r_{11} = c_1 c_{234} c_5 s_1 s_5,$
- $r_{21} = s_1 c_{234} c_5 + c_1 s_5,$
- $r_{31} = -s_{234}c_5,$
- $r_{12} = -c_1 c_{234} s_5 s_1 c_5,$
- $r_{22} = -s_1 c_{234} s_5 + c_1 c_5,$
- $r_{32} = s_{234}s_5,$
- $r_{13} = c_1 s_{234},$
- $r_{23} = s_1 s_{234},$

$$r_{33} = c_{234},$$

• Problem:

What are the joint angles $(\theta_1 \cdots \theta_6)$ as a function of the wrist position and orientation (or when 0_6T is given as numeric values)

$${}_{5}^{0}T = {}_{1}^{0}T {}_{2}^{1}T {}_{3}^{2}T {}_{4}^{3}T {}_{5}^{4}T.$$

and premultiply both sides by ${}^{0}_{1}T^{-1}$, we have

$${}^{0}_{1}T^{-1}{}^{0}_{5}T = {}^{1}_{2}T {}^{2}_{3}T {}^{3}_{4}T {}^{4}_{5}T$$

$$\begin{bmatrix} c_1r_{11} + s_1r_{21} & c_1r_{12} + s_1r_{22} & c_1r_{13} + s_1r_{23} & c_1p_x + s_1p_y \\ -r_{31} & -r_{32} & -r_{33} & -p_z \\ -s_1r_{11} + c_1r_{21} & -s_1r_{12} + c_1r_{22} & -s_1r_{13} + c_1r_{23} & -s_1p_x + c_1p_y \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} * & * & s_{234} & * \\ * & * & -c_{234} & * \\ s_5 & c_5 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} c_1r_{11} + s_1r_{21} & c_1r_{12} + s_1r_{22} & c_1r_{13} + s_1r_{23} & c_1p_x + s_1p_y \\ -r_{31} & -r_{32} & -r_{33} & -p_z \\ -s_1r_{11} + c_1r_{21} & -s_1r_{12} + c_1r_{22} & -s_1r_{13} + c_1r_{23} \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} * & * & s_{234} & * \\ * & * & -c_{234} & * \\ s_5 & c_5 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} r_{11} & r_{12} & r_{13} & p_x \\ r_{21} & r_{22} & r_{23} & p_y \\ r_{31} & r_{32} & r_{33} & p_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

in the latter, several of the elements have not been shown. Equating the (3,4) elements, we get

$$-s_1 p_x + c_1 p_y = 0, (4.95)$$

which gives us⁵

$$\theta_1 = \operatorname{Atan2}(p_y, p_x). \tag{4.96}$$

UCLA

Four-quadrant inverse tangent (arctangent) in the range of

```
\operatorname{Atan} 2(y, x) = \operatorname{tan}^{-1}(y / x)
```

For example

$$\begin{bmatrix} c_1r_{11} + s_1r_{21} & c_1r_{12} + s_1r_{22} & c_1r_{13} + s_1r_{23} & c_1p_x + s_1p_y \\ -r_{31} & -r_{32} & -r_{33} & -p_z \\ -s_1r_{11} + c_1r_{21} & -s_1r_{12} + c_1r_{22} & -s_1r_{13} + c_1r_{23} & -s_1p_x + c_1p_y \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} * & * & s_{234} & * \\ * & * & -c_{234} & * \\ s_5 & c_5 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Equating the (3,1) and (3,2) elements, we get

$$s_5 = -s_1 r_{11} + c_1 r_{21},$$

$$c_5 = -s_1 r_{12} + c_1 r_{22},$$

from which we calculate θ_5 as

$$\theta_5 = \operatorname{Atan2}(r_{21}c_1 - r_{11}s_1, r_{22}c_1 - r_{12}s_1).$$

$$\begin{bmatrix} c_1r_{11} + s_1r_{21} & c_1r_{12} + s_1r_{22} & c_1r_{13} + s_1r_{23} & c_1p_x + s_1p_y \\ -r_{31} & -r_{32} & -r_{33} & -p_z \\ -s_1r_{11} + c_1r_{21} & -s_1r_{12} + c_1r_{22} & -s_1r_{13} + c_1r_{23} & -s_1p_x + c_1p_y \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} * & * & s_{234} & * \\ * & * & -c_{234} & * \\ s_5 & c_5 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Equating the (2,3) and (1,3) elements, we get

$$c_{234} = r_{33},$$

$$s_{234} = c_1 r_{13} + s_1 r_{23},$$

which leads to

$$\theta_{234} = \operatorname{Atan2}(r_{13}c_1 + r_{23}s_1, r_{33}).$$

 $\sqrt{p_x^2 + p_y^2}$

To solve for the individual angles θ_2 , θ_3 , and θ_4 , we will take a geometric approach. Figure 4.10 shows the plane of the arm with point A at joint axis 2, point B at joint axis 3, and point C at joint axis 4.

UCLA

• Law of Sinus / Cosines - For a general triangle

Sum of Angles

$$\sin(\theta_1 \pm \theta_2) = s_{12} = c_1 s_2 \pm s_1 c_2$$
$$\cos(\theta_1 \pm \theta_2) = c_{12} = c_1 c_2 \mp s_1 s_2$$

Plane

FIGURE 4.10: The plane of the Motoman manipulator.

From the law of cosines applied to triangle ABC, we have

$$\cos\theta_3 = \frac{p_x^2 + p_y^2 + p_z^2 - l_2^2 - l_3^2}{2l_2l_3}.$$

Next, we have⁶

$$\theta_3 = \operatorname{Atan2}\left(\sqrt{1 - \cos^2\theta_3}, \cos\theta_3\right)$$

Plane

FIGURE 4.10: The plane of the Motoman manipulator.

From Fig. 4.10, we see that $\theta_2 = -\phi - \beta$, or

$$\theta_2 = -\operatorname{Atan2}\left(p_z, \sqrt{p_x^2 + p_y^2}\right) - \operatorname{Atan2}(l_3 \sin \theta_3, l_2 + l_3 \cos \theta_3)$$

Finally, we have

$$\theta_4 = \theta_{234} - \theta_2 - \theta_3.$$

Task Oriented Space Operational Space

$$\begin{split} \theta_1 &= k_1 A_1 + \lambda_1, \\ \theta_2 &= \cos^{-1} \left(\frac{(k_2 A_2 + \lambda_2)^2 - \alpha_2^2 - \beta_2^2}{-2\alpha_2 \beta_2} \right) + \tan^{-1} \left(\frac{\phi_2}{\gamma_2} \right) + \Omega_2 - 270^\circ, \\ \theta_3 &= \cos^{-1} \left(\frac{(k_3 A_3 + \lambda_3)^2 - \alpha_3^2 - \beta_3^2}{-2\alpha_3 \beta_3} \right) - \theta_2 + \tan^{-1} \left(\frac{\phi_3}{\gamma_3} \right) - 90^\circ, \\ \theta_4 &= -k_4 A_4 - \theta_2 - \theta_3 + \lambda_4 + 180^\circ, \\ \theta_5 &= -k_5 A_5 + \lambda_5. \end{split}$$

Having solved for joint angles, we must perform the further computation to obtain the actuator values. Referring to Section 3.7, we solve equation (3.16) for the A_i :

$$A_{1} = \frac{1}{k_{1}}(\theta_{1} - \lambda_{1}),$$

$$A_{2} = \frac{1}{k_{2}}\left(\sqrt{-2\alpha_{2}\beta_{2}\cos\left(\theta_{2} - \Omega_{2} - \tan^{-1}\left(\frac{\phi_{2}}{\gamma_{2}}\right) + 270^{\circ}\right) + \alpha_{2}^{2} + \beta_{2}^{2}} - \lambda_{2}\right),$$

$$A_{3} = \frac{1}{k_{3}}\left(\sqrt{-2\alpha_{3}\beta_{3}\cos\left(\theta_{2} + \theta_{3} - \tan^{-1}\left(\frac{\phi_{3}}{\gamma_{3}}\right) + 90^{\circ}\right) + \alpha_{3}^{2} + \beta_{3}^{2}} - \lambda_{3}\right),$$

$$A_{4} = \frac{1}{k_{4}}(180^{\circ} + \lambda_{4} - \theta_{2} - \theta_{3} - \theta_{4}),$$

$$A_{5} = \frac{1}{k_{5}}(\lambda_{5} - \theta_{5}).$$
(4.105)

The cast that the wrist frame and tool frame differ only by a translation $\widehat{Z_W}$

In Fig. 4.9, we indicate the plane of the arm by its normal, \hat{M} , and the desired pointing direction of the tool by \hat{Z}_T . This pointing direction must be rotated by angle θ about some vector \hat{K} in order to cause the new pointing direction, \hat{Z}'_T , to lie in the plane. It is clear that the \hat{K} that minimizes θ lies in the plane and is orthogonal to both \hat{Z}_T and \hat{Z}'_T .

For any given goal frame, \hat{M} is defined as

$$\hat{M} = \frac{1}{\sqrt{p_x^2 + p_y^2}} \begin{bmatrix} -p_y \\ p_x \\ 0 \end{bmatrix}, \qquad (4.84)$$

where p_x and p_y are the X and Y coordinates of the desired tool position. Then K is given by

$$K = \hat{M} \times \hat{Z}_T. \tag{4.85}$$

The new \hat{Z}'_{T} is

$$\hat{Z}'_T = \hat{K} \times \hat{M}. \tag{4.86}$$

The amount of rotation, θ , is given by

$$\cos \theta = \hat{Z}_T \cdot \hat{Z}'_T,$$

$$\sin \theta = (\hat{Z}_T \times \hat{Z}'_T) \cdot \hat{K}.$$
(4.87)

Using Rodriques's formula (see Exercise 2.20), we have

$$\hat{Y}_T' = c\theta\hat{Y}_T + s\theta(\hat{K} \times \hat{Y}_T) + (1 - c\theta)(\hat{K} \cdot \hat{Y}_T)\hat{K}.$$
(4.88)

Finally, we compute the remaining unknown column of the new rotation matrix of the tool as

$$\hat{X}'_{T} = \hat{Y}'_{T} \times \hat{Z}'_{T}.$$
(4.89)

Equations (4.84) through (4.89) describe a method of projecting a given general goal orientation into the subspace of the Motoman robot.

FIGURE 4.9: Rotating a goal frame into the Motoman's subspace.

UCLA

- Forward Kinematics
- Inverse Kinematics
- □ Special case
 - (Actuator space ≠ Joint space)

Robotics Toolbox – MATLAB

