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Jacobian: Velocity propagation

• The recursive expressions for the adjacent joint linear and angular velocities describe a relationship between 

the joint angle rates ( ሶΘ) and the transnational and rotational velocities of the end effector (𝜈):

𝑖+1𝑣𝑖+1 = 𝑖
𝑖+1𝑅 𝑖𝜔 × 𝑖𝑃𝑖+1 +

𝑖𝑣𝑖 +

0
0
ሶ𝑑𝑖+1

𝑖+1𝜔𝑖+1 = 𝑖
𝑖+1𝑅𝑖𝜔𝑖 +

0
0
ሶ𝜃𝑖+1
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• The velocity propagation method provided us the 

linear and angular velocities of the end effector 

differentiated with respect to the base frame {0} but 

expressed in the end effector frame – frame {4}  

4 0𝑉4 ≡ 4𝑣4 =

𝐿2𝑆3 ሶ𝜃2
(𝐿2𝐶3 + 𝐿3) ሶ𝜃2 + 𝐿3 ሶ𝜃3
(−𝐿1 − 𝐿2𝐶2 − 𝐿3𝐶23) ሶ𝜃1

4 0Ω4 ≡ 4𝜔4 =

𝑆23 ሶ𝜃1
𝐶23 ሶ𝜃1
ሶ𝜃2 + ሶ𝜃3

• We wish to express the linear and angular 

velocities in the same base that the were 

differentiated  i.e frame {0}  
0 0𝑉4 ≡ 0𝑣4 ≡ 𝑣4
0 0Ω4 ≡ 0𝜔4 ≡ 𝜔4

Angular and Linear Velocities - 3R Robot - Example
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Jacobian Expression 

Frame of Reference 

Frame Notation 
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Jacobian: Velocity propagation

• The recursive expressions for the adjacent joint linear and angular velocities defines the Jacobian in the end 

effector frame {N}

• This equation can be expanded to:
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𝑁𝜈 = 𝑁𝐉 (Θ) ሶΘ

𝑁𝜈 =
𝑁 𝑑

𝑑𝑡
[𝑋] =

𝑁
𝑣𝑁
𝜔𝑁

=

𝑁 𝑣𝑥
𝑣𝑦
𝑣𝑧
𝜔𝑥

𝜔𝑦

𝜔𝑧

=

𝑁

𝐉 (Θ)

ሶ𝜃1
ሶ𝜃2
ሶ𝑑3
ሶ𝜃4
ሶ𝜃5
ሶ𝜃6



Jacobian - 3R - Example

• The linear angular velocities of the end effector (N=4)  

4𝑣4 =

𝐿2𝑆3 ሶ𝜃2
(𝐿2𝐶3 + 𝐿3) ሶ𝜃2 + 𝐿3 ሶ𝜃3
(−𝐿1 − 𝐿2𝐶2 − 𝐿3𝐶23) ሶ𝜃1

4𝜔4 =

𝑆23 ሶ𝜃1
𝐶23 ሶ𝜃1
ሶ𝜃2 + ሶ𝜃3
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Jacobian - 3R - Example

• Re-arranged to previous two terms gives an expression that encapsulates  

• We can now factor out the joint velocities vector  ሶ𝜃 = [ ሶ𝜃1 ሶ𝜃2 ሶ𝜃3]
𝑇 from the above vector to formulate the 

Jacobian matrix  
4𝐉 (Θ)
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4𝜈 = 4𝐉 (Θ) ሶΘ

4𝜈 =
4𝑣4
4𝜔4

=

4 𝑣𝑥
𝑣𝑦
𝑣𝑧
𝜔𝑥

𝜔𝑦

𝜔𝑧

=

4

𝐉 (Θ)

ሶ𝜃1
ሶ𝜃2
ሶ𝜃3
ሶ𝜃4
ሶ𝜃5
ሶ𝜃6

=

𝐿2𝑆3 ሶ𝜃2
(𝐿2𝐶3 + 𝐿3) ሶ𝜃2 + 𝐿3 ሶ𝜃3
(−𝐿1 − 𝐿2𝐶2 − 𝐿3𝐶23) ሶ𝜃1

𝑆23 ሶ𝜃1
𝐶23 ሶ𝜃1
ሶ𝜃2 + ሶ𝜃3



Jacobian - 3R - Example

• The equations for           and          are always a linear combination of the joint velocities, so they can always 

be used to find the 6xN Jacobian matrix (           ) for any robot manipulator.

• Note that the Jacobian matrix is expressed in frame {4} 

• Problems

– Dimensions of the Jacobian (Example:  Current 6x3 reduce to 3x3 )

– Frame of Reference / Representation (Example: Frame 4 – Move to Frame 0)

𝑁𝑣𝑁
𝑁𝜔𝑁

𝑁𝐽 𝜃
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4 𝑣𝑥
𝑣𝑦
𝑣𝑧
𝜔𝑥

𝜔𝑦

𝜔𝑧

=

4 0 𝐿2𝑆3 0
0 𝐿2𝐶3 + 𝐿3 𝐿3

−𝐿1 − 𝐿2𝐶2 − 𝐿3𝐶23 0 0
𝑆23 0 0
𝐶23 0 0
0 1 1

ሶ𝜃1
ሶ𝜃2
ሶ𝜃3

4𝜈 = 4𝐉 (Θ) ሶΘ



Jacobian Expression 

Frame of Reference / Representation 
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Jacobian: Frame of Representation

• Using the velocity propagation method we expressed the 

relationship between the velocity of the robot end effector measured 

relative to the robot base frame {0} and expressed in the end 

effector frame {N}.  

• Occasionally, it may be desirable to express (represent) the end 

effector velocities in another frame (e.g. frame {0}, in which case we 

will need a method to provide the transformation.  
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𝑁𝜈 = 𝑁𝐉 (Θ) ሶΘ

0𝜈 = 0𝐉 (Θ) ሶΘ



Jacobian: Frame of Representation

• There are two methods to change the references frame (frame of representation) of the Jacobian Matrix

– Method 1 (Before The Jacobian Matrix Is Formulated) 

• Transforming the linear and angular velocities to the new frame prior to formulating the Jabobian

matrix.

– Method 2 (Before The Jacobian Matrix Is Formulated)  

• Transforming the Jacobian matrix from it existing frame to the new frame after it was formulated.     
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Jacobian Expression 

Frame of Reference 

Method No. 1

Transform the Velocity Vectors 
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Jacobian: Frame of Representation – Method 1

• Consider the velocities in a different frame {B}

• We may use the rotation matrix to find the velocities in frame {A}:

𝑩𝜈 =
𝐵𝑣𝑁
𝐵𝜔𝑁
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𝑨𝜈 =
𝐴𝑣𝑁
𝐴𝜔𝑁

= 𝐵
𝐴𝑅𝐵𝑣𝑁

𝐵
𝐴𝑅𝐵𝜔𝑁



Jacobian: Frame of Representation – Method 1

• Example: Analyzing a 6 DOF manipulator while utilizing velocity propagation method results in an expressing 

the end effector (frame 6) linear and angular velocities. 

• Using the forward kinematics formulation the rotation matrix from frame 0 to frame 6 can be defined as    

• The linear and angular velocities can than be expressed in frame 0 prior to extracting the Jacobian in frame 0  

0𝜈 =
0𝑣6
0𝜔6

= 6
0𝑅6𝑣6

6
0𝑅6𝜔6

6
0𝑇 = 1

0𝑇2
1𝑇3

2𝑇4
3𝑇5

4𝑇6
5𝑇 =

6
0𝑅 0𝑃6𝑂𝑅𝐺

0 0 0 1
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6𝜈 =
6𝑣6
6𝜔6



Jacobian Expression 

Frame of Reference 

Method No. 2

Transform the Jacobian Matrix 
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Jacobian: Frame of Representation – Method 2

• It is possible to define a Jacobian transformation matrix            that can transform the Jacobian from frame B 

to frame A 

• The Jacobian rotation matrix           is given by 

𝐴𝜈 = 𝐴𝐉 (Θ) ሶΘ = 𝐵
𝐴𝑅𝐽

𝐵𝐉 (Θ) ሶΘ

𝐵
𝐴𝑅𝐽

𝐵
𝐴𝑅𝐽

𝐵
𝐴𝑅𝐽 =

𝐵
𝐴𝑅

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

𝐵
𝐴𝑅
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Jacobian: Frame of Representation

• or equivalently, 

𝐴𝐉 (Θ) =

𝐵
𝐴𝑅

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

𝐵
𝐴𝑅

𝐵𝐉 (Θ)
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Jacobian: Frame of Representation - 3R Example

• The rotation matrix (       )  can be calculated base on the direct kinematics given by
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0𝑅

4
0𝑇 = 1
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1𝑇3

2𝑇4
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4
0𝑅 0𝑃4𝑂𝑅𝐺

0 0 0 1
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0𝐉 (Θ) = 4
0𝑅𝐽

4𝐉 (Θ)



Jacobian Methods of Derivation & the 

Corresponding Reference Frame   – Summary 
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Method Jacobian

Matrix 

Reference 

Frame 

Transformation to Base Frame (Frame 0)

Explicit

(Diff. the Forward 

Kinematic Eq.)

None

Iterative Velocity Eq. Transform Method 1:

Transform Method 2: 

Iterative Force Eq. Transpose

Transform 
𝑁𝐽𝑁

𝑇

𝑁𝐽𝑁

0𝐽𝑁

𝑁𝐽𝑁 = [𝑁𝐽𝑁
𝑇]𝑇

0𝑣𝑁 = 𝑁
0𝑅𝑁𝑣𝑁

0𝜔𝑁 = 𝑁
0𝑅𝑁𝜔𝑁

0𝐽𝑁 𝜃 = 𝑁
0𝑅 0

0 𝑁
0𝑅

𝑁𝐽𝑁 𝜃

0𝐽𝑁 𝜃 = 𝑁
0𝑅 0

0 𝑁
0𝑅

𝑁𝐽𝑁 𝜃



Dimension of the Jacobian Expression 

Dimension Reduction 
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Inverse Jacobian - Reduced Jacobian

• Problem 

– When the number of joints (N) is less than 6, the manipulator does not have the necessary degrees of 

freedom to achieve independent control of all six velocities components.  

• Solution

– We can reduce the number of rows in the original Jacobian to describe a reduced Cartesian vector.  
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4𝜈 =

4 𝑣𝑥
𝑣𝑦
𝑣𝑧
𝜔𝑥

𝜔𝑦

𝜔𝑧



• Matrix Reduction - Option 1

• Column of zeroes

• The determinate is equal to zero

• Only two out of the three variables can be independently specified

4 𝑣𝑥
𝑣𝑦
𝑣𝑧
𝜔𝑥

𝜔𝑦

𝜔𝑧

=

4 0 𝐿2𝑆3 0
0 𝐿2𝐶3 + 𝐿3 𝐿3

−𝐿1 − 𝐿2𝐶2 − 𝐿3𝐶23 0 0
𝑆23 0 0
𝐶23 0 0
0 1 1

ሶ𝜃1
ሶ𝜃2
ሶ𝜃3

Jacobian: Reduced Jacobian - 3R Example
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4 𝑣𝑥
𝑣𝑦
𝑣𝑧
𝜔𝑥

𝜔𝑦

𝜔𝑧

=

4 0 𝐿2𝑆3 0
0 𝐿2𝐶3 + 𝐿3 𝐿3

−𝐿1 − 𝐿2𝐶2 − 𝐿3𝐶23 0 0
𝑆23 0 0
𝐶23 0 0
0 1 1

ሶ𝜃1
ሶ𝜃2
ሶ𝜃3

• Matrix Reduction - Option 2

• Two columns of zeroes

• The determinate is equal to zero

• Only one out of the three variables can be independently specified

Jacobian: Reduced Jacobian - 3R Example

Instructor: Jacob Rosen 
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4 𝑣𝑥
𝑣𝑦
𝑣𝑧
𝜔𝑥

𝜔𝑦

𝜔𝑧

=

4 0 𝐿2𝑆3 0
0 𝐿2𝐶3 + 𝐿3 𝐿3

−𝐿1 − 𝐿2𝐶2 − 𝐿3𝐶23 0 0
𝑆23 0 0
𝐶23 0 0
0 1 1

ሶ𝜃1
ሶ𝜃2
ሶ𝜃3

• Matrix Reduction - Option 3

• The resulting reduced Jacobian will be square (the number of independent rows in the 

Jacobian are equal to the number of unknown variables) and can be inverted unless in a 

singular configuration.

Jacobian: Reduced Jacobian - 3R Example
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Jacobian: Singular Configuration - 3R Example 

4𝐽𝑟 𝜃 =
0 𝐿2𝑠3 0
0 𝐿2𝑐3 + 𝐿3 𝐿3

−𝐿1 − 𝐿2𝑐2 − 𝐿3𝑐23 0 0

Instructor: Jacob Rosen 
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