Jacobian Iterative Method -
 Velocity Propagation (Method No. 2)
 Part 2 - Reference Frame

Jacobian Matrix - Derivation Methods

Jacobian: Velocity propagation

- The recursive expressions for the adjacent joint linear and angular velocities describe a relationship between the joint angle rates $(\dot{\Theta})$ and the transnational and rotational velocities of the end effector (v) :

$$
\begin{aligned}
& { }^{i+1} \omega_{i+1}={ }_{i}^{i+1} R^{i} \omega_{i}+\left[\begin{array}{c}
0 \\
0 \\
\dot{\theta}_{i+1}
\end{array}\right] \\
& { }^{i+1} v_{i+1}={ }_{i}^{i+1} R\left({ }_{i}^{i} \omega \times{ }^{i} P_{i+1}+{ }^{i} v_{i}\right)+\left[\begin{array}{c}
0 \\
0 \\
\dot{d}_{i+1}
\end{array}\right]
\end{aligned}
$$

Angular and Linear Velocities-3R Robot - Example

- The velocity propagation method provided us the linear and angular velocities of the end effector differentiated with respect to the base frame $\{0\}$ but expressed in the end effector frame - frame \{4\}

$$
\begin{gathered}
{ }^{4}\left({ }^{0} V_{4}\right) \equiv{ }^{4} v_{4}=\left[\begin{array}{c}
L_{2} S_{3} \dot{\theta}_{2} \\
\left(L_{2} C_{3}+L_{3}\right) \dot{\theta}_{2}+L_{3} \dot{\theta}_{3} \\
\left(-L_{1}-L_{2} C_{2}-L_{3} C_{23} \dot{\theta}_{1}\right.
\end{array}\right] \\
{ }^{4}\left({ }^{0} \Omega_{4}\right) \equiv{ }^{4} \omega_{4}=\left[\begin{array}{c}
S_{23} \dot{\theta}_{1} \\
C_{23} \dot{\theta}_{1} \\
\dot{\theta}_{2}+\dot{\theta}_{3}
\end{array}\right]
\end{gathered}
$$

- We wish to express the linear and angular velocities in the same base that the were differentiated i.e frame $\{0\}$

$$
\begin{gathered}
{ }^{0}\left({ }^{0} V_{4}\right) \equiv{ }^{0} v_{4} \equiv v_{4} \\
{ }^{0}\left({ }^{0} \Omega_{4}\right) \equiv{ }^{0} \omega_{4} \equiv \omega_{4}
\end{gathered}
$$

Jacobian Expression
 Frame of Reference

Frame Notation

Jacobian: Velocity propagation

- The recursive expressions for the adjacent joint linear and angular velocities defines the Jacobian in the end effector frame $\{\mathrm{N}\}$

$$
N^{N} \boldsymbol{v}={ }^{N} \mathbf{J}(\Theta) \dot{\Theta}
$$

- This equation can be expanded to:

$$
N_{v}={ }^{N} \frac{d}{d t}[X]={ }^{N}\left[\begin{array}{c}
{\left[v_{N}\right]} \\
{\left[\omega_{N}\right]}
\end{array}\right]=\left[\begin{array}{c}
v_{x} \\
v_{y} \\
v_{z} \\
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right]={ }^{N}[\mathbf{J}(\Theta)]\left[\begin{array}{c}
\dot{\theta}_{1} \\
\dot{\theta}_{2} \\
\dot{d}_{3} \\
\dot{\theta}_{4} \\
\dot{\theta}_{5} \\
\dot{\theta}_{6}
\end{array}\right]
$$

Jacobian - 3R - Example

- The linear angular velocities of the end effector $(\mathrm{N}=4)$

$$
\begin{aligned}
& { }^{4} v_{4}=\left[\begin{array}{c}
L_{2} S_{3} \dot{\theta}_{2} \\
\left(L_{2} C_{3}+L_{3}\right) \dot{\theta}_{2}+L_{3} \dot{\theta}_{3} \\
\left(-L_{1}-L_{2} C_{2}-L_{3} C_{23}\right) \dot{\theta}_{1}
\end{array}\right] \\
& { }^{4} \omega_{4}=\left[\begin{array}{c}
S_{23} \dot{\theta}_{1} \\
C_{23} \dot{\theta}_{1} \\
\dot{\theta}_{2}+\dot{\theta}_{3}
\end{array}\right]
\end{aligned}
$$

Jacobian - 3R - Example

- Re-arranged to previous two terms gives an expression that encapsulates

$$
{ }^{4} v={ }^{4} \mathbf{J}(\Theta) \dot{\Theta}
$$

$$
{ }^{4} v=\left[\begin{array}{l}
{ }^{4} v_{4} \\
{ }^{4} \omega_{4}
\end{array}\right]=\left[\begin{array}{c}
v_{x} \\
v_{y} \\
v_{z} \\
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right]={ }^{4}\left[\begin{array}{c}
\dot{\theta}_{1} \\
\dot{\theta}_{2} \\
\dot{\theta}_{3} \\
\dot{\theta}_{4} \\
\dot{\theta}_{5} \\
\dot{\theta}_{6}
\end{array}\right]=\left[\begin{array}{c}
L_{2} S_{3} \dot{\theta}_{2} \\
\left(L_{2} C_{3}+L_{3}\right) \dot{\theta}_{2}+L_{3} \dot{\theta}_{3} \\
\left(-L_{1}-L_{2} C_{2}-L_{3} C_{23}\right) \dot{\theta}_{1} \\
S_{23} \dot{\theta}_{1} \\
C_{23} \dot{\theta}_{1} \\
\dot{\theta}_{2}+\dot{\theta}_{3}
\end{array}\right]
$$

- We can now factor out the joint velocities vector $\dot{\theta}=\left[\dot{\theta}_{1} \dot{\theta}_{2} \dot{\theta}_{3}\right]^{T}$ from the above vector to formulate the Jacobian matrix

$$
{ }^{4} \mathbf{J}(\Theta)
$$

Jacobian - 3R - Example

${ }^{4} v={ }^{(4)}(\Theta) \dot{\Theta}$

- The equations for ${ }^{N} v_{N}$ and ${ }^{N} \omega_{N}$ are always a linear combination of the joint velocities, so they can always be used to find the $6 \times N$ Jacobian matrix (${ }^{N} J(\theta)$) for any robot manipulator.
- Note that the Jacobian matrix is expressed in frame \{4\}
- Problems
- Dimensions of the Jacobian (Example: Current 6×3 reduce to 3×3)
- Frame of Reference / Representation (Example: Frame 4 - Move to Frame 0)

Jacobian Expression
 Frame of Reference / Representation

Jacobian: Frame of Representation

- Using the velocity propagation method we expressed the relationship between the velocity of the robot end effector measured relative to the robot base frame $\{0\}$ and expressed in the end effector frame $\{\mathrm{N}\}$.

$$
{ }^{N} v={ }^{N} \mathbf{J}(\Theta) \dot{\Theta}
$$

- Occasionally, it may be desirable to express (represent) the end effector velocities in another frame (e.g. frame $\{0\}$, in which case we will need a method to provide the transformation.

$$
{ }^{0} v={ }^{0} \mathbf{J}(\Theta) \dot{\Theta}
$$

Jacobian: Frame of Representation

- There are two methods to change the references frame (frame of representation) of the Jacobian Matrix
- Method 1 (Before The Jacobian Matrix Is Formulated)
- Transforming the linear and angular velocities to the new frame prior to formulating the Jabobian matrix.
- Method 2 (Before The Jacobian Matrix Is Formulated)
- Transforming the Jacobian matrix from it existing frame to the new frame after it was formulated.

Jacobian Expression

Frame of Reference

Method No. 1
Transform the Velocity Vectors

Jacobian: Frame of Representation - Method 1

- Consider the velocities in a different frame $\{B\}$

$$
{ }^{\boldsymbol{B}} \boldsymbol{v}=\left[\begin{array}{l}
{ }^{B} v_{N} \\
{ }^{B} \omega_{N}
\end{array}\right]
$$

- We may use the rotation matrix to find the velocities in frame $\{\mathrm{A}\}$:

$$
A_{v}=\left[\begin{array}{l}
{ }^{A} v_{N} \\
{ }^{A} \omega_{N}
\end{array}\right]=\left[\begin{array}{l}
{ }_{B}^{A} R^{B} v_{N} \\
{ }_{B}^{A} R^{B} \omega_{N}
\end{array}\right]
$$

Jacobian: Frame of Representation - Method 1

- Example: Analyzing a 6 DOF manipulator while utilizing velocity propagation method results in an expressing the end effector (frame 6) linear and angular velocities.

$$
{ }^{6} v=\left[\begin{array}{l}
{ }^{6} v_{6} \\
{ }^{6} \omega_{6}
\end{array}\right]
$$

- Using the forward kinematics formulation the rotation matrix from frame 0 to frame 6 can be defined as

$$
{ }_{6}^{0} T={ }_{1}^{0} T{ }_{2}^{1} T{ }_{3}^{2} T_{4}^{3} T_{5}^{4} T{ }_{6}^{5} T=\left[\begin{array}{cccc}
& { }_{6}^{0} R & & { }^{0} P_{6 O R G} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- The linear and angular velocities can than be expressed in frame 0 prior to extracting the Jacobian in frame 0

$$
{ }^{0} v=\left[\begin{array}{l}
{ }^{0} v_{6} \\
{ }^{0} \omega_{6}
\end{array}\right]=\left[\begin{array}{l}
{ }_{6}^{0} R^{6} v_{6} \\
{ }_{6}^{0} R^{6} \omega_{6}
\end{array}\right]
$$

Jacobian Expression Frame of Reference

Method No. 2
Transform the Jacobian Matrix

Jacobian: Frame of Representation - Method 2

- It is possible to define a Jacobian transformation matrix ${ }_{B}^{A} R_{J}$ that can transform the Jacobian from frame B to frame A

$$
A_{v}={ }^{A} \mathbf{J}(\Theta) \dot{\Theta}={ }_{B}^{A} R_{J}{ }^{B} \mathbf{J}(\Theta) \dot{\Theta}
$$

- The Jacobian rotation matrix ${ }_{B}^{A} R_{J}$ is given by

$$
{ }_{B}^{A} R_{J}=\left[\begin{array}{c}
{\left[\begin{array}{c}
{\left[{ }_{B}^{A} R\right]} \\
{\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]}
\end{array} \begin{array}{cc}
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
{\left[{ }_{B}^{A} R\right]}
\end{array}\right]}
\end{array}\right]
$$

Jacobian: Frame of Representation

- or equivalently,

$$
{ }^{A} \mathbf{J}(\Theta)=\left[\begin{array}{cc}
{\left[\begin{array}{c}
\left.{ }_{B}^{A} R\right]
\end{array}\right.} & {\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]} \\
{\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]} & {\left[\begin{array}{c}
\left.{ }_{B}^{A} R\right]
\end{array}\right]}
\end{array}{ }^{B} \mathbf{J}(\Theta)\right.
$$

Jacobian: Frame of Representation - 3R Example

$$
\begin{aligned}
& { }^{0} \mathbf{J}(\Theta)={ }_{4}^{0} R_{J}{ }^{4} \mathbf{J}(\Theta)
\end{aligned}
$$

- The rotation matrix (${ }_{4}^{0} R$) can be calculated base on the direct kinematics given by

$$
{ }_{4}^{0} T={ }_{1}^{0} T{ }_{2}^{1} T{ }_{3}^{2} T_{4}^{3} T=\left[\begin{array}{cccc}
& { }_{4}^{0} R & & { }^{0} P_{4 O R G} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Jacobian Methods of Derivation \& the Corresponding Reference Frame - Summary

Method	Jacobian Matrix Reference Frame	Transformation to Base Frame (Frame 0)
Explicit (Diff. the Forward Kinematic Eq.)	${ }^{0} J_{N}$	None
Iterative Velocity Eq.	${ }^{N} J_{N}$	Transform Method 1: $\begin{aligned} & { }^{0} v_{N}={ }_{N}^{0} R^{N} v_{N} \\ & { }^{0} \omega_{N}={ }_{N}^{0} R^{N} \omega_{N} \end{aligned}$ Transform Method 2: ${ }^{0} J_{N}(\theta)=\left[\begin{array}{cc} { }_{N} R & 0 \\ 0 & { }_{N}^{0} R \end{array}\right]{ }^{N} J_{N}(\theta)$
Iterative Force Eq.	${ }^{N} J_{N}^{T}$	Transpose ${ }^{N} J_{N}=\left[{ }^{N} J_{N}^{T}\right]^{T}$ Transform ${ }^{0} J_{N}(\theta)=\left[\begin{array}{cc}{ }_{N} R & 0 \\ 0 & { }_{N}^{0} R\end{array}\right]{ }^{N} J_{N}(\theta)$

Dimension of the Jacobian Expression

Dimension Reduction

Inverse Jacobian - Reduced Jacobian

- Problem
- When the number of joints (N) is less than 6, the manipulator does not have the necessary degrees of freedom to achieve independent control of all six velocities components.

- Solution
- We can reduce the number of rows in the original Jacobian to describe a reduced Cartesian vector.

Jacobian: Reduced Jacobian - 3R Example

- Matrix Reduction - Option 1

- Column of zeroes
- The determinate is equal to zero
- Only two out of the three variables can be independently specified

Jacobian: Reduced Jacobian - 3R Example

- Matrix Reduction - Option 2
$\left[\begin{array}{c}4 \\ v_{x} \\ v_{y} \\ v_{z} \\ \omega_{x} \\ \omega_{y} \\ \omega_{z}\end{array}\right]=\left[\begin{array}{ccc}0 & L_{2} S_{3} & 0 \\ 0 & L_{2} C_{3}+L_{3} & L_{3} \\ -L_{1}-L_{2} C_{2}-L_{3} C_{23} & 0 & 0 \\ S_{23} & 0 & 0 \\ C_{23} & 0 & 0 \\ 0 & 1 & 1\end{array}\right]\left[\begin{array}{l}\dot{\theta}_{1} \\ \dot{\theta}_{2} \\ \dot{\theta}_{3}\end{array}\right]$
- Two columns of zeroes
- The determinate is equal to zero
- Only one out of the three variables can be independently specified

Jacobian: Reduced Jacobian - 3R Example

- Matrix Reduction - Option 3

- The resulting reduced Jacobian will be square (the number of independent rows in the Jacobian are equal to the number of unknown variables) and can be inverted unless in a singular configuration.

Jacobian: Singular Configuration - 3R Example

$$
{ }^{4} J_{r}(\theta)=\left[\begin{array}{ccc}
0 & L 2 s 3 & 0 \\
0 & L 2 c 3+L 3 & L 3 \\
-L 1-L 2 c 2-L 3 c 23 & 0 & 0
\end{array}\right]
$$

