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MAE263B: Dynamics of Robotic Systems
Discussion Section - Week?2

- Forward & Inverse Kinematics
(Yasukawa Motoman L-3)

Seungmin Jung
01.17.2020.
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1 Forward Kinematics
J Inverse Kinematics

. Special case
(Actuator space + Joint space)

-  When the actuator space is not coincident
to the joint space, how can we solve it?

- Ex. Chain belt
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Problem

Given: Joint angles and links geometry
Compute: Position and orientation of the end '
effector relative to the base frame q

Solution

Kinematic Equations - Linear Transformation
(4x4 matrix) which is a function of the joint
positions (angles & displacements) and
specifies the EE configuration in the base
frame. y
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Derivation of link Homogeneous Transform

The homogeneous transform is a 4x4 matrix casting the rotation and
translation of a general transform into a single matrix.

Axisi — 1 Axis i

cO — 50, 0 a._,
Lg QIC a’_l C QTC a’_l - ;S‘ a’_l - S’ a’_ld’

sOsa, , clsa, , ca., ca d
0 0 0 1
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S, DH Parameters - Review

a._, - Link Length - The distance fromZ to Z measured alongX, |
&, - Link Twist - The angle betweenZ and Z measured aboutX
d. - Link Offset - The distance from X toX measured along Z

€. - Link Angle - The angle betweenX andX measured about Z
Note: ¢, >0 «; d, o, are singed quant|t|es

Axisi — 1 Axis ¢
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A Derivation of link Homogeneous Transformation

Problem: Determine the transformation
which defines frame {i-1}
relative to the frame {i} U e

i-1
7

Note: For any given link of a robot, H{,T
will be a function of only one
variable outof ¢, «, , d, 6,

The other three parameters being
fixed by mechanical design.

Revolute Joint -> 6,
Prismatic Joint -> di
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?«ﬂf’, Forward Kinematics — Yasukawa Motoman L-3

The Yasukawa Motoman L-3 is an
industrial manipulator with 5-axis (5DOFs).

Overall, the robot behaves as an open
kinematic chain.

FIGURE 3.22: The Yasukawa Motoman L-3. Courtesy of Yasukawa.
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?@%’:& Forward Kinematics — Yasukawa Motoman L-3

Z
: A ;4
X3 1
p— ZS
L i 1?
Zo,
x,
Z,

2o,

Configuration (0°,-90°,90°,90°,0°)
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a;—1 | a—1 d; 8;
0 0 0 8,
—50° 0 0 6
0 i3 0 0,
0 L 0 04
90° o | o b5

Configuration (0°,-90°,90°,90°,0°)
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Forward Kinematics — Yasukawa Motoman L-3

Link parameters of the Yasukawa -3 manipulator.
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4. Forward Kinematics — Yasukawa Motoman L-3

And calculating all the products we obtain

F11 F12 T13 Py
D | P25 F32 %35 Dy

31 T3 T3z Py
| 0 0 0 1

Where c234=cos(02+03+04).

P, = c1(lacy +l3653),
Py, =951 (lycy + l3093),

T

P, = —l35y — l35y3.

F11 = €1€334C5 — §155;

Fo1 = 8§1C934C5 1+ €155,
F31 = —5234Cs5,

12 = —C1Cq3485 — §1C5;,
Yoy = —81Cy3455 + € C5,
F3z = 5234859

F13 — €15234,

F23 == 515934

F3z = {234,
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?@%’:& Forward Kinematics — Yasukawa Motoman L-3
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Actuator Space - Joint Space - Cartesian Space

Actuator
Space

Task Oriented Space
Operational Space
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Forward Kinematics — Yasukawa Motoman L-3

However, if we look at the
actuation system (Actuator-Space)
we discover that:

- Joint 2 and Joint 3 are coupled
with a four-linkages mechanism
actuated by two linear actuators.

- Joint 4 and Joint 5 are actuated
by a chain drive.

UCLA



Actuator Space - Joint Space - Cartesian Space

Actuator
Space
1) We will solve for joint angles Task Oriented Space
from actuator positions Operational Space

(Actuator-Space > Joint-Space).
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Forward Kinematics — Yasukawa Motoman L-3
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FIGURE 3.23: Kinemalic details of the Yasukawa actuator-2 linkage.
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FIGURE 3.23: Kinemalic details of the Yasukawa actuator-2 linkage.
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Joint 2 S DU 0
Lka:l x\‘ :
Joint |
Link0
| L

FIGURE 3.23: Kinematic details of the Yasukawa actuator-2 linkage.
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The linear actuator 2 effects the Link 2 and the Link 3 of the robot:

Constants?

A
¥o = AB, ¢y = AC, 0y = BC, ,//‘*

By =BD,Q, = (JBD,l, = Bl,

J

Joint 3

Variables? Joint 2

6y =—/JBQ,v¥, = /CBD, g, = DC.

Joint |

FIGURE 3.23: Kinematic details of the Yasukawa actuator-2 linkage.

UCLA



UCLA



f‘h‘\:’; Forward Kinematics — Yasukawa Motoman L-3

- Actuator 3 changes the orientation of Link 3 with respect to Li
(rather than relative to Link 2). P
Obs.When the actuator 3 keeps its position also the

orientation of Link 3 will be constant (relative to

Link 1), independently from the position of Joint 2

(Actuator 2).

k1

FW Joint 2

Link0

Joint |
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;;1\;3; Forward Kinematics — Yasukawa Motoman L-3

T —--_‘_—_~
i %
¥ A?s
Zyy
X,
Z
bep

The Actuator 4 and the Actuator 5, that move Joint
4 and Joint 5 respectively, are attached to Link 1 and
their rotational axes are aligned with the Joint 2 axis.

The forces are transmitted by chains in a way that:

- Actuator 4 positions Joint 4 and orientates Link 4
relative to Link 1 (rather than Link 3).

Again it realizes a sort of “absolute” adjustment of
the orientation of Link 4 relative to Link 1 frame.

- Actuator 5 positions Joint 5, but this time relative
to Link 4.




Jl4.  Forward Kinematics — Yasukawa Motoman L-3
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The equations that map the actuators positions[A; A, A3 A4 As]Tto the joint positions
[0, 0, 05 0,0:]" can be calculated by analysing the robot’s geometry:

Obs.: for Joint 1 and Joint 5 we have a simple linear relationships between the actuator
and the joint position, where ki is a scaling factor due to the gear system and Ai is
representing an offset most probably due to how the position sensor was installed.

Obs.: notice that the position of Joint 3 depends on Azand also A2

(kyAg + Ap)* — aZ — B2
92:&:05‘1(]{2 2 2) 2= + tan™} (ﬂ)—l-Qz"—Z?O",

—20 8, V2
(k35 + 2q)? — a2 — B2
By =cosl[-—> "2 3 '3} g 4tan~! (ﬁ) —90°,
—203f, V3

94 = —k4A4 — 92 — 93 —l— )L.4 + 1800,
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Actuator Space - Joint Space - Cartesian Space

Actuator
Space

Task Oriented Space
Operational Space
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Problem

Given: Position and orientation of the end
effector relative to the base frame

Compute: All possible sets of joint angles and
links geometry which could be

used to attain the given position and
orientation of the end effetor

Solution

There are three approaches for the solution:

» Analytical Approach - Kinematic Equations - Linear
Transformation (4x4 matrix) which is a function of the joint
positions (angles & displacements) and specifies the EE
configuration in the base frame. This linear transformation
defines 12 non linear equations A subset of these equations
are used for obtaining the invers kinematics

* Geometric Approach — Projecting the arm configurations on
specific planes and using geometrical consideration to obtain
the invers kinematics

* Hybrid Approach - Synthesizing the analytical and the
geometrical approaches

UCLA
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4. Forward Kinematics — Yasukawa Motoman L-3

And calculating all the products we obtain

i} O 1ep 2 3 4
T — T T 3T 4T 5T
?'11 Iz T13 Py |
D | P25 F32 %35 Dy
F31 T3p 33 Dy
|0 0 0 1

Where c234=cos(02+03+04).

P, = c1(lacy +l3653),
Py, =951 (lycy + l3093),

P, = —l35y — l35y3.

F11 = €1€334C5 — §155;
Fa1 = §1€334C5 T €155,

F31 = —5234Cs5,

12 = —C1Cq3485 — §1C5;,
Yoy = —81Cy3455 + € C5,
F3z = 5234859
F13 — €15234,
F23 == 515934

F3z = {234,
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?.;;E’% Inverse Kinematics — Algebraic Solution-
PUMA 560

* Problem:

What are the joint angles (91 -0, ) as a function of the wrist position and
orientation ( or when gT IS given as numeric values)

rl3 px

hy Hh hy P,

3y By By P,

o0 ="T@®,) ,70,) T®,) 70, IO 70, =

Direct Kinematics Goal
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Inverse Kinematics — Yasukawa Motoman L-3

5. -E;h- -

fod

R

O0p _O0p 1203 4
T =T ,T3T,T.T.

and premultiply both sides by ?T*l, we have

O0p—10p _lop 20 30 4
lT ST_ET3T4T5T

C1lp1 + 8P ©Fpp F81Fp3  CF3 +81F3 1P, + 5 py ¥ ok Sggq K
—F31 —T3p —Fa3 —D. _ k ok —Cgyy *
=817 T ey =S T 6y —SF3 T O =81 Py T 6Py, ss ¢ 0 0
0 0 0 1 0 0 0 1
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;g‘\:g& Inverse Kinematics — Yasukawa Motoman L-3

€171 T 5171
—F3

C1l1g + S1Faz  C1F13 T 51723 G Py T 51Dy

732 —T33 —P;

=871 T €171 S T €1y 813 T C1F3 2518, T 6Py,

0

0 0 1

E .5'234 k.
E _'[:'234 #

in the latter, several of the elements have not been shown. Equating the (3.,4)
elements, we get

which gives us

—s51p, +py, =0,
5
6 = ﬂtanZ(p},, Pl

(4.95)

(4.96)
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zﬁ-‘i Atan2 - Definition

Four-quadrant inverse tangent (arctangent) in the range of

Atan2(y,x) =tan"'(y/x)

For example
[~ ]
Atan(+1,+1) = 45°
Atan 2(+1,+1) = 45°

Atan(-1,-1) =45°
Atan2(-1,-1) = —-135°
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,/ﬁQ“"75'*T'ﬁ Inverse Kinematics — Yasukawa Motoman L-3
fah,

€171 T 5171

C1l1g + S1Faz  C1F13 T 51723 G Py T 51Dy

—F33 —DP.

=873 T €173 | —S1713 + €173 —91 P, T €1Py,

¥k

3 LY
—8111 T €17
0 0

0 1

Equating the (3,1) and (3,2) elements, we get

35 — —.5'1.?'11 + Elf-zl,

Cs = —81F13 =+ C1F92,

from which we calculate 65 as

35 —_ AtaDZ(FE]_E] — 1-1151, FEEE]. — }'12.51).

.5'234 *
3y *
0 0

0 1
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;g}:’% Inverse Kinematics — Yasukawa Motoman L-3

0

€171 T 81791 €173 + 51793
—n —TI3p 3
=811 T €1y —Sifp T Oy —Sr3 T 03 —S1 Py T 6Py

0

C1713 + 51792

—F33

0

1Py + Slpy )

—p,

1

Equating the (2,3) and (1,3) elements, we get

which leads to

€334 = P33,

5334 = €113 T 81723,

5234 — Atﬂﬂz(rlaﬂl + ‘FEESI! FSS}
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?ggf Inverse Kinematics — Yasukawa Motoman L-3
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?ggf Inverse Kinematics — Yasukawa Motoman L-3
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,/ﬁQ“"75'*T'ﬁ Inverse Kinematics — Yasukawa Motoman L-3
fah,

To solve for the individual angles 6,, 65, and 6,, we will take a geometric approach.
Figure 4.10 shows the plane of the arm with point A at joint axis 2, point B at joint
axis 3, and point C at joint axis 4.

A

FIGURE 4.10: The plane of the Motoman manipulator.
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‘ Mathematical Equations

« Law of Sinus / Cosines - For a general triangle

smA smB sinC

a b c
a’ =b”>+c°=2bccos A
« Sum of Angles
sin(ﬂ, 182)= Sy = €15, £5/C,

cos(@, +0, )= c, =¢CC,FS,S,

UCLA



,:"\'"‘f“?'y Inverse Kinematics — Yasukawa Motoman L-3
098

Plane
Ped e c

-~
//
7 ¢ N
et Vpt+p;
A r

FIGURE 4.10: The plane of the Motoman manipulator.

From the law of cosines applied to triangle ABC, we have
p§+p§+pf -Izz —J%

2yl

6, = Atan2 (1 /1 — cos2 0, cos&S) .

cosfy =

Next, we have®
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,:"\'"‘f“?'y Inverse Kinematics — Yasukawa Motoman L-3
098

Plane

Pl e c

-~
//
- ¢ _
et Vpi+ py
A :

FIGURE 4.10: The plane of the Motoman manipulator.

From Fig. 4.10, we see that 6, = —¢ — B8, or

0y = —Atan2 (pz, ,fpi + pi ) — Atan2(l3 sin b5, [, + I3 cos 3)

Finally, we have
Oy = 024 — 0, — 6.
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Actuator Space - Joint Space - Cartesian Space

Actuator
Space

Task Oriented Space
Operational Space
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4 Forward Kinematics — Yasukawa Motoman L-3

—20 8y

(ky Ay + Ap)? — a2 — B2
92:&:05‘1(]{2 2 2) 2= + tan™} (ﬂ)—l-Qz"—Z?O",

(k3A3 +23)* —af —
93=cos—1( S T 3 73 —92+tan—1(@)—90°,

94 = —k4A4 — 92 — 93 —l— )L.4 + 1800,
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Inverse Kinematics — Yasukawa Motoman L-3

Having solved for joint angles, we must perform the further computation to obtain
the actuator values. Referring to Section 3.7, we solve equation (3.16) for the A;:

A1=

Ay

A3=

Ay

A5=

1

1
5 (\/ —20, 8, €OS (92 — Q, —tan~! (%) + 2?nc) +al+ B - Ag) :

1
k_ (\/—2{13'33 CcOs (92 -+ 93 - tﬂ]:l_l (%) + g{]ﬂ) ‘]‘lll’g + ﬁg‘ — 13) .
3 3

1
E[lSD“ Ay — 0y — 05— 6)),

1
— (ks —65). (4.105)
5
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;‘g‘\:i The cast that the wrist frame and tool frame differ

only by a translation Zy,

“Plane of the arm”

FIGURE 4.9: Rotating a goal frame into the Motoman’s subspace.

In Fig. 4.9, we indicate the plane of the arm by its normal, M, and the desired
pointing direction of the tool by Z;. This pointing direction must be rotated by
angle # about some vector K in order to cause the new pointing direction, Z’, to lie
in the plane. It is clear that the K that minimizes @ lies in the plane and is orthogonal
to both Z, and Z’T

For any given goal frame, M is defined as
1 ~Py
Py | (4.84)

2 2
JPitpey L 0

where p, and p, are the X and ¥ coordinates of the desired tool position. Then K
is given by

M=

K=MxZyg. (4.85)
The new Z;, is
s oo
Zl =K x M. (4.86)
The amount of rotation, #, is given by
cosf = Zj - Z;,
sinf = (Zp x Z1) - K. (4.87)
Using Rodriques’s formula (see Exercise 2.20), we have
Y =cO¥%; +s6(K x ¥p) + (1 - cO)(K - ¥1)K. (4.88)

Finally, we compute the remaining unknown column of the new rotation matrix of
the tool as

! _ vl !

X, =Y. xZ. (4.89)

Equations (4.84) through (4.89) describe a method of projecting a given general goal

orientation into the subspace of the Motoman robot.
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J Forward Kinematics

 Inverse Kinematics

] Special case

(Actuator space +# Joint space)
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1¥¥, Next Discussion Section

> Robotics Toolbox — MATLAB
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