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Jacobian Matrix - Introduction

• In the field of robotics the Jacobian matrix describe 

the  relationship between the joint angle rates ( ሶ𝜃𝑁)        

and the translation and rotation velocities of the 

end effector ( ሶ𝑥).  This relationship is given by:

𝜈 = 𝐉 (Θ) ሶΘ

ሶΘ = 𝐉 𝜃
−1
𝜈
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ሶ𝜃2
ሶ𝑑3
ሶ𝜃4
ሶ𝜃5
ሶ𝜃6
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=
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• Linear and Rotational Velocity 

– Vector Form

– Matrix Form

• Angular Velocity

– Vector Form

– Matrix Form

Summary – Changing Frame of Representation

𝐴𝑉𝑄 = 𝐴𝑉𝐵𝑂𝑅𝐺 + 𝐵
𝐴𝑅𝐵𝑉𝑄 +

𝐴Ω𝐵 × 𝐵
𝐴𝑅𝐵𝑃𝑄

𝐴Ω𝐵

𝐴𝑉𝑄 = 𝐴𝑉𝐵𝑂𝑅𝐺 + 𝐵
𝐴𝑅𝐵𝑉𝑄 +

ሶ
𝐵
𝐴𝑅Ω 𝐵

𝐴𝑅𝐵𝑃𝑄

𝐵𝑃𝑄

ሶ
𝐶
𝐴𝑅Ω = ሶ

𝐵
𝐴𝑅Ω + 𝐵

𝐴𝑅 ሶ
𝐶
𝐵𝑅Ω𝐵

𝐴𝑅𝑇

𝐴Ω𝐶 =
𝐴Ω𝐵 + 𝐵

𝐴𝑅𝐵Ω𝐶
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Velocity of Adjacent Links - Summary

• Angular Velocity

• Linear Velocity

𝑖+1𝑣𝑖+1 = 𝑖
𝑖+1𝑅 𝑖𝜔 × 𝑖𝑃𝑖+1 +

𝑖𝑣𝑖 +

0
0
ሶ𝑑𝑖+1

𝑖+1𝜔𝑖+1 = 𝑖
𝑖+1𝑅𝑖𝜔𝑖 +

0
0
ሶ𝜃𝑖+1

0 - Prismatic Joint

0 - Revolute Joint
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Representation / Reference Frame

Computed / Measured Frame

Frame Notation 
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Frame - Velocity

• As with any vector, a velocity vector may be described in terms of any frame, and this frame of reference is 

noted with a leading superscript. 

• A velocity vector computed in frame {B} and represented in frame {A} would be written 

𝐴(𝐵𝑉𝑄) =
𝐴𝑑

𝑑𝑡
𝐵𝑃𝑄

Computed

(Measured)

Represented

(Reference Frame)
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Position Propagation 

• The homogeneous transform matrix provides a complete description of the linear and angular position 

relationship between adjacent links.  

• These descriptions may be combined together to describe the position of a link relative to the robot base 

frame {0}.

• A similar description of the linear and angular velocities between adjacent links as well as the base frame 

would also be useful.

𝑖
𝑜𝑇 = 1

𝑜𝑇2
1𝑇⋯ 𝑖

𝑖−1𝑇
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Position Propagation 

𝑇
0𝑇 = 1

0𝑇 2
1𝑇 3

2𝑇 4
3𝑇 5

4𝑇 6
5𝑇 𝑇

6𝑇
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Motion of the Link of a Robot

• In considering the motion of a robot link we will always use link frame {0} as the reference frame (Computed 

AND Represented). However any frame can be used as the reference (represented) frame including the 

link’s own frame (i)

Where:           - is the linear velocity of the origin of link frame (i) with respect to

frame {0} (Computed AND Represented)

- is the angular velocity of the origin of link frame (i) with respect to

frame {0} (Computed AND Represented)

• Expressing the velocity of a frame {i} (associated with link i ) relative to the robot base (frame {0}) using our 

previous notation is defined as follows:

𝑣𝑖

𝜔𝑖

   iii  000


   iii VVv 000

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Velocities - Frame & Notation 

• The velocities differentiate (computed) relative to the base frame {0} are often represented relative to other 

frames {k}. The following notation is used for this conditions 

    i

k

i

k

i

k

i

k vRVRVv  0

0

0

0

    i

k

i

k

i

k

i

k RR   0

0

0

0
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Velocity Propagation

• Given: A manipulator - A chain of rigid bodies each 

one capable of moving relative to its neighbor  

• Problem: Calculate the linear and angular 

velocities of the link of a robot  

• Solution (Concept): Due to the robot structure 

(serial mechanism) we can compute the 

velocities of each link in order starting  from the 

base. 

The velocity of link i+1 will be that of link i , plus 

whatever new velocity components were added by 

joint i+1
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Angular Velocity Propagation 
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Velocity of Adjacent Links - Angular Velocity 0/5
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Velocity of Adjacent Links - Angular Velocity 1/5

• From the relationship developed previously

• we can reassign link names to calculate the velocity of any link i relative to the base frame {0}

• We can convert the frame of reference from the base {0} to frame {i+1} by pre-multiplying both sides of the 

equation by           ,we can convert the frame of reference for the base {0} to frame {i+1} 

𝐴Ω𝐶 =
𝐴Ω𝐵 + 𝐵

𝐴𝑅𝐵Ω𝐶

ቐ
𝐴 → 0
𝐵 → 𝑖

𝐶 → 𝑖 + 1

0Ω𝑖+1 =
0Ω𝑖 + 𝑖

0𝑅𝑖Ω𝑖+1

0
𝑖+1𝑅
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Velocity of Adjacent Links - Angular Velocity 2/5

• Using the recently defined notation, we have

𝑖+1𝜔𝑖+1 - Angular velocity of frame {i+1} measured relative to the robot base, and expressed in frame {i+1} 

Recall the car example

𝑖+1𝜔𝑖 - Angular velocity of frame {i} measured relative to the robot base, and expressed in frame {i+1}

𝑖
𝑖+1𝑅𝑖Ω𝑖+1 - Angular velocity of frame {i+1} measured relative to frame {i} and expressed in frame {i+1}

0
𝑖+1𝑅0Ω𝑖+1 = 0

𝑖+1𝑅0Ω𝑖 + 0
𝑖+1𝑅 𝑖

0𝑅𝑖Ω𝑖+1

𝑖+1𝜔𝑖+1 =
𝑖+1𝜔𝑖 + 𝑖

𝑖+1𝑅𝑖Ω𝑖+1

  c

c

c

wc
vV 

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Velocity of Adjacent Links - Angular Velocity 3/5

• Angular velocity of frame {i} measured relative to the robot base, expressed in frame {i+1}

𝑖+1𝜔𝑖+1 =
𝑖+1𝜔𝑖 + 𝑖

𝑖+1𝑅𝑖Ω𝑖+1

𝑖+1𝜔𝑖 = 𝑖
𝑖+1𝑅𝑖𝜔𝑖
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Velocity of Adjacent Links - Angular Velocity 4/5

• Angular velocity of frame {i+1} measured (differentiate) in frame {i} and represented (expressed) in frame 

{i+1}

• Assuming that a joint has only 1 DOF. The joint configuration  can be either revolute joint (angular velocity) 

or prismatic joint (Linear velocity).

• Based on the frame attachment convention  in which we assign the  Z  axis pointing along the i+1 joint axis 

such that the two are coincide (rotations of a link is preformed only along its Z- axis) we can rewrite this term 

as follows: 

𝑖
𝑖+1𝑅𝑖Ω𝑖+1 =

0
0
ሶ𝜃𝑖+1

ሶ𝜃1

ሶ𝜃2

ሶ𝜃3

i+1

i

𝑖+1𝜔𝑖+1 =
𝑖+1𝜔𝑖 + 𝑖

𝑖+1𝑅𝑖Ω𝑖+1
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Velocity of Adjacent Links - Angular Velocity 5/5

• The result is a recursive equation that shows the angular velocity of one link in terms of the angular velocity 

of the previous link plus the relative motion of the two links.

• Since the term 𝑖+1𝜔𝑖+1 depends on all previous links through this recursion, the angular velocity is said to 

propagate from the base to subsequent links.

𝑖+1𝜔𝑖+1 = 𝑖
𝑖+1𝑅𝑖𝜔𝑖 +

0
0
ሶ𝜃𝑖+1
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Linear Velocity Propagation 
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Velocity of Adjacent Links - Linear Velocity 0/6
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Velocity of Adjacent Links - Linear Velocity 1/6

• Simultaneous Linear and Rotational Velocity

• The derivative of a vector in a moving frame (linear 

and rotation velocities) as seen from a stationary 

frame

• Vector Form

• Matrix Form

𝐴𝑉𝑄 = 𝐴𝑉𝐵𝑂𝑅𝐺 + 𝐵
𝐴𝑅𝐵𝑉𝑄 +

𝐴Ω𝐵 × 𝐵
𝐴𝑅𝐵𝑃𝑄

𝐴Ω𝐵

𝐴𝑉𝑄 = 𝐴𝑉𝐵𝑂𝑅𝐺 + 𝐵
𝐴𝑅𝐵𝑉𝑄 +

ሶ
𝐵
𝐴𝑅Ω 𝐵

𝐴𝑅𝐵𝑃𝑄

𝐵𝑃𝑄
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Velocity of Adjacent Links - Linear Velocity 2/6

• From the relationship developed previously (matrix form)

• we re-assign link frames for adjacent links (i and i +1) with the velocity computed relative to the robot base 

frame {0}

• We can convert the frame of reference from frame {0} to frame {i+1} by pre-multiplying both sides of the 

equation by 0
𝑖+1𝑅

𝐴𝑉𝑄 = 𝐴𝑉𝐵𝑂𝑅𝐺 + 𝐵
𝐴𝑅𝐵𝑉𝑄 +

ሶ
𝐵
𝐴𝑅Ω 𝐵

𝐴𝑅𝐵𝑃𝑄

ቐ
𝐴 → 0
𝐵 → 𝑖

𝐶 → 𝑖 + 1

0𝑉𝑖+1 =
ሶ

𝑖
0𝑅Ω 𝑖

0𝑅𝑖𝑃𝑖+1 + 0𝑉𝑖 + 𝑖
0𝑅𝑖𝑉𝑖+1
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Velocity of Adjacent Links - Linear Velocity 3/6

• Which simplifies to

• Factoring out          from the blue term

0
𝑖+1𝑅0𝑉𝑖+1 = 0

𝑖+1𝑅 ሶ
𝑖
0𝑅Ω 𝑖

0𝑅𝑖𝑃𝑖+1 + 0
𝑖+1𝑅0𝑉𝑖 + 0

𝑖+1𝑅 𝑖
0𝑅𝑖𝑉𝑖+1

0
𝑖+1𝑅0𝑉𝑖+1 = 0

𝑖+1𝑅 ሶ
𝑖
0𝑅Ω 𝑖

0𝑅𝑖𝑃𝑖+1 + 0
𝑖+1𝑅0𝑉𝑖 + 𝑖

𝑖+1𝑅𝑖𝑉𝑖+1

0
𝑖+1𝑅0𝑉𝑖+1 = 𝑖

𝑖+1𝑅 0
𝑖𝑅 ሶ

𝑖
0𝑅Ω 𝑖

0𝑅𝑖𝑃𝑖+1 + 0
𝑖𝑅0𝑉𝑖 + 𝑖

𝑖+1𝑅𝑖𝑉𝑖+1
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𝑖
𝑖+1𝑅



Velocity of Adjacent Links - Linear Velocity 4/6

𝑖
𝑖+1𝑅 𝑖𝑉𝑖+1 - Linear velocity of frame {i+1} measured relative to frame {i} and expressed in frame {i+1}

• Assuming that a joint has only 1 DOF. The joint configuration  can be either revolute joint (angular velocity) or 

prismatic joint (Linear velocity).

• Based on the frame attachment convention  in which we assign the  Z  axis pointing along the i+1 joint axis 

such that the two are coincide (translation of a link is preformed only along its Z- axis) we can rewrite this 

term as follows: 

0
𝑖+1𝑅0𝑉𝑖+1 = 𝑖

𝑖+1𝑅 0
𝑖𝑅 ሶ

𝑖
0𝑅Ω 𝑖

0𝑅𝑖𝑃𝑖+1 + 0
𝑖𝑅0𝑉𝑖 + 𝑖

𝑖+1𝑅𝑖𝑉𝑖+1

𝑖
𝑖+1𝑅𝑖𝑉𝑖+1 =

0
0
ሶ𝑑𝑖+1
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Angular Velocity - Matrix & Vector Forms

Matrix Form                            Vector Form

Definition

Multiply by Constant

Multiply by Vector

Multiply by Matrix

ሶ
𝐵
𝐴𝑅Ω ≡

0 −Ω𝑧 Ω𝑦

Ω𝑧 0 −Ω𝑥

−Ω𝑦 Ω𝑥 0

𝐴Ω𝐵 ≡

Ω𝑥

Ω𝑦

Ω𝑧

𝑘 ሶ
𝐵
𝐴𝑅Ω 𝑘 𝐴Ω𝐵

ሶ
𝐵
𝐴𝑅Ω

𝑥
𝑦
𝑧

𝐴Ω𝐵 ×
𝑥
𝑦
𝑧

= 𝜔 × 𝑟

𝑡
𝑠𝑅 ሶ

𝐵
𝐴𝑅Ω 𝑡

𝑠𝑅 𝑇
𝑡
𝑠𝑅 𝐴Ω𝐵

𝐴𝑉𝑄 = 𝐴𝑉𝐵𝑂𝑅𝐺 + 𝐵
𝐴𝑅 𝐵𝑉𝑄 +

𝐴Ω𝐵 × 𝐵
𝐴𝑅 𝐵𝑃𝑄

𝐴𝑉𝑄 = 𝐴𝑉𝐵𝑂𝑅𝐺 + 𝐵
𝐴𝑅 𝐵𝑉𝑄 +

ሶ
𝐵
𝐴𝑅Ω 𝐵

𝐴𝑅 𝐵𝑃𝑄
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Velocity of Adjacent Links - Linear Velocity 5/6

0
𝑖+1𝑅0𝑉𝑖+1 = 𝑖

𝑖+1𝑅 0
𝑖𝑅 ሶ

𝑖
0𝑅Ω 𝑖

0𝑅𝑖𝑃𝑖+1 + 0
𝑖𝑅0𝑉𝑖 +

0
0
ሶ𝑑𝑖+1

0
𝑖𝑅 ሶ

𝑖
0𝑅Ω 𝑖

0𝑅 = 0
𝑖𝑅 ሶ

𝑖
0𝑅Ω0

𝑖𝑅𝑇 = 0
𝑖𝑅0Ω𝑖 = 0

𝑖𝑅𝜔𝑖 =
𝑖𝜔𝑖

Multiply by Matrix

Definition 

0
𝑖𝑅0𝑉𝑖 =

𝑖𝑣𝑖

Definition 

0
𝑖+1𝑅0𝑉𝑖+1 =

𝑖+1𝑣𝑖+1

Definition 

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Velocity of Adjacent Links - Linear Velocity 6/6

• The result is a recursive equation that shows the linear velocity of one link in terms of the previous link plus 

the relative motion of the two links.

• Since the term 𝑖+1𝑣𝑖+1 depends on all previous links through this recursion, the angular velocity is said to 

propagate from the base to subsequent links.

𝑖+1𝑣𝑖+1 = 𝑖
𝑖+1𝑅 𝑖𝜔𝑖 ×

𝑖𝑃𝑖+1 +
𝑖𝑣𝑖 +

0
0
ሶ𝑑𝑖+1
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Velocity of Adjacent Links - Summary

• Angular Velocity

• Linear Velocity

𝑖+1𝑣𝑖+1 = 𝑖
𝑖+1𝑅 𝑖𝜔 × 𝑖𝑃𝑖+1 +

𝑖𝑣𝑖 +

0
0
ሶ𝑑𝑖+1

𝑖+1𝜔𝑖+1 = 𝑖
𝑖+1𝑅𝑖𝜔𝑖 +

0
0
ሶ𝜃𝑖+1

0 - Prismatic Joint

0 - Revolute Joint
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3R – Example  

Analytical Approach 

Instructor: Jacob Rosen 
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Angular and Linear Velocities - 3R Robot - Example

• For the manipulator shown in the figure, compute the angular and linear velocity of the “tool” frame relative to 

the base frame expressed in the “tool” frame (that is, calculate         and         ).
4𝜔4

4𝑣4
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Angular and Linear Velocities - 3R Robot - Example

• Frame attachment

Instructor: Jacob Rosen 
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Angular and Linear Velocities - 3R Robot - Example

• DH Parameters

 

i 
1i  1ia  id  i  

1 0 0 0 
1  

2 90 L1 0 
2  

3 0 L2 0 
3  

4 0 L3 0 0 
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Angular and Linear Velocities - 3R Robot - Example

• From the DH parameter table, we can specify the homogeneous transform matrix for each adjacent link pair:

𝑖
𝑖−1𝑇 =

𝑐𝜃𝑖 −𝑠𝜃𝑖 0 𝑎𝑖−1
𝑠𝜃𝑖𝑐𝛼𝑖−1 𝑐𝜃𝑖𝑐𝛼𝑖−1 −𝑠𝛼𝑖−1 −𝑠𝛼𝑖−1𝑑𝑖
𝑠𝜃𝑖𝑠𝛼𝑖−1 𝑐𝜃𝑖𝑠𝛼𝑖−1 𝑐𝛼𝑖−1 𝑐𝛼𝑖−1𝑑

0 0 0 1

1
0𝑇 =

𝑐1 −𝑠1 0 0
𝑠1 𝑐1 0 0
0 0 1 0
0 0 0 1

2
1𝑇 =

𝑐2 −𝑠2 0 𝐿1
0 0 −1 0
𝑠2 𝑐2 0 0
0 0 0 1

3
2𝑇 =

𝑐3 −𝑠3 0 𝐿2
𝑠3 𝑐3 0 0
0 0 1 0
0 0 0 1

4
3𝑇 =

1 0 0 𝐿3
0 1 0 0
0 0 1 0
0 0 0 1



Angular and Linear Velocities - 3R Robot - Example

• The homogeneous transform matrix from frame 0 to each one of the joints (1,2,3,4) 

1
0𝑇 =

𝑐1 −𝑠1 0 0
𝑠1 𝑐1 0 0
0 0 1 0
0 0 0 1

2
0𝑇 = 1

0𝑇2
1𝑇 =

𝑐1 −𝑠1 0 0
𝑠1 𝑐1 0 0
0 0 1 0
0 0 0 1

𝑐2 −𝑠2 0 𝐿1
0 0 −1 0
𝑠2 𝑐2 0 0
0 0 0 1

= 

𝑐1𝑐2 −𝑐1𝑠1 𝑠1 𝐿1𝑐1
𝑠1𝑐2 −𝑠1𝑠2 −𝑐1 𝐿1𝑠1
𝑠2 𝑐2 0 0
0 0 0 1

3
0𝑇 = 1

0𝑇2
1𝑇3

2𝑇 =

𝑐1 −𝑠1 0 0
𝑠1 𝑐1 0 0
0 0 1 0
0 0 0 1

𝑐2 −𝑠2 0 𝐿1
0 0 −1 0
𝑠2 𝑐2 0 0
0 0 0 1

𝑐3 −𝑠3 0 𝐿2
𝑠3 𝑐3 0 0
0 0 1 0
0 0 0 1

= 

𝑐1𝑐23 −𝑐1𝑠23 𝑠1 𝑐1(𝐿1 + 𝐿2𝑐2)
𝑠1𝑐23 −𝑠1𝑠23 −𝑐1 𝑠1(𝐿1 + 𝐿2𝑐2)
𝑠23 𝑐23 0 𝐿2𝑠2
0 0 0 1

4
0𝑇 = 1

0𝑇2
1𝑇3

2𝑇4
3𝑇 =

𝑐1 −𝑠1 0 0
𝑠1 𝑐1 0 0
0 0 1 0
0 0 0 1

𝑐2 −𝑠2 0 𝐿1
0 0 −1 0
𝑠2 𝑐2 0 0
0 0 0 1

𝑐3 −𝑠3 0 𝐿2
𝑠3 𝑐3 0 0
0 0 1 0
0 0 0 1

1 0 0 𝐿3
0 1 0 0
0 0 1 0
0 0 0 1

=

𝑐1𝑐23 −𝑐1𝑠23 𝑠1 𝑐1(𝐿1 + 𝐿3𝑐23 + 𝐿2𝑐2)
𝑠1𝑐23 −𝑠1𝑠23 −𝑐1 𝑠1(𝐿1 + 𝐿3𝑐23 + 𝐿2𝑐2)
𝑠23 𝑐23 0 𝐿3𝑠23 + 𝐿2𝑠2
0 0 0 1
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• Compute the angular velocity of the end effector frame relative to the base frame expressed at the end 

effector frame.

• For   i=0

𝑖+1𝜔𝑖+1 = 𝑖
𝑖+1𝑅𝑖𝜔𝑖 +

0
0
ሶ𝜃𝑖+1

1𝜔1 = 0
1𝑅0𝜔0 +

0
0
ሶ𝜃1

=
𝑐1 𝑠1 0
−𝑠1 𝑐1 0
0 0 1

0
0
0

+
0
0
ሶ𝜃1

=
0
0
ሶ𝜃1

Instructor: Jacob Rosen 
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• For   i=1

• For   i=2

• For   i=3

• Note 

2𝜔2 = 1
2𝑅1𝜔1 +

0
0
ሶ𝜃2

=
𝑐2 0 𝑠2
−𝑠2 0 𝑐2
0 −1 0

0
0
ሶ𝜃1

+
0
0
ሶ𝜃2

=

𝑠2 ሶ𝜃1
𝑐2 ሶ𝜃1
ሶ𝜃2

3𝜔3 = 2
3𝑅2𝜔2 +

0
0
ሶ𝜃3

=
𝑐3 𝑠3 0
−𝑠3 𝑐3 0
0 0 1

𝑠2 ሶ𝜃1
𝑐2 ሶ𝜃1
ሶ𝜃2

+
0
0
ሶ𝜃3

=

𝑠23 ሶ𝜃1
𝑐23 ሶ𝜃1
ሶ𝜃2 + ሶ𝜃3

4𝜔4 = 3
4𝑅3𝜔3 +

0
0
0

=
1 0 0
0 1 0
0 0 1

𝑠23 ሶ𝜃1
𝑐23 ሶ𝜃1
ሶ𝜃2 + ሶ𝜃3

+
0
0
0

=

𝑠23 ሶ𝜃1
𝑐23 ሶ𝜃1
ሶ𝜃2 + ሶ𝜃3

3𝜔3 =
4𝜔4



Angular and Linear Velocities - 3R Robot - Example

• Compute the linear velocity of the end effector frame relative to the base frame expressed at the end effector 

frame.

• Note that the term involving the prismatic joint has been dropped from the equation (it is equal to zero).

𝑖+1𝑣𝑖+1 = 𝑖
𝑖+1𝑅 𝑖𝜔 × 𝑖𝑃𝑖+1 +

𝑖𝑣𝑖 +

0
0
ሶ𝑑𝑖+1

0

Instructor: Jacob Rosen 
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• For   i=0

• For   i=1

1𝑣1 = 0
1𝑅 0𝜔0 ×

0𝑃1 +
0𝑣0 =

𝑐1 𝑠1 0
−𝑠1 𝑐1 0
0 0 1

0
0
0

×
0
0
0

+
0
0
0

=
0
0
0

2𝑣2 = 1
2𝑅 1𝜔1 ×

1𝑃2 +
1𝑣1 =

𝑐2 0 𝑠2
−𝑠2 0 𝑐2
0 −1 0

0
0
ሶ𝜃1

×
𝐿1
0
0

+
0
0
0

=
0
0

−𝐿1 ሶ𝜃1

Instructor: Jacob Rosen 
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• For   i=3

3𝑣3 = 2
3𝑅 2𝜔2 ×

2𝑃3 +
2𝑣2 =

𝑐3 𝑠3 0
−𝑠3 𝑐30 0
0 0 1

𝑠2 ሶ𝜃1
𝑐2 ሶ𝜃1
ሶ𝜃2

×
𝐿2
0
0

+
0
0

−𝐿1 ሶ𝜃1

=
𝑐3 𝑠3 0
−𝑠3 𝑐3 0
0 0 1

0
𝐿2 ሶ𝜃1

−𝐿2𝑐2 ሶ𝜃1 − 𝐿1 ሶ𝜃1

=

𝐿2𝑠3 ሶ𝜃2
𝐿2𝑐3 ሶ𝜃2

(−𝐿1 − 𝐿2𝑐2) ሶ𝜃1

Instructor: Jacob Rosen 
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• For   i=4

4𝑣4 = 3
4𝑅 3𝜔3 ×

3𝑃4 +
3𝑣3

=
1 0 0
0 1 0
0 0 1

𝑠23 ሶ𝜃1
𝑐23 ሶ𝜃1
ሶ𝜃2 + ሶ𝜃3

×
𝐿3
0
0

+

𝐿2𝑠3 ሶ𝜃2
𝐿2𝑐3 ሶ𝜃2

(−𝐿1 − 𝐿2𝑐2) ሶ𝜃1

=

𝐿2𝑠3 ሶ𝜃2
(𝐿2𝑐3 + 𝐿3) ሶ𝜃2 + 𝐿3 ሶ𝜃3

(−𝐿1 − 𝐿2𝑐2 − 𝐿3𝑐23) ሶ𝜃1

Instructor: Jacob Rosen 
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• Note that the linear and angular velocities (4𝜔4,
4𝑣4 ) of the end effector where differentiate (measured) in 

frame {0} however represented (expressed) in frame {4}

• In the car example: Observer sitting in the “Car”

Observer sitting in the “World”  

Solve for      and      by multiply both side of the questions from the left by   

    i

k

i

k

i

k

i

k vRVRVv  0

0

0

0

    i

k

i

k

i

k

i

k RR   0

0

0

0

4𝑣4 = 0
4𝑅 ⋅ 𝑣4

4𝜔4 = 0
4𝑅 ⋅ 𝜔4

 C

WC
V

 C

WW
V

𝑣4 𝜔4 0
4𝑅−1

Instructor: Jacob Rosen 
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• Multiply both sides of the equation by the inverse transformation matrix, we finally get the linear and angular 

velocities expressed and measured in the stationary frame {0} 

𝑣4 = 0
4𝑅−1 ⋅ 4𝑣4 = 0

4𝑅𝑇 ⋅ 4𝑣4 = 4
0𝑅 ⋅ 4𝑣4

𝜔4 = 0
4𝑅−1 ⋅ 4𝜔4 = 0

4𝑅𝑇 ⋅ 4𝜔4 = 4
0𝑅 ⋅ 4𝜔4

4
0𝑇 = 1

0𝑇2
1𝑇3

2𝑇4
3𝑇

Instructor: Jacob Rosen 
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3R – Example  

Analytical Approach – Graphical Interpretation  

Instructor: Jacob Rosen 
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1𝜔1 =
0
0
ሶ𝜃1

Instructor: Jacob Rosen 
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2𝜔2 =

𝑠2 ሶ𝜃1
𝑐2 ሶ𝜃1
ሶ𝜃2

Instructor: Jacob Rosen 
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3𝜔3 =

𝑠23 ሶ𝜃1
𝑐23 ሶ𝜃1
ሶ𝜃2 + ሶ𝜃3

Instructor: Jacob Rosen 
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3𝜔3 =
4𝜔4

Instructor: Jacob Rosen 
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1𝑣1 =
0
0
0

Instructor: Jacob Rosen 
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2𝑣2 =
0
0

−𝐿1 ሶ𝜃1

Instructor: Jacob Rosen 
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3𝑣3 =

𝐿2𝑠3 ሶ𝜃2
𝐿2𝑐3 ሶ𝜃2

(−𝐿1 − 𝐿2𝑐2) ሶ𝜃1

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA
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4𝑣4 =

𝐿2𝑠3 ሶ𝜃2
(𝐿2𝑐3 + 𝐿3) ሶ𝜃2 + 𝐿3 ሶ𝜃3

−(𝐿1 + 𝐿2𝑐2 + 𝐿3𝑐23) ሶ𝜃1

Instructor: Jacob Rosen 
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