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Lagrangian Formulation of Manipulator Dynamics - Summary

1.   Define a set of generalized coordinates  for i=1,2,3…N.

 These coordinates can be chosen arbitrarily as long as they provide a set of independent variables that map 

the system in a 1-to-1 manner.  The usual variable set for serial manipulators is:

2.    Define a set of generalized velocities ሶ𝑞𝑖     for i=1,2,3…N

3.    Define a set of generalized forces (and moments) 𝑄𝑖       for i=1,2,3…N

       The generalized forces must satisfy 𝑄𝑖𝛿𝑞𝑖 = 𝛿𝑊

       where 𝛿𝑞𝑖  is a small change in the generalized coordinate and  𝛿𝑊 is the work done corresponding to that 

small change, 𝜏 is the joint torque vector generated by the actuators, 𝐽𝑇 is the Jacobian matrix transposed, ℱ𝑒
 

is the vector of the external forces and torques applied on the end effector, and 𝜏𝑓𝑟 is the friction torque 

vector generated at the joints 

𝑞𝑖 = ቊ
𝜃𝑖 Revolute Joint
𝑑𝑖 Prismatic Joint
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𝑄 = 𝜏 + 𝐽𝑇ℱ𝑒
 − 𝜏𝑓𝑟
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4. Write the equations describing the kinetic and potential energies as functions of the generalized coordinates 

as well as the resulting Lagrangian.

Let KE denote the expression describing the kinetic energy.   Where 𝐾𝐸 = 𝑓 𝑞𝑖 , ሶ𝑞𝑖 , 𝑡

Let PE denote the expression describing the potential energy, where 𝑃 = 𝑓 𝑞𝑖 , 𝑡

Let L denote the Lagrangian given by:

L = KE - PE

𝑃 = 𝑓 𝑞𝑖 , 𝑡
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5. The equations of motion are given by

or, more practically, by

𝑄𝑖 =
𝑑

𝑑𝑡

𝜕𝐾𝐸

𝜕 ሶ𝑞𝑖
−

𝜕𝐾𝐸

𝜕𝑞𝑖
+

𝜕𝑃𝐸

𝜕𝑞𝑖
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𝑑
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 −
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0

𝐿 = 𝐾𝐸 − 𝑃𝐸



Gravity Effects - Langrangian Formulation

𝜏𝑖 =
𝑑

𝑑𝑡

𝜕𝐾𝐸(𝜃, ሶ𝜃)

𝜕 ሶ𝜃𝑖

−
𝜕𝐾𝐸(𝜃, ሶ𝜃)

𝜕𝜃𝑖
+

𝜕𝑃𝐸(𝜃)

𝜕𝜃𝑖

𝜏 = 𝑀 𝜃 ሷ𝜃 + 𝑉 𝜃, ሶ𝜃 + 𝐺 𝜃
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Manipulators – Non Linear Control Problem

𝜏 = 𝑀 𝜃 ሷ𝜃 + 𝑉 𝜃, ሶ𝜃 + 𝐺 𝜃 + 𝐹 𝜃, ሶ𝜃
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Manipulators – Non Linear Control Problem

𝜏 = 𝑀 𝜃 ሷ𝜃 + 𝑉 𝜃, ሶ𝜃 + 𝐺 𝜃 + 𝐹 𝜃, ሶ𝜃
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Lagrange Method 

General Approach – Formal Derivation 
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• Lagrangian function- The difference between kinetic and potential energy of a mechanical system:

• Where:

– 𝐿 - Lagrangian

– 𝐾𝐸 – kinetic energy of a mechanical system

– 𝑃𝐸 – Potential energy of a mechanical system

• The kinetic energy is function of the position and velocity of the link

• The potential energy is a function of the position of the link
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𝐿 = 𝐾𝐸 − 𝑃𝐸

𝐾 = 𝑓(𝑃, 𝑉)

𝑃 = 𝑓(𝑃)
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• Lagrange’s equation of motion is 

• Where:

• 𝑞 - vector of generalized coordinates 𝑞 = 𝑞1, 𝑞2, … 𝑞𝑛
𝑇

• 𝑄 – vector of generalized forces        𝑄 = 𝑄1, 𝑄2, … 𝑄𝑛
𝑇
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𝑑
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−
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𝜕𝑞𝑖
= 𝑄𝑖



• Kinetic Energy

Where:

•  
0𝐼𝑖𝑐

 is the inertia matrix of link i about its CM and expressed in the base frame (Frame 0) 

•  
𝑖𝐼𝑖𝑐

 is the inertia matrix of link i about its CM and expressed in the link frame

•  
0𝑉𝑐𝑖

 is the linear velocity of the CM of link i expressed in the base frame (Frame 0) 

•  
0𝜔 𝑖

 is the angular velocity of the CM of link i expressed in the base frame (Frame 0) 

 

• Note – The kinetic equation of each individual link is expressed with respect to base frame (Frame 0). The 

implication is that the velocities and the tensor of inertia should use the reference frame as frame 0 

𝐾𝐸 =
1

2


𝑖=1

𝑛

(  
0𝑉𝑐𝑖

𝑇𝑚𝑖  
0𝑉𝑐𝑖

 +  
0𝜔 𝑖

𝑇
 

0𝐼𝑖𝑐  
0𝜔 𝑖

 )
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• Kinetic Energy – Tensor of Inertia (Expressed in the Base Frame)

• Rotating the moment of inertia of the link 𝑖𝐼𝑖𝑐
 expressed in the  i’th coordinate CM to the base frame 0𝐼𝑖𝑐𝑚 

Where:

•  
0𝐼𝑖𝑐

 is the inertia matrix of link i about its CM and expressed in the base frame

•  
𝑖𝐼𝑖𝑐

 is the inertia matrix of link i about its CM and expressed in the link frame

 

• Note: 

•  
𝑖𝐼𝑖𝑐

- Time Invariant

•  
0𝐼𝑖𝑐

- Depends on to the robot arm posture because it is expressed in the base frame and the orientation 

of the link i with respect to the base is a function of joint variables

Lagrangian Formulation of Manipulator Dynamics
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0𝐼𝑖𝑐
 =  𝑖

0𝑅  
𝑖𝐼𝑖 𝑖

0𝑅
𝑇



• Kinetic Energy – Linear & Angular Velocity (Expressed in the Base Frame)

• Methods for expressing the velocity of the CM at the base frame (Frame 0) 0𝑉𝑐𝑖
 , 0𝜔 𝑖

 

– Method 1: Recursive method

– Method 2: Partial Jacobian (Instantaneous screw motion) – Developed for each link as opposed to the 

previously defined Jacobian  

Lagrangian Formulation of Manipulator Dynamics
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0 ሶ𝑋𝑐𝑖 =  
0𝐽𝑖 ሶ 𝑞 
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– Partial Jacobian (Example) 
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– Partial Jacobian (Example) – Notes (Observations) 

1. Vectors Expressed in the Base Frame - The vectors placed in the partial Jacobian 

matrixes are expressed in the base frame (Frame 0) 

– In  0𝐽𝑣𝑖 the position vector 0𝑃𝑐𝑖
𝑗 is expressed with respect to frame 0

– In 0𝐽𝜔𝑖 The joint rotation axis 0𝑍 𝑖
𝑗 is expressed with respect to frame 0

2. Population of Vectors - The columns partial Jacobian  
0𝐽𝑣𝑖  [  

0𝐽𝜔𝑖] are populate with 

values for 𝑗 ≤ 𝑖 and  columns for which 𝑗 > 𝑖  are populated with zero    
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0 ሶ𝑋𝑐𝑖 =  
0𝐽𝑖 ሶ 𝑞 

[  
0𝜔 𝑖

 ] = [  
0𝐽𝜔𝑖][ ሶ 𝑞 ]

 
0𝑉𝑐𝑖

 =  
0𝐽𝑣𝑖 [ ሶ 𝑞 ]
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• Since the motion of link i depends only on the joints 1 through i the two vectors   𝐽𝑣𝑖
𝑗

 , 𝐽𝜔𝑖
𝑗

in the 

matrix are set to zero for j>i  

0𝐽𝑖 = 
𝐽𝑣𝑖

1  𝐽𝑣𝑖
2  𝐽𝑣𝑖

3  … 𝐽𝑣𝑖
𝑗

 , 0, 0, 0 … 0

𝐽𝜔𝑖
1  𝐽𝜔𝑖

2 𝐽𝜔𝑖
3  … 𝐽𝜔𝑖

𝑗
, 0, 0, 0 … 0

 



– Partial Jacobian – Generalized Interpretation 
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𝐽𝑣𝑖
𝑗

= ቐ
 

0𝑍𝐽  ×  
0𝑃𝑐𝑖

𝑗(𝑅𝑒𝑣𝑒𝑜𝑙𝑢𝑡𝑒 𝐽𝑜𝑖𝑛𝑡)

 
0𝑍𝐽 (𝑃𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐 𝐽𝑜𝑖𝑛𝑡)



– Partial Jacobian – Generalized Interpretation 
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𝐽𝑣𝑖
𝑗
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– Partial Jacobian – Generalized Interpretation 
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𝐽𝜔𝑖
𝑗

= ൝  
0𝑍𝐽(𝑅𝑒𝑣𝑒𝑜𝑙𝑢𝑡𝑒 𝐽𝑜𝑖𝑛𝑡)

0 (𝑃𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐 𝐽𝑜𝑖𝑛𝑡)



•  
0𝐽𝑖- The link Jacobian matrix - A 6xN matrix that maps the instantaneous joint rates into the instantaneous 

velocity at the center of mass 

•  
0𝐽𝑣𝑖 

0𝐽𝜔𝑖  - Two 3xN submatrices of 0𝐽𝑖

•  
𝑗𝑃𝑐𝑚𝑖 - Position vector defined from the origin of the J joint frame to the CM of link i

•  𝐽𝑣𝑖
𝑗

 , 𝐽𝜔𝑖
𝑗

 - the j’th column vector of 0𝐽𝑣𝑖 
0𝐽𝜔𝑖 respectivly
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0𝐽𝑖 =  
0𝐽𝑣𝑖

 
0𝐽𝜔𝑖

=
∗ ∗
∗ ∗

 
𝐽𝑣𝑖

𝑗
∗

𝐽𝜔𝑖
𝑗

∗
 

 
𝑖𝑉𝑐𝑖

𝜔𝑖
=  

0𝐽𝑣𝑖

 
0𝐽𝜔𝑖

[ ሶ𝜃𝑖]

𝐽𝑣𝑖
𝑗

= ቐ
 

0𝑍𝐽  ×  
0𝑃𝑐𝑖

𝑗(𝑅𝑒𝑣𝑒𝑜𝑙𝑢𝑡𝑒 𝐽𝑜𝑖𝑛𝑡)

 
0𝑍𝐽 (𝑃𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐 𝐽𝑜𝑖𝑛𝑡) 𝐽𝜔𝑖

𝑗
= ൝  

0𝑍𝐽(𝑅𝑒𝑣𝑒𝑜𝑙𝑢𝑡𝑒 𝐽𝑜𝑖𝑛𝑡)

0 (𝑃𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐 𝐽𝑜𝑖𝑛𝑡)

[  
0𝜔 𝑖

 ] = [  
0𝐽𝜔𝑖][ ሶ 𝑞 ]

 
0𝑉𝑐𝑖

 =  
0𝐽𝑣𝑖 [ ሶ 𝑞 ]



𝐾𝐸 =
1

2


𝑖=1

𝑛

 
0𝑉𝑐𝑖

𝑇𝑚𝑖  
0𝑉𝑐𝑖

 +  
0𝜔 𝑖

𝑇
 

0𝐼𝑖𝑐  
0𝜔 𝑖

 =
1

2


𝑖=1

𝑛

[  
0𝐽𝑣𝑖 ሶ𝑞 𝑇𝑚𝑖  

0𝐽𝑣𝑖 ሶ𝑞 +  
0𝐽𝜔𝑖 ሶ𝑞  

0𝐼𝑖𝑐  
0𝐽𝜔𝑖 ሶ𝑞 ]

=
1

2
ሶ𝑞𝑇[

𝑖=1

𝑛

 
0𝐽𝑣𝑖

𝑇 𝑚𝑖  
0𝐽𝑣𝑖 +  

0𝐽𝜔𝑖
𝑇

 
0𝐼𝑖 𝑐  

0𝐽𝜔𝑖] ሶ𝑞  
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• Rewriting the Kinetic Energy

M
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• Define a nxn manipulator inertia matrix as 

𝑀 = 

𝑖=1

𝑛

 
0𝐽𝑣𝑖

𝑇 𝑚𝑖  
0𝐽𝑣𝑖 +  

0𝐽𝜔𝑖
𝑇

 
0𝐼𝑖𝑐  

0𝐽𝜔𝑖  

• The total kinetic energy of a robot arm can be expressed in terms of the manipulator inertia matrix and 

the vector of joint rates

                                                                            𝐾𝐸 =
1

2
ሶ𝑞𝑇𝑀 ሶ𝑞 

 

• M is configuration dependent because 𝐽𝑣 and 𝐽𝑤 are configuration dependent as well

• Properties of the  mass matrix M:

– Symmetric 

– Positive Definite

• The quadratic form of the equation indicates that the kinetic energy is always positive unless the system 

is at rest
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• Potential Energy 

– Potential energy stores in a link is defined as the amount of work required to raise the center of mass 

of link 𝑖 from the horizontal reference plane to its present position under the influence of gravity 

– With reference to the inertial frame (frame 0), the work required to displace link 𝑖 to position 𝑃𝑐𝑖
 is given 

by 

𝑃𝐸 = − 

𝑖=1

𝑛

𝑚𝑖𝑔𝑇𝑃𝑐𝑖
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• Generalized Forces

– Grivation forces

– Inertial forces

– All the rest

• All the forces acting on a robot arm that consistent with the mechanical constraints

• The vector of generalized forces 𝑄 = 𝑄1, 𝑄2, … 𝑄𝑛
𝑇 is defined by the principle of virtual work as 

• Actuators -> Force/Torque at the joint 

• External Forces/Moment -> End Effector

𝛿𝑊 = 𝑄𝑇𝛿𝑞
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• Where

– 𝜏 = 𝜏1, 𝜏2, … 𝜏𝑛
𝑇  - n dimensional vector of joint torques generated by the actuators

– 𝛿𝑞 = 𝜏1, 𝜏2, … 𝜏𝑛
 - n dimensional vector of joint displacement generated at the joint 

– ℱ𝑒
𝑇 = [𝑓𝑒

𝑇  𝑛𝑒
𝑇] – six dimensional vector of resultant force and moments exerted at the end effector

– 𝛿𝑥 – six dimensional virtual displacement vector of the end effector 

– 𝛿𝑊 – virtual work

𝛿𝑊 = 𝜏𝑇𝛿𝑞 + ℱ𝑒
𝑇𝛿𝑥
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• Substituting

• We have

𝛿𝑥 = 𝐽𝛿𝑞

𝑄𝑇𝛿𝑞 = 𝜏𝑇𝛿𝑞 + ℱ𝑒
𝑇𝐽𝛿𝑞

 𝑄𝑇 = 𝜏𝑇 + ℱ𝑒
𝑇𝐽

(𝑄𝑇)𝑇 = 𝜏𝑇 + ℱ𝑒
𝑇𝐽 𝑇

𝑄 = 𝜏 + 𝐽𝑇ℱ𝑒
 

Joint Torque External Forces
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• Joint Frictions

– Highly Non-linear

– Grease/oil lubricated bearing – Types of frictions 

• Static friction

• Boundary lubrication

• Partial fluid lubrication

• Full fluid lubrication

– Full fluid lubrication

– 𝑓𝑟 = [𝑏1 ሶ𝑞1, 𝑏2 ሶ𝑞2, … , 𝑏𝑛 ሶ𝑞𝑛] – The frictional torques or forces in the joints. The minus sign indicates that 

the direction of the frictional torque or forces is always opposite to the joint velocity.

𝑓𝑟𝑖
= −𝑏𝑖  ሶ𝑞𝑖



Lagrangian Formulation of Manipulator Dynamics

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA 

• Total Generalized forces including the joint’s fluid lubrication resulted in 

𝑄 = 𝜏 + 𝐽𝑇ℱ𝑒
 − 𝑓𝑟
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• General Form of Dynamical Equations

• Expand the term for the kinetic energy into a sum of scalars

• 𝑀𝑖𝑗 - The (i,j) element of the manipulator inertia matrix M

                     

                                            

𝐿 = 𝐾𝐸 − 𝑃𝐸

𝐿 =
1

2
ሶ𝑞𝑇𝑀 ሶ𝑞 + 

𝑖=1

𝑛

𝑚𝑖𝑔𝑇𝑃𝑐𝑖

𝐿 =
1

2


𝑖=1

𝑛



𝑗=1

𝑛

𝑀𝑖𝑗 ሶ𝑞𝑖
 ሶ𝑞𝑗

 + 

𝑖=1

𝑛

𝑚𝑖𝑔𝑇𝑃𝑐𝑖
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• Take partial derivative of 𝐿 with respect to ሶ𝑞𝑖

• Note that the potential energy does not depend on ሶ𝑞𝑖

• Taking the derivative of  
𝜕𝐿

𝜕 ሶ𝑞𝑖
 with respect to time

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑞𝑖
=

1

2


𝐽=1

𝑛

𝑀𝑖𝑗 ሷ𝑞𝑗 +
1

2


𝐽=1

𝑛
𝑑

𝑑𝑡
(𝑀𝑖𝑗) ሶ𝑞𝑗 =

1

2


𝐽=1

𝑛

𝑀𝑖𝑗 ሷ𝑞𝑗 +
1

2


𝐽=1

𝑛



𝑘=1

𝑛
𝜕𝑀𝑖𝑗

𝜕𝑞𝑘
ሶ𝑞𝑘 ሶ𝑞𝐽

𝜕𝐿

𝜕 ሶ𝑞𝑖
=

1

2


𝐽=1

𝑛

𝑀𝑖𝑗 ሶ𝑞𝑗

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑞𝑖
−

𝜕𝐿

𝜕𝑞𝑖
= 𝑄𝑖 𝐿 =

1

2


𝑖=1

𝑛



𝑗=1

𝑛

𝑀𝑖𝑗  ሶ𝑞𝑖
 ሶ𝑞𝑗

 + 

𝑖=1

𝑛

𝑚𝑖𝑔𝑇𝑃𝑐𝑖



• Taking the partial derivative   
𝜕𝐿

𝜕𝑞𝑖

𝜕𝐿

𝜕𝑞𝑖
=

1

2

𝜕

𝜕𝑞𝑖


𝐽=1

𝑛



𝑘=1

𝑛

𝑀𝑗𝑘 ሶ𝑞𝑗 ሶ𝑞𝑘 + 

𝑗

𝑛

𝑚𝑗𝑔𝑇(
𝜕𝑃𝑐𝑗

𝜕𝑞𝑖
)
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The ith column vector of the link Jacobian sub matrix 0𝐽𝑣𝑖

𝐿 =
1

2


𝑖=1

𝑛



𝑗=1

𝑛

𝑀𝑖𝑗  ሶ𝑞𝑖
 ሶ𝑞𝑗

 + 

𝑖=1

𝑛

𝑚𝑖𝑔𝑇𝑃𝑐𝑖

𝜕𝐿

𝜕𝑞𝑖
=

1

2

𝜕

𝜕𝑞𝑖


𝑖=1

𝑛



𝑗=1

𝑛

𝑀𝑖𝑗  ሶ𝑞𝑖
 ሶ𝑞𝑗

 + 

𝑖=1

𝑛

𝑚𝑖𝑔𝑇
𝜕𝑃𝑐𝑗

𝜕𝑞𝑖
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• Substitute all the equation into the Lagrange Equation

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑞𝑖
−

𝜕𝐿

𝜕𝑞𝑖
= 𝑄𝑖



𝐽=1

𝑛

𝑀𝑖𝑗 ሷ𝑞𝑗 + 𝑉𝑖 + 𝐺𝑖 = 𝑄𝑖



𝐽=1

𝑛

𝑀𝑖𝑗 ሷ𝑞𝑗 + 

𝐽=1

𝑛



𝑘=1

𝑛
𝜕𝑀𝑖𝑗

𝜕𝑞𝑘
ሶ𝑞𝑘 ሶ𝑞𝑗 −

1

2

𝜕

𝜕 ሶ𝑞𝑖


𝐽=1

𝑛



𝑘=1

𝑛

𝑀𝑗𝑘 ሶ𝑞𝑗 ሶ𝑞𝑘 + 

𝑗

𝑛

𝑚𝑗𝑔𝑇
𝜕𝑃𝑐𝑗

𝜕𝑞𝑖
= 𝑄𝑖



• Substitute all the equation into the Lagrange Equation



𝐽=1

𝑛

𝑀𝑖𝑗 ሷ𝑞𝑗 + 𝑉𝑖 + 𝐺𝑖 = 𝑄𝑖

• Where

σ𝐽=1
𝑛 𝑀𝑖𝑗 ሷ𝑞𝑗 - is the Inertia

𝑉𝑖 = σ𝐽=1
𝑛 σ𝑘=1

𝑛 (
𝜕𝑀𝑖𝑗

𝜕𝑞𝑘
−

1

2

𝜕𝑀𝑗𝑘

𝜕𝑞𝑖
) ሶ𝑞𝑘 ሶ𝑞𝑗 - is the Coriolis and centrifugal force

𝐺𝑖 = − σ𝑗=1
𝑛 𝑚𝑗𝑔𝑇(

𝜕𝑃𝑐𝑗

𝜕𝑞𝑖
) - is the gravitational effects
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• Example: 2DOF robot

– Note: The link coordinate axes are aligned 

with the principal axes at each link
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• (a) Link Inertia Matrix: Assume that the length of the link is much longer than the radius of the link L>>r

0𝐼𝑖 = 𝑖
0𝑅  

𝑖𝐼𝑐𝑖
( 𝑖

0𝑅)𝑇

𝑖 = 1 0𝐼1 = 1
0𝑅  

1𝐼𝑐1
(1

0𝑅)𝑇

0𝐼1 =
𝑐1 −𝑠1 0
𝑠1 𝑐1 0
0 0 1

1

12
𝑚𝐿𝑖

2
0 0 0
0 1 0
0 0 1

𝑐1 𝑠1 0
−𝑠1 𝑐1 0

0 0 1
=

1

12
𝑚𝐿𝑖

2
𝑠1

2 −𝑐1𝑠1 0

−𝑐1𝑠1 𝑐1
2 0

0 0 1

 

𝑖𝐼𝑐𝑖
=

1

12
𝑚𝐿𝑖

2
0 0 0
0 1 0
0 0 1

Assume L>>r



Lagrangian Formulation of Manipulator Dynamics

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA 

2
0𝑅 = 1

0𝑅2
1𝑅 =

𝑐1 −𝑠1 0
𝑠1 𝑐1 0
0 0 1

𝑐2 −𝑠2 0
𝑠2 𝑐2 0
0 0 1

=
𝑐1𝑐2 − 𝑠1𝑠2 −𝑐1𝑠2 − 𝑠1𝑐2 0
𝑠1𝑐2 + 𝑐1𝑠2 −𝑠1𝑠2 + 𝑐1𝑐2 0

0 0 1
=

𝑐12 −𝑠12 0
𝑠12 𝑐12 0
0 0 1

𝑖 = 2 0𝐼2 = 2
0𝑅  

1𝐼𝑐1
(2

0𝑅)𝑇

0𝐼2 =
𝑐12 −𝑠12 0
𝑠12 𝑐12 0
0 0 1

1

12
𝑚𝐿𝑖

2
0 0 0
0 1 0
0 0 1

𝑐12 𝑠12 0
−𝑠12 𝑐12 0

0 0 1
 = 

1

12
𝑚𝐿𝑖

2
𝑐12 −𝑠12 0
𝑠12 𝑐12 0
0 0 1

0 0 0
−𝑠12 𝑐12 0

0 0 1
 =

1

12
𝑚𝐿𝑖

2
𝑠12

2 −𝑠12𝑐12 0

−𝑠12𝑐12 𝑐12
2 0

0 0 1
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• (b) Link Jacobian Matrix:

0𝑃2 =
𝐿1𝑐1

𝐿1𝑠1

0

0𝑃 2
= 1

0𝑇 1𝑃 2
=

𝑐1 −𝑠1 0 0
𝑠1 𝑐1 0 0
0 0 1 0
0 0 0 1

𝐿1

0
0
1

=

𝐿1𝑐1

𝐿1𝑠1

0
1

0𝑃1 =
0
0
0
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• (b) Link Jacobian Matrix:

– Position of the CM:

0𝑃𝑐1
= 1

0𝑇  
1𝑃𝑐1

=

𝑐1 −𝑠1 0 0
𝑠1 𝑐1 0 0
0 0 1 0
0 0 0 1

1

2
𝐿1

0
0
1

=

1

2
𝐿1𝑐1

1

2
𝐿1𝑠2

0
1

1𝑃𝑐1
=

1

2
𝐿1

0
0
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• (b) Link Jacobian Matrix:

– Position of the CM:

2𝑃𝑐2
=

1

2
𝐿2

0
0

0𝑃𝑐2
= 1

0𝑇2
1𝑇 2𝑃𝑐2

= 2
0𝑇 2𝑃𝑐2

=

𝑐1 −𝑠1 0 0
𝑠1 𝑐1 0 0
0 0 1 0
0 0 0 1

𝑐2 −𝑠2 0 𝐿1

𝑠2 𝑐2 0 0
0 0 1 0
0 0 0 1

1

2
𝐿2

0
0
1

= 

𝑐12 −𝑠12 0 𝐿1𝑐1

𝑠12 𝑐12 0 𝐿1𝑠1

0 0 1 0
0 0 0 1

1

2
𝐿2

0
0
1

=

1

2
𝐿2𝑐12 + 𝐿1𝑐1

1

2
𝐿2𝑠12 + 𝐿1𝑠1

0
1

0𝑃𝑐2
=

1

2
𝐿2𝑐12 + 𝐿1𝑐1

1

2
𝐿2𝑠12 + 𝐿1𝑠1

0
1



𝐽𝑣𝑖
𝑗

= ቐ
 

0𝑍𝐽  × (  
0𝑃𝑐𝑖

 −  
0𝑃 𝑗

 )(𝑅𝑒𝑣𝑒𝑜𝑙𝑢𝑡𝑒 𝐽𝑜𝑖𝑛𝑡)

 
0𝑍𝐽 (𝑃𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐 𝐽𝑜𝑖𝑛𝑡)

Lagrangian Formulation of Manipulator Dynamics

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA 

0𝐽𝑖 =  
0𝐽𝑣𝑖

 
0𝐽𝜔𝑖

=
∗ ∗
∗ ∗

 
𝐽𝑣𝑖

𝑗
∗

𝐽𝜔𝑖
𝑗

∗
 

 
𝑖𝑉𝑐𝑖

𝜔𝑖
=  

0𝐽𝑣𝑖

 
0𝐽𝜔𝑖

[ ሶ𝜃𝑖]

𝐽𝜔𝑖
𝑗

= ൝  
0𝑍𝐽(𝑅𝑒𝑣𝑒𝑜𝑙𝑢𝑡𝑒 𝐽𝑜𝑖𝑛𝑡)

0 (𝑃𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐 𝐽𝑜𝑖𝑛𝑡)
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𝑖 = 1

0𝐽𝑣1 =  
0𝑍1  × (  

0𝑃𝑐1
 −  

0𝑃 1
 ) 0 =

𝑖 𝑗 𝑘
0 0 1

1

2
𝐿1𝑐1

1

2
𝐿1𝑠1 0

0 =

−
1

2
𝐿1𝑠1 0

1

2
𝐿1𝑐1 0

0 0

  

𝐽𝑣𝑖
𝑗

= ቊ  
0𝑍𝐽  × (  

0𝑃𝑐𝑖
 −  

0𝑃 𝑗
 )(𝑅𝑒𝑣𝑒𝑜𝑙𝑢𝑡𝑒 𝐽𝑜𝑖𝑛𝑡)
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𝑖 = 1

0𝐽𝜔1 =  
0𝑍1 0 =

0 0
0 0
1 0

  

𝐽𝜔𝑖
𝑗

= ቊ  
0𝑍𝐽(𝑅𝑒𝑣𝑒𝑜𝑙𝑢𝑡𝑒 𝐽𝑜𝑖𝑛𝑡)
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𝑖 = 2

0𝐽𝑣2 =  
0𝑍1  × (  

0𝑃𝑐2
 −  

0𝑃 1
 )  

0𝑍2  × (  
0𝑃𝑐2

 −  
0𝑃 2

 ) =
0
0
1

×

1

2
𝐿2𝑐12 + 𝐿1𝑐1

1

2
𝐿2𝑠12 + 𝐿1𝑠1

0

−
0
0
0

0
0
1

×

1

2
𝐿2𝑐12 + 𝐿1𝑐1

1

2
𝐿2𝑠12 + 𝐿1𝑠1

0

−
𝐿1𝑐1

𝐿1𝑠1

0

=

𝑖 𝑗 𝑘
0 0 1

1

2
𝐿2𝑐12 + 𝐿1𝑐1

1

2
𝐿2𝑠12 + 𝐿1𝑠1 0

𝑖 𝑗 𝑘
0 0 1

1

2
𝐿2𝑐12

1

2
𝐿2𝑠12 0

=

−𝐿1𝑠1 −
1

2
𝐿2𝑠12 −

1

2
𝐿2𝑠2

𝐿1𝑐1 +
1

2
𝐿2𝑐12

1

2
𝐿2𝑐2

0 0

𝐽𝑣𝑖
𝑗

= ቊ  
0𝑍𝐽  × (  

0𝑃𝑐𝑖
 −  

0𝑃 𝑗
 )(𝑅𝑒𝑣𝑒𝑜𝑙𝑢𝑡𝑒 𝐽𝑜𝑖𝑛𝑡)
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𝑖 = 2

0𝐽𝜔1 =  
0𝑍1 0𝑍2 =

0 0
0 0
1 1

  

𝐽𝜔𝑖
𝑗

= ቊ  
0𝑍𝐽(𝑅𝑒𝑣𝑒𝑜𝑙𝑢𝑡𝑒 𝐽𝑜𝑖𝑛𝑡)
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• (c) Manipulator Inertia Matrix:

𝑀 = 𝐽𝑣1
𝑇 𝑚1𝐽𝑣1 + 𝐽𝜔1

𝑇
 

1𝐼1𝑐𝐽𝜔1 + 𝐽𝑣2
𝑇 𝑚2𝐽𝑣2 + 𝐽𝜔2

𝑇
 

2𝐼2𝑐𝐽𝜔2 =

−
1

2
𝐿1𝑠1

1

2
𝐿1𝑐1 0

0 0 0

𝑚1

−
1

2
𝐿1𝑠1 0

1

2
𝐿1𝑐1 0

0 0

+
0 0 0
0 0 1

1

12
𝑚1𝐿1

2
𝑠12

2 −𝑠12𝑐12 0

−𝑠12𝑐12 𝑐12
2 0

0 0 1

0 0
0 0
1 0

+
−𝐿1𝑠1 −

1

2
𝐿2𝑠12 𝐿1𝑐1 +

1

2
𝐿2𝑐12 0

−
1

2
𝐿2𝑠2

1

2
𝐿2𝑐2 0

𝑚2

−𝐿1𝑠1 −
1

2
𝐿2𝑠12 −

1

2
𝐿2𝑠2

𝐿1𝑐1 +
1

2
𝐿2𝑐12

1

2
𝐿2𝑐2

0 0

+
0 0 1
0 0 1

1

12
𝑚2𝐿2

2
𝑠12

2 −𝑠12𝑐12 0

−𝑠12𝑐12 𝑐12
2 0

0 0 1

0 0
0 0
1 1

 



Lagrangian Formulation of Manipulator Dynamics

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA 



Lagrangian Formulation of Manipulator Dynamics

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA 



Lagrangian Formulation of Manipulator Dynamics

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA 



Lagangian Formulation of Manipulator Dynamics

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA 



Lagrangian Formulation of Manipulator Dynamics

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA 

𝑀 = 𝐽𝑣1
𝑇 𝑚1𝐽𝑣1 + 𝐽𝜔1

𝑇
 

1𝐼1𝑐𝐽𝜔1 + 𝐽𝑣2
𝑇 𝑚2𝐽𝑣2 + 𝐽𝜔2

𝑇
 

2𝐼2𝑐𝐽𝜔2 =

1

3
𝑚1𝐿1

2 + 𝑚2(𝐿1
2 + 𝐿1𝐿2𝑐2 +

1

3
𝐿2

2 ) 𝑚2(
1

2
𝐿1𝐿2𝑐2 +

1

3
𝐿2

2 )

𝑚2(
1

2
𝐿1𝐿2𝑐2 +

1

3
𝐿2

2 )
1

3
𝑚2𝐿2

2
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• (d) Velocity Coupling Vector:

𝑉1 = 

𝑗=1

2



𝑘=1

2
𝜕𝑀1𝑗

𝜕𝜃𝑘
−

1

2

𝜕𝑀𝑗𝑘

𝜕𝜃1
=

𝜕𝑀11

𝜕𝜃1
−

1

2

𝜕𝑀11

𝜕𝜃1

ሶ𝜃1
ሶ𝜃1 +

𝜕𝑀21

𝜕𝜃2
−

1

2

𝜕𝑀12

𝜕𝜃1

ሶ𝜃1
ሶ𝜃2 +

𝜕𝑀22

𝜕𝜃1
−

1

2

𝜕𝑀21

𝜕𝜃1

ሶ𝜃2
ሶ𝜃1  +

𝜕𝑀22

𝜕𝜃2
−

1

2

𝜕𝑀22

𝜕𝜃1

ሶ𝜃2
ሶ𝜃2 =

0 −
1

2
0 ሶ𝜃1

ሶ𝜃1 + −𝑚2𝐿1𝐿2𝑠2 −
1

2
0 ሶ𝜃1

ሶ𝜃2 + (0 −
1

2
0) ሶ𝜃2

ሶ𝜃1) + −𝑚2
1

2
𝐿1𝐿2𝑠2 −

1

2
0 ሶ𝜃2

ሶ𝜃2 = −m2L1L2s2( ሶθ1
ሶθ2- 1/2 ሶ𝜃2

2 ) 

𝑉𝑖 = 

𝐽=1

𝑛



𝑘=1

𝑛

(
𝜕𝑀𝑖𝑗

𝜕𝑞𝑘
−

1

2

𝜕𝑀𝑗𝑘

𝜕𝑞𝑖
) ሶ𝑞𝑘 ሶ𝑞𝑗

𝑉2 = 

𝑗=1

2



𝑘=1

2
𝜕𝑀2𝑗

𝜕𝜃𝑘
−

1

2

𝜕𝑀𝑗𝑘

𝜕𝜃2
=

𝜕𝑀21

𝜕𝜃1
−

1

2

𝜕𝑀11

𝜕𝜃1

ሶ𝜃1
ሶ𝜃1 +

𝜕𝑀11

𝜕𝜃2
−

1

2

𝜕𝑀12

𝜕𝜃1

ሶ𝜃1
ሶ𝜃2 +

𝜕𝑀12

𝜕𝜃1
−

1

2

𝜕𝑀21

𝜕𝜃1

ሶ𝜃2
ሶ𝜃1  +

𝜕𝑀12

𝜕𝜃2
−

1

2

𝜕𝑀22

𝜕𝜃1

ሶ𝜃2
ሶ𝜃2 =

[0 −
1

2
(−𝑚2𝐿1𝐿2𝑠2)] ሶ𝜃1

ሶ𝜃1 + −
1

2
𝑚2𝐿1𝐿2𝑠2 +

1

2
𝑚2

1

2
𝐿1𝐿2𝑠2

ሶ𝜃1
ሶ𝜃2 + (0 +

1

2
(𝑚2

1

2
𝐿1𝐿2𝑠2)) ሶ𝜃2

ሶ𝜃1) + 0 −
1

2
0 ሶ𝜃2

ሶ𝜃2 =
1

2
𝑚2𝐿1𝐿2𝑠2

ሶ𝜃1
2 
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• (e) Gravitational Vector

𝐺𝑖 = − 

𝑗=1

𝑛

𝑚𝑗𝑔𝑇𝐽𝑣𝑗
𝑖

𝐺1 = −𝑚1𝑔𝑇𝐽𝑣1
1 − 𝑚2𝑔𝑇𝐽𝑣2

1 = −𝑚1 0 −𝑔 0

−
1

2
𝐿1𝑠1

1

2
𝐿1𝑐1

0

− 𝑚2 0 −𝑔 0

−𝐿1𝑠1 −
1

2
𝐿2𝑠12

𝐿1𝑐1 +
1

2
𝐿2𝑐12

0

𝐺1 =
1

2
𝑚1𝑔𝐿1𝑐1 + 𝑚2𝑔𝐿1𝑐1 +

1

2
𝑚2𝑔𝐿2𝑠12

 

𝑖 = 1
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• (e) Gravitational Vector

𝐺𝑖 = 

𝑗=1

𝑛

𝑚𝑗𝑔𝑇𝐽𝑣𝑗
𝑖

𝐺2 = −𝑚1𝐺𝑇𝐽𝑣1
2 − 𝑚2𝑔𝑇𝐽𝑣2

2 = −𝑚1 0 −𝑔 0
0
0
0

− 𝑚2 0 −𝑔 0

−
1

2
𝐿2𝑠12

1

2
𝐿2𝑐12

0

𝐺1 =
1

2
𝑚2𝐿2𝑐12

 

𝑖 = 2
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𝜏1

𝜏2
=

1

3
𝑚1𝐿1

2 + 𝑚2(𝐿1
2 + 𝐿1𝐿2𝑐2 +

1

3
𝐿2

2 )
1

3
𝑚2𝐿2

2 +
1

2
𝑚2𝐿1𝐿2𝑐2

𝑚2(
1

2
𝐿1𝐿2𝑐2 +
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𝐿2
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1

3
𝑚2𝐿2
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ሷ𝜃2

+

0
1

2
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1

2
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2

ሶ𝜃2
2

 + 
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𝑚2𝐿2𝑐12
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• Step 1: Define a set of generalized coordinates  for i=1,2,3…N. The usual variable set for serial manipulators 

is:

• Step 2: Define a set of generalized velocities ሶ𝑞𝑖  for i=1,2,3…N

• Step 3: Define a set of generalized forces (and moments) 𝑄𝑖

• Step 4: Define the new tensor of inertia at the base frame (frame 0) by transforming the tensor of inertia of all 

the links form the links’ coordinate systems  to the base coordinate system for i=1,2,3…N

0𝐼𝑖 = 𝑖
0𝑅  

𝑖𝐼𝑐𝑖
( 𝑖

0𝑅)𝑇

𝑞𝑖 = ቊ
𝜃𝑖 Revolute Joint
𝑑𝑖 Prismatic Joint

𝑄 = 𝜏 + 𝐽𝑇ℱ𝑒
 − 𝑓𝑟
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• Step 5: Define the frame positions of the links with respect to the base frame 0𝑃𝑖 as well as the positions of  of 

the center of mass in their own coordinate systems 𝑖𝑃𝑐𝑖
  for i=1,2,3…N. manipulators is:

• Step 6: Define the element in the  partial Jacobean matrix for i=1,2,3…N

• Step 7: Define the inertia matrix

𝑖𝑃𝑐𝑖
0𝑃𝑖 = 

0𝑃𝑂𝑅𝐺 𝑖

𝐽𝑣𝑖
𝑗

= ቐ
 

0𝑍𝐽  × (  
0𝑃𝑐𝑖

 −  
0𝑃 𝑗

 )(𝑅𝑒𝑣𝑒𝑜𝑙𝑢𝑡𝑒 𝐽𝑜𝑖𝑛𝑡)

 
0𝑍𝐽 (𝑃𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐 𝐽𝑜𝑖𝑛𝑡)

𝐽𝜔𝑖
𝑗

= ൝  
0𝑍𝐽(𝑅𝑒𝑣𝑒𝑜𝑙𝑢𝑡𝑒 𝐽𝑜𝑖𝑛𝑡)

0 (𝑃𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐 𝐽𝑜𝑖𝑛𝑡)

𝑀 = 

𝑖=1

𝑛

 
0𝐽𝑣𝑖

𝑇 𝑚𝑖  
0𝐽𝑣𝑖 +  

0𝐽𝜔𝑖
𝑇

 
0𝐼𝑖𝑐  

0𝐽𝜔𝑖  = 𝐽𝑣1
𝑇 𝑚1𝐽𝑣1 + 𝐽𝜔1

𝑇
 

1𝐼1𝑐𝐽𝜔1 + 𝐽𝑣2
𝑇 𝑚2𝐽𝑣2 + 𝐽𝜔2

𝑇
 

2𝐼2𝑐𝐽𝜔2 + ⋯



Lagrangian Formulation of Manipulator Dynamics – Summary 

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA 

• Step 8: Calculate the velocity vector  for i=1,2,3…N. as:

𝑉𝑖 = 

𝐽=1

𝑛



𝑘=1

𝑛

(
𝜕𝑀𝑖𝑗

𝜕𝑞𝑘
−

1

2

𝜕𝑀𝑗𝑘

𝜕𝑞𝑘
) ሶ𝑞𝑘 ሶ𝑞𝑗

𝑉2 = 

𝑗=1

𝑛



𝑘=1

𝑛
𝜕𝑀2𝑗

𝜕𝜃𝑘
−

1

2

𝜕𝑀𝑗𝑘

𝜕𝜃2
=

𝜕𝑀21

𝜕𝜃1
−

1

2

𝜕𝑀11

𝜕𝜃1

ሶ𝜃1
ሶ𝜃1 +

𝜕𝑀11

𝜕𝜃2
−

1

2

𝜕𝑀12

𝜕𝜃1

ሶ𝜃1
ሶ𝜃2 +

𝜕𝑀12

𝜕𝜃1
−

1

2

𝜕𝑀21

𝜕𝜃1

ሶ𝜃2
ሶ𝜃1  +

𝜕𝑀12

𝜕𝜃2
−

1

2

𝜕𝑀22

𝜕𝜃1

ሶ𝜃2
ሶ𝜃2 +  …

𝑉1 = 

𝑗=1

𝑛



𝑘=1

𝑛
𝜕𝑀1𝑗

𝜕𝜃𝑘
−

1

2

𝜕𝑀𝑗𝑘

𝜕𝜃1
=

𝜕𝑀11

𝜕𝜃1
−

1

2

𝜕𝑀11

𝜕𝜃1

ሶ𝜃1
ሶ𝜃1 +

𝜕𝑀21

𝜕𝜃2
−

1

2

𝜕𝑀12

𝜕𝜃1

ሶ𝜃1
ሶ𝜃2 +

𝜕𝑀22

𝜕𝜃1
−

1

2

𝜕𝑀21

𝜕𝜃1

ሶ𝜃2
ሶ𝜃1  +

𝜕𝑀22

𝜕𝜃2
−

1

2

𝜕𝑀22

𝜕𝜃1

ሶ𝜃2
ሶ𝜃2 + ⋯
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• Step 9: Calculate the gravity vector  for i=1,2,3…N. as:

Note that the gravity is defined as 

𝐺𝑖 = 

𝑗=1

𝑛

𝑚𝑗𝑔𝑇𝐽𝑣𝑗
𝑖

𝐺2 = −𝑚1𝑔𝑇𝐽𝑣1
2 − 𝑚2𝑔𝑇𝐽𝑣2

2  + ⋯

𝐺1 = −𝑚1𝑔𝑇𝐽𝑣1
1 − 𝑚2𝑔𝑇𝐽𝑣2

1 + ⋯

𝑔𝑇 = 0 −𝑔 0
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• Step 10: Define the equation of motion   for i=1,2,3…N. as:



𝐽=1

𝑛

𝑀𝑖𝑗 ሷ𝑞𝑗 + 𝑉𝑖 + 𝐺𝑖 = 𝑄𝑖



Equations of Motion in Various Spaces 

Joint Space versus Task Space  

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA 



Dynamic Equations - State Space Equation

• It is often convenient to express the dynamic equations of a manipulator in a single equation 

where

         - Mass matrix  (includes inertia terms) - nxn Matrix

          - Centrifugal (square of joint velocity) and Coriolis (product of two different  

             joint  velocities) terms - nx1 Vector

          - gravitational terms - nx1 Vector.

𝜏 = 𝑀 𝜃 ሷ𝜃 + 𝑉 𝜃, ሶ𝜃 + 𝐺 𝜃

𝑀 𝜃

𝑉 𝜃, ሶ𝜃

𝐺 𝜃

Instructor: Jacob Rosen 
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Dynamic Equations - Configuration Space Equation

• By rewriting the velocity  dependent term 𝑉 𝜃, ሶ𝜃   in a different form, we can write the dynamic equations as

where

                  𝐶 𝜃  - Centrifugal coefficients(square of joint velocity) 

                   𝐵 𝜃  - Coriolis coefficients (product of two different  joint  velocities) 

• We may refer to this formulation as the configuration space equation or the joint space 

𝜏 = 𝑀 𝜃 ሷ𝜃 + 𝐵 𝜃 ሶ𝜃 ሶ𝜃 + 𝐶 𝜃 ሶ𝜃2 + 𝐺 𝜃

Instructor: Jacob Rosen 
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• It can sometimes be desirable to have a relationship between the end effector’s Cartesian accelerations and 

the joint torques.  

• Beginning from the Configuration Space equation

• we can substitute the joint moments using our definition of the Jacobian matrix:

• By differentiation, we find

Dynamic Equations - Cartesian State Space Equation

𝜏 = 𝑀 𝜃 ሷ𝜃 + 𝑉 𝜃, ሶ𝜃 + 𝐺 𝜃

𝜏 = 𝐽𝑇 𝜃 𝐹 𝐹 = 𝐽−𝑇 𝜃 𝜏

ሶ𝑥 = 𝐽 𝜃 ሶ𝜃

ሷ𝑥 = ሶ𝐽 𝜃 ሶ𝜃 + 𝐽 𝜃 ሷ𝜃

Instructor: Jacob Rosen 
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𝐹 = 𝑀𝑥 𝜃 ሷ𝑥 + 𝑉𝑥 𝜃, ሶ𝜃 + 𝐺𝑥 𝜃



Dynamic Equations - Cartesian State Space Equation

• Solving for joint acceleration gives

• Substitution yields

Where

• This equation relates the forces and moments at the end effector to the Cartesian accelerations of the end 

effector and the manipulator joint positions and velocities. 

ሷ𝜃 = 𝐽−1 ሷ𝑥 − 𝐽−1 ሶ𝐽 ሶ𝜃

𝐹 = 𝐽−𝑇𝜏 = 𝐽−𝑇𝑀 𝜃 𝐽−1 ሷ𝑥 − 𝐽−𝑇𝑀 𝜃 𝐽−1 ሶ𝐽 ሶ𝜃 + 𝐽−𝑇𝑉 𝜃, ሶ𝜃 + 𝐽−𝑇𝐺 𝜃

𝐹 = 𝑀𝑥 𝜃 ሷ𝑥 + 𝑉𝑥 𝜃, ሶ𝜃 + 𝐺𝑥 𝜃

𝑀𝑥 𝜃 = 𝐽−𝑇𝑀 𝜃 𝐽−1

𝑉𝑥 𝜃, ሶ𝜃 = 𝐽−𝑇𝑀 𝜃 𝐽−1 ሶ𝐽 ሶ𝜃 + 𝐽−𝑇𝑉 𝜃, ሶ𝜃

𝐺𝑥 𝜃 = 𝐽−𝑇𝐺 𝜃

Instructor: Jacob Rosen 
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