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Lagrangian Formulation of Manipulator Dynamics - Summary

1. Define a set of generalized coordinates for i=1,2,3...N.

These coordinates can be chosen arbitrarily as long as they provide a set of independent variables that map
the system in a 1-to-1 manner. The usual variable set for serial manipulators is:

__{6; Revolute Joint
= d; Prismatic Joint

2. Define a set of generalized velocities g; fori=1,2,3...N

3. Define a set of generalized forces (and moments) Q; for i=1,2,3...N
The generalized forces must satisfy Q;6q; = SW

Q=1+)TF —1p

where 6q; is a small change in the generalized coordinate and W is the work done corresponding to that
small change, 7 is the joint torque vector generated by the actuators, J7 is the Jacobian matrix transposed, F,
is the vector of the external forces and torques applied on the end effector, and 75, is the friction torque

vector generated at the joints
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Langrangian Formulation of Manipulator Dynamics 2/

4. Write the equations describing the kinetic and potential energies as functions of the generalized coordinates
as well as the resulting Lagrangian.

Let KE denote the expression describing the kinetic energy. Where KE = f(q;, q;, t)

n
1
KE = EZ(OVciTmiOVci + %0 [ °l; "0 )

[
=1

Let PE denote the expression describing the potential energy, where P = f(q;, t) P =f(q:, t)

n
PE = — z m;g" P,
i=1

Let L denote the Lagrangian given by:

L = KE - PE
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Langrangian Formulation of Manipulator Dynamics 3/

5. The equations of motion are given by d (0L dL
S 04;)| |0a;
L =KE — PE
0
4 (oL _ a4 0KE Rk
dt (adi) B dt(aéli %)
L la(KE — PE)] B [aKE E)PE]
dq; dq; dq; dq;
or, more practically, by
_ d (OKE 0KE N OPE
U= aq; dq;  0q;
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Gravity Effects - Langrangian Formulation

d (0KE(6,0) 8KE(9,9)+6PE(8)
dt 06 00, 00,

T=M(0)0+V(0,0) HG(O)
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Manipulators — Non Linear Control Problem

T=M©)0+V(6,0)+G(6) +F(6,0)
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Manipulators — Non Linear Control Problem

T=M@©)0+V(6,0)+G(6) +F(6,0)

0, ——b@-—b— M (8) -————D- Arm
V(6.0) + G(8) + F(8,8)
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Lagrange Method

General Approach — Formal Derivation
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Lagrangian Formulation of Manipulator Dynamics

Lagrangian function- The difference between kinetic and potential energy of a mechanical system:

L=KE — PE

Where:
- L - Lagrangian
- KE — kinetic energy of a mechanical system
- PE — Potential energy of a mechanical system

The kinetic energy is function of the position and velocity of the link
K= f(P,V)

The potential energy is a function of the position of the link

P =f(P)
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Lagrangian Formulation of Manipulator Dynamics

« Lagrange’s equation of motion is

d (dL\ oL
dt \dg; aqi_Qi

Where:
« g - vector of generalized coordinates q = [q4, g5, ... ¢, )7
« Q - vector of generalized forces Q =[04,0,,..0,]7

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Lagrangian Formulation of Manipulator Dynamics

 Kinetic Energy ’ EI
fratl gy eM S

° |

o Zt'v\.{(

i

n
1
KE = Ez(OVC’{miOVCi + OCUTOIL'CO(U i)
i=1

Where:
. OIl-C Is the inertia matrix of link i about its CM and expressed in the base frame (Frame 0)

"Il-c is the inertia matrix of link i about its CM and expressed in the link frame
. OVCi is the linear velocity of the CM of link i expressed in the base frame (Frame 0)

. Oa)l. Is the angular velocity of the CM of link i expressed in the base frame (Frame 0)

« Note — The kinetic equation of each individual link is expressed with respect to base frame (Frame 0). The
implication is that the velocities and the tensor of inertia should use the reference frame as frame 0
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Lagrangian Formulation of Manipulator Dynamics

 Kinetic Energy — Tensor of Inertia (Expressed in the Base Frame)

« Rotating the moment of inertia of the link "Il-c expressed in the i'th coordinate CM to the base frame °I;,,,

. T
°L, = R'L|9R]
Where:

. Oll-c Is the inertia matrix of link i about its CM and expressed in the base frame

. ilic is the inertia matrix of link i about its CM and expressed in the link frame

* Note:
* I; - Time Invariant

. °Il-c- Depends on to the robot arm posture because it is expressed in the base frame and the orientation
of the link i with respect to the base is a function of joint variables
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Lagrangian Formulation of Manipulator Dynamics

« Kinetic Energy — Linear & Angular Velocity (Expressed in the Base Frame)

* Methods for expressing the velocity of the CM at the base frame (Frame 0) 0Vci, Oa)l.

— Method 1: Recursive method

— Method 2: Partial Jacobian (Instantaneous screw motion) — Developed for each link as opposed to the
previously defined Jacobian

Xei =% q
Ve, Toi | ¢ .
low ] - lojwi] La ]

[OI/Ci] = [Olvi][q ]
[P0, 1=[%willq ]
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Lagrangian Formulation of Manipulator Dynamics

— Partial Jacobian (Example)

o

[V ] = [l [d | = [0 1= %l |4 |=

0 0]|6,
0z, x°P.1 0 6,

0 0]|6;

I ———

6,

0 0 91
[V,] = %214 | = |20 x P} °Z, x°R2 0‘ 0, [°w,]= w2l [d | = l"zl °Z, 0|6
01165 0|6,
[°Ves] = [%us] [q' ] = |°Z; xRy °Z; X 071 X 0PC§] 6 [ 1= [%ws] [q’ ] =|°% 22 °Z3 ] Igzl
© pA 1% OZL
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J Lagrangian Formulation of Manipulator Dynamics

— Partial Jacobian (Example) — Notes (Observations)

1. Vectors Expressed in the Base Frame - The vectors placed in the partial Jacobian
matrixes are expressed in the base frame (Frame 0)

— In 9J,; the position vector OPC{ IS expressed with respect to frame 0

— In %] ,; The joint rotation axis °Z { IS expressed with respect to frame 0

2. Population of Vectors - The columns partial Jacobian [Y],;] [%],;] are populate with
values for j < i and columns for which j > i are populated with zero

0Xei = %5 g

[°V.,] = [°%,:][ 4 ]
0, 1=[Ywilld ]
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Lagrangian Formulation of Manipulator Dynamics

Since the motion of link i depends only on the joints 1 through i the two vectors ]{,'l. , ]C{)l.in the
matrix are set to zero for j>i

‘ Ll' ) |
(/\)t W WZ+4
Js }~> { W
|5 T T3 Jh;,0,0,0 .0

0
Ji = .
JE 72 73 .7 .,0,0,0 .0

:p(feho(j oV (Zz«é

U frev\bus So¥uJC
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Lagrangian Formulation of Manipulator Dynamics

— Partial Jacobian — Generalized Interpretation
c™M

L\"V\\C ;

0Z; x OPC{(Reveolute Joint)

j _
Jui 0Z; (Prismatic Joint)

o 3 S
"ZM?Q} [OZZ XOF:{] U LOZJ’OPCJQ 1 C e {023 x T [0} [Ol [o]
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Lagrangian Formulation of Manipulator Dynamics

— Partial Jacobian — Generalized Interpretation
c™M

L\"V\\C ;

0Z; OPC{(Reveolute Joint)

i
Joi 07, (Prismatic Joint)

0Z; x (°F;; — OPj)(Reveolute Joint)
0Z; (Prismatic Joint)

v
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Lagrangian Formulation of Manipulator Dynamics

— Partial Jacobian — Generalized Interpretation

L\"V\\C ;

wi

i _ OZ] (Reveolute Joint)
0 (Prismatic Joint)
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Lagrangian Formulation of Manipulator Dynamics

chi- B ol . Column Ve ctov
[wi - lojwi_ i J
0, = _((:]vi] I . ]1]]{1' *] 1V, = %%l 4 ]
ol 1707 Jor [°0 1= [uilld ]

9Z;(Reveolute Joint)
0 (Prismatic Joint)

j _
]vi_

0Z; x OPC{(Reveolute Joint) _
Z; (Prismatic Joint) Joi = {

« 9J.- The link Jacobian matrix - A 6xN matrix that maps the instantaneous joint rates into the instantaneous
velocity at the center of mass

« 97.9 .. -Two 3xN submatrices of %J;
- Jp... - Position vector defined from the origin of the J joint frame to the CM of link i

. J ]C{)i - the j’'th column vector of °J,; %],,; respectivly

vi!
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Lagrangian Formulation of Manipulator Dynamics

* Rewriting the Kinetic Energy

mV, + 0T w ) = —z Cloid@)™m; Cli@) + Cloid) L (Y wid)]

M
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Lagrangian Formulation of Manipulator Dynamics

Define a nxn manipulator inertia matrix as

n
M = z T5imi Toi + %oy i i
i=1

The total kinetic energy of a robot arm can be expressed in terms of the manipulator inertia matrix and
the vector of joint rates

KE =-4"Mq
M is configuration dependent because J, and J,, are configuration dependent as well
Properties of the mass matrix M:
— Symmetric

— Positive Definite

The quadratic form of the equation indicates that the kinetic energy is always positive unless the system
IS at rest
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Lagrangian Formulation of Manipulator Dynamics

« Potential Energy

— Potential energy stores in a link is defined as the amount of work required to raise the center of mass
of link i from the horizontal reference plane to its present position under the influence of gravity

— With reference to the inertial frame (frame 0), the work required to displace link i to position F; is given
by

n
PE = — Z m;g" P,
i=1
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Lagrangian Formulation of Manipulator Dynamics

 Generalized Forces
— Grivation forces
— Inertial forces
— All the rest

« All the forces acting on a robot arm that consistent with the mechanical constraints
- The vector of generalized forces Q = [Q4, Q,, ... Q,,]7 is defined by the principle of virtual work as

SW = Q7éq

« Actuators -> Force/Torque at the joint
« External Forces/Moment -> End Effector
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Lagrangian Formulation of Manipulator Dynamics

oW =1T8q + Fl6x

Where

T = [14, 75, ...7,]T - n dimensional vector of joint torques generated by the actuators

6q = [t4,15,..T,] - N dimensional vector of joint displacement generated at the joint

FI = [fI nl] - six dimensional vector of resultant force and moments exerted at the end effector
dx — six dimensional virtual displacement vector of the end effector

6W — virtual work
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Lagrangian Formulation of Manipulator Dynamics

«  Substituting

ox = Jdq

« We have

Q"8q =1"8q + F]bq
Q" =" + 7]
(QT)T =@+ 7 DT
=1t+]JTF,

fi

Joint Torque External Forces
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Lagrangian Formulation of Manipulator Dynamics

e Joint Frictions

— Highly Non-linear

— Grease/oil lubricated bearing — Types of frictions
 Static friction
« Boundary lubrication
» Partial fluid lubrication
 Full fluid lubrication

— Full fluid lubrication

fri = —bi 4

- f = [b191, D245, ..., by gn] — The frictional torques or forces in the joints. The minus sign indicates that
the direction of the frictional torque or forces is always opposite to the joint velocity.
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Lagrangian Formulation of Manipulator Dynamics

« Total Generalized forces including the joint’s fluid lubrication resulted in

Q=1t+]"Fe—f;
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Lagrangian Formulation of Manipulator Dynamics

« General Form of Dynamical Equations
L =KE — PE
1 =T . T
L =54 Mq+2mig P,
i=1

« Expand the term for the kinetic energy into a sum of scalars
e M;; - The (i,}) element of the manipulator inertia matrix M

1 n n n
= Ezz Mi;q;q; + z m;g" P

i=1j=1 i=1
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Lagrangian Formulation of Manipulator Dynamics

n n n
d oL\ |oL 1
—|—1I=0; =—E EM-- '-'-+Em- Tp

i=1j=1

« Take partial derivative of L with respect to g;
* Note that the potential energy does not depend on ¢;

daL

aq;

« Taking the derivative of ;—; with respect to time

n
1 .
i3 e
J=1

I d L1 oM;; |
dt(aql> sz 1) EZd_ if)qf zjleiquJrg;[; aqqu]q]
) /] m
(=g rgh hs:

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Lagrangian Formulation of Manipulator Dynamics

n n n
- Taking the partial derivative :—; _%ZZ My 44, +zmi TP,
i=1j=1 [ =
n n n
aL| 1 0 22 +Z r OFP;
%_26 L4 qu}qk _ m;g (aqi)

oL 19 z":iM z oP,;
0q; 20q; |\ 4 4 44 mig! aq;
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Lagrangian Formulation of Manipulator Dynamics

« Substitute all the equation into the Lagrange Equation

d (oL\ |[oL
dt\dg;) |dg; Qi

aqk 4k CI] zaqi jk CI]CIR . ]g aqi l

n n
I
J=1 J

=1

n
k=1
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Lagrangian Formulation of Manipulator Dynamics

« Substitute all the equation into the Lagrange Equation

n
zMijéij+Vi+Gi =0,
J=1

*  Where
Y71 M;;g; -isthe Inertia

aMl’j 16Mjk
Vl = 2?212;6121(66“{ _E aql

) 4rq; - is the Coriolis and centrifugal force

dPci. . L
Gy = — }le]-gT(ﬁ) - is the gravitational effects
l
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Lagrange Method

2R - Example
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Lagrangian Formulation of Manipulator Dynamics

« Example: 2DOF robot

— Note: The link coordinate axes are aligned
with the principal axes at each link

Instructor: Jacob Rosen
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Lagrangian Formulation of Manipulator Dynamics

(a) Link Inertia Matrix: Assume that the length of the link is much longer than the radius of the link L>>r

J
/ Assume L>>r W A
A
0 0 O _A1\
. 1 N\
llci:EmL%[O 1 0 L\\z
0 0 1 £

°l = R, (GR)T

t=1 °L = R, (§R)"
. cq —S1 0 ) , 0 0 O][c¢r s1 O ) , s2 —c151 O
11 =151 1 0 Ele 0O 1 O —S1 (1 o = Ele —C151 C% 0
0 0 1 0 0 1iL 0 0 1 0 0 1
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Lagrangian Formulation of Manipulator Dynamics

L=z °l = 3R, (3R)"

1 —$51 0 C, —S» 0 C1Cy — 51S2 —C1Sp — 516 0 Ci12 —S12 0

R=9RIR=1|s;, ¢ Ol|s, ¢, O|=|sic,+ci5, —syS;+¢cic; O|=|s;, ¢, O

0 0 1110 0 1 0 0 1 0 0 1
. C12 —S12 0 1 , 0O 0 O C12 S12 0 1 , Ci12 —S12 0 0 0 0 1 , S%Z —S12C12 0
I; =[s12 ¢12 O EmLi 0 1 Off=s12 ¢c12 O ZEmLi S12 €12 Of|=S12 ¢12 O :EmLi —512C12 cz, 0
0 0 1 o0 Ul o o 1 o o 1lo o 1 0 o 1
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Lagrangian Formulation of Manipulator Dynamics

 (b) Link Jacobian Matrix:

0 Licy
0P1 =10 OPZ = |:L151]
0 0
1 —S51 0 0 Ll L1C1
Lis
op —0ri1p |51 G 0 Of[0]_[L151
2 2 0 0 1 0f]0 0
0 0 0 1 r 1 1
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Lagrangian Formulation of Manipulator Dynamics

(b) Link Jacobian Matrix:

Position of the CM:

1L
1P _ 12 1
Cc1 0
0
) - I1
1 —$1 0 O %Ll EL]‘C]‘
0 01 151 C1 0 O _ 1
PCl 1T PCl 0 0 1 0 8 - EL:[SZ
0 0 0 1 1 0
) ) 1
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Lagrangian Formulation of Manipulator Dynamics

 (b) Link Jacobian Matrix:

— Position of the CM:

~

€1

S

OP,, = {T3T *P., = 3T °F,, = 0
0

ZPCZ

o Rr O O

_ o O O
[95)
N

o = o o

h
=

_ o O

C12

—|S12

0
0

—S12
C12
0
0

Licq
Lysq

_ o O

‘Lz_

_1 -—
E L2 C12 + L1C1

1
E L2812 + L]_Sl
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Lagrangian Formulation of Manipulator Dynamics

iVCi _ Ojvi )
[wi]_lojwi] i

|| | * ]151' *
O]i_lojwi]_[* * ]j_ *]

Joo fZ] x (°F;; — °P ) (Reveolute Joint)
vt 07, (Prismatic Joint)

i ]OZ](Reveolute Joint)
wi ( 0 (Prismatic Joint)
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Lagrangian Formulation of Manipulator Dynamics

i=1
];'i _ {OZ] X (°P;; — OP].)(Reveolute Joint) 7
A \ cMm,
. . 1
[ J k —5L1S1 0
0]1)1 — [OZ1 X (Opcl _ 0P1) 0] — 0 0 1 ol = 1L1C1 0

o
N

1 1
l L \A 5L1C1 5L151 0 0

.::LJ(f Ol
l lzlﬁ Sa] \\ 2
)

=00
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Lagrangian Formulation of Manipulator Dynamics

j _
]wi_

{OZ] (Reveolute Joint) o —

0 O
0]w1 = [021 0] = [0 O]
1 O
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Lagrangian Formulation of Manipulator Dynamics

j _
]vi_

(o]
y / OP:-"'t
{OZ] X (°P;; — OPJ-)(Reveolute Joint) /

=R 3:1

l - 0 Licq
Ofvz - [OZ1 X (OPcz - Opl) OZZ X (Opcz - OPZ)] =1]0] X —|L1s1
1 0
[ j k [ j
_ 0 0 1 0 0
§L2C12 + Ly §L2512 +Lis; O EL2C12 §L2512
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Lagrangian Formulation of Manipulator Dynamics

[ =2

i _ )°Z;(Reveolute joint)
]wi _

OZ‘

0]w1 = [OZ1 OZz] =

0 O
0 O

1 1
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Lagrangian Formulation of Manipulator Dynamics

* (c) Manipulator Inertia Matrix:

1 1
[— E Lisy E Licy

—=L
0 5 151
mq 1

0 0 0 Sl
0
—Lys51 — §L2512 Lic; + §L2C12
+
1 1
_ELZSZ §L2C2

0

0

0-

0

0

Y
0 0 o]t |
0 0 1 ml 1 —512612
0
1 1
—Lys1 — §L2512 —ELzsz
m, 1
Lic; + §L2C12 ELZCZ
0 0

—512€C12
2
C12

0

M = JgimaJpr + Jo1 'l Jor + ToaMatve + 152212 Jw2 =

0f[r0
o[o
111

1
] mZLZ _Sl

2
S12

2C12

—512€C12

2
C12
0

0

0
1

|

0 O
0 O
1 1
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Lagrangian Formulation of Manipulator Dynamics
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Lagrangian Formulation of Manipulator Dynamics
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Lagrangian Formulation of Manipulator Dynamics
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Lagangian Formulation of Manipulator Dynamics

Ay = N 4 92
; 7l %4 La
) 2 2 4
W‘(Lbi} il4z> + Wz([/? -/:’ Zzﬁi/ﬁé/(() ﬁ%z %[Z ’ L {e )7‘— = 14(2 (&
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Lagrangian Formulation of Manipulator Dynamics

M = JoimiJur +Jo1 i Jor + To2Madve + Ja2 Lo Juwz =

—my L% +m2(L2 +L1L2c2 +3 L 2) mz(—Llecz +3 L )

3
1 2
i mz( L1L2C2 + — L ) §m2L2 |
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Lagrangian Formulation of Manipulator Dynamics

« (d) Velocity Coupling Vector:

n n
0M;;  10Mj
Vi = Gol =550
J=1k=1 L
T < J=A J:Z J-z
W < 4 Kz (¢ =4 1L:Z
2 2
_ ZZ aM]_] _laM]k _ aMll 16M11 9 9 6M21 161\/[12 6 9 aMZZ 15M21 9 6 aMZZ _laMZZ 9 9 _
20, 2 96, 00, 2 06, )t Lt 00, 2 96, ) * 2+ 00, 2 96, ) *1 90, 200, ) %7

1k=1
1 .. 1 . 1 ..
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J Lagrangian Formulation of Manipulator Dynamics

« (e) Gravitational Vector

n
Gy = — z m;g' Jy;
=1
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Lagrangian Formulation of Manipulator Dynamics

(e) Gravitational Vector

n
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Lagrangian Formulation of Manipulator Dynamics
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Lagrange Method

Summary

Instructor: Jacob Rosen
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Lagrangian Formulation of Manipulator Dynamics — Summary

Step 1: Define a set of generalized coordinates for i=/,2,3...N. The usual variable set for serial manipulators
iS:

{Hi Revolute Joint
q4i =

d; Prismatic Joint

Step 2: Define a set of generalized velocities g; fori=1,2,3..N

Step 3: Define a set of generalized forces (and moments) Q;

Q =T+]T:Fe_fr

Step 4: Define the new tensor of inertia at the base frame (frame 0) by transforming the tensor of inertia of all
the links form the links’ coordinate systems to the base coordinate system for i=1,2,3..N

°l = R, GR)T

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Lagrangian Formulation of Manipulator Dynamics — Summary

Step 5: Define the frame positions of the links with respect to the base frame °P; as well as the positions of of
the center of mass in their own coordinate systems ‘F.; for i=/,2,3...N. manipulators is:

Oop _ O [
P; = "Porgi F;

Step 6: Define the element in the partial Jacobean matrix for i=17,2,3...N

°Z; x (°F;; - 0P].)(Reveolute Joint)
0Z; (Prismatic Joint)

Jo= 0Z;(Reveolute Joint)
wt 0 (Prismatic Joint)

Step 7: Define the inertia matrix

n
M = Orm e + U5 Yot = Jamadon +I5n  Jon + Timalus +J522 s Jun + -
i=1

Instructor: Jacob Rosen
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Lagrangian Formulation of Manipulator Dynamics — Summary

Step 8: Calculate the velocity vector fori=1/,2,3...N. as:

n n

_ _ _z 0,0 _= 0,0 _= 6,0 _- 0,0, + -
(aek 2 90, 30, 208, )11 T 102+ 261 + 202 %
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Lagrangian Formulation of Manipulator Dynamics — Summary

« Step 9: Calculate the gravity vector for i=1,2,3...N. as:
n
G; = z m;g" Iy
j=1

Gy =-mg" J;1 —mag iy +

Gy =—m1g J51 —mag Ji + -

Note that the gravity is defined as

g'=[0 -g 0]

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Lagrangian Formulation of Manipulator Dynamics — Summary

« Step 10: Define the equation of motion fori=/,2,3...N. as:

n
zMijf?j+Vi+Gi = Qi
J=1

Instructor: Jacob Rosen
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Equations of Motion in Various Spaces

Joint Space versus Task Space

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Dynamic Equations - State Space Equation

« Itis often convenient to express the dynamic equations of a manipulator in a single equation

T=M(6)6+V(0,0)+G(6)

where

M(6) - Mass matrix (includes inertia terms) - nxn Matrix
v(8,0) - Centrifugal (square of joint velocity) and Coriolis (product of two different
joint velocities) terms - nx1 Vector
G(6) - gravitational terms - nx1 Vector.

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Dynamic Equations - Configuration Space Equation

- By rewriting the velocity dependent term V(6,8) in a different form, we can write the dynamic equations as

T=M(0)0 + B(0)[0 6] + C(6)[62] + G(6)

where

C(0) - Centrifugal coefficients(square of joint velocity)
B(0) - Coriolis coefficients (product of two different joint velocities)

 We may refer to this formulation as the configuration space equation or the joint space

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Dynamic Equations - Cartesian State Space Equation

It can sometimes be desirable to have a relationship between the end effector’s Cartesian accelerations and
the joint torques.

F =M. (0)i + V(6,6) + G(8)

Beginning from the Configuration Space equation
t=M(0)0+V(0,0) +G(6)
we can substitute the joint moments using our definition of the Jacobian matrix:
=JT(O)F F=]T)r
x =J(6)6

By differentiation, we find

¥=J(6)8+](0)8

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Dynamic Equations - Cartesian State Space Equation

« Solving for joint acceleration gives
6=]"1%—-J1j6
« Substitution yields

F=]Te=7TM@0)] % -] TM®O)] Yo +]Tv(6,0)+]TG(6)

F =M. (0)%+V(0,0) + G,(6)

Where

M, (8) =]7"M(8)]~*
V,(6,0) =] TM(0)]7Y0 +J7TV(6,0)
G (8) =]7TG(8)

« This equation relates the forces and moments at the end effector to the Cartesian accelerations of the end
effector and the manipulator joint positions and velocities.

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA
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