Inverse Manipulator Kinematics (1/3)




Direct Versus Inverse Kinematics

" Direct (Forward) Kinematics

Given:  Joint angles and links geometry
Compute: Position and orientation of the end
effector relative to the base frame

! f(0)=T=\T

~ Inverse Kinematics

Given: Position and orientation of the end
effector relative to the base frame
Compute: All possible sets of joint angles and
links geometry which could be
used to attain the given position and
orientation of the end effetor

L 0=1"(T)=17(T)
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Central Topic - Inverse Manipulator Kinematics -
Examples

@Geometric Solution - Concept
Decompose spatial geometry into several plane
geometry

Examples - Planar RRR (3R) manipulators -
Geometric Solution

@Algebraic Solution - Concept Y v
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Direct Kinematics Goal (Numeric values)

Examples - PUMA 560 - Algebraic Solution




Solvability - PUMA 560

v
Given : PUMA 560 - 6 DOF, T l, 9., - 8¢

ri1 = C1 [ca3(cscs6 — 8486) — S2385C6] + 51(84C5C6 + C486),

Solve: 91 " '6’6

r21 = 51 [€23(CaCsCs — 8486) — S2355C6] — C1(84C5C6 + C436),

‘/ T31 = —523(€4C5Ce — 845¢) — €2355Cs)
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12 = ¢1 [c23(—CaC586 — $4C6) + S235556] + 51(CaCs — 54C556);

Toy = 81 [Cog(—C4C58¢ — 84Cg) + S238586) — €1(CaCs — 54C556),
0 0 22 = 81 [Caa(—c4c586 — S4C6 355 :
6T=1T§|'23T43|'§|'g|' =
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1'”32 = —323('—6'4(3536 - S4C6) + Co35556;
r31 r32 r33 pZ
0 0 0 1 T13 = —C1(C23C485 + 823C5) — 515455,
‘r23 = —5q (C23C455 + 323‘:5) + 615455?

T'33 = $23C485 — Ca3Cs,
Total Number of Equations: 12

Py = €y [@3Cy + G3C33 — dySp3] — dgsy,

Py = 81 (@20 + a3ca3 — dySa3] + d3ey,

Independent Equations: 3 - Rotation Matrix
3 - Position Vector
Type of Equations: Non-linear

L. P, = —Q3893 — AqS59 — d4C23.




Solvability

—>  Existence of Solutions
* Multiple Solutions
* Method of solutions
— Close form solution
 Algebraic solution

« Geometric solution

— Numerical solutions




Solvability - Existence of Solution

For a solution to exist, °T must be in the workspace of the manipulator

 Workspace - Definitions

— Dexterous Workspace (DW): The subset of space in which the robot end
effector can reach all orientation.

— Reachable Workspace (RW): The subset of space in which the robot end
effector can reach in at least 1 orientation

« The Dexterous Workspace is a subset of the Reachable Workspace

DW < RW

QW
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Solvability - Existence of Solution - Workspace - 2R

Example1l- L =L,
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Dw




Solvability - Existence of Solution - Workspace - 2R
Example2- L #L,

Reachable
Workspace

NO Dexterous
Workspace




Solvability - Existence of Solution - Workspace - 3R
Example 3- L =L,

End Effector
Rotation

Reachable
Workspace
&
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Workspace




Solvability - Multiple Solutions

Multiple solutions are a common
problem that can occur when solving
inverse kinematics because the
system has to be able to chose one

The number of solutions depends on
the number of joints in the
manipulator but is also a function of
the links parameters @; «;, d; 6

Example: The PUMA 560 can reach
certain goals with 8 different
(solutions) arm configurations

— Four solutions are depicted

— Four solutions are related to a
“flipped” wrist

6, = 6, +180°
0, = -0,
6, = 0, +180°




Solvability - Multiple Solutions

Problem: The fact that a manipulator

has multiple multiple solutions may
cause problems because the system
has to be able to choose one

Solution: Decision criteria
— The closest (geometrically) -

minimizing the amount that each
joint is required to move

« Note 1: input argument -
present position of the
manipulator

* Note 2: Joint Weight -
Moving small joints (wrist)
instead of moving large
joints (Shoulder & Elbow)

— Obstacles exist in the workspace
- avoiding collision




Solvability - Multiple Solutions - Number of Solutions

Task Definition - Position the end
effector in a specific point in the
plane (2D)

No. of DOF = No. of DOF of the task

Number of solution: 2
(elbow up/down)

No. of DOF > No. of DOF of the task

Number of solution: oo

Self Motion - The robot can be
moved without moving the the end
effector from the goal




Solvability - Methods of Solutions

Solution (Inverse Kinematics)- A “solution” is the set of joint variables
associated with an end effector’s desired position and orientation.

No general algorithms that lead to the solution of inverse kinematic equations.
Solution Strategies
— Closed form Solutions - An analytic expression includes all solution sets.

« Algebraic Solution - Trigonometric (Nonlinear) equations

« Geometric Solution - Reduces the larger problem to a series of plane
geometry problems.

— Numerical Solutions - Iterative solutions will not be considered in this
course.




Solvability

Real-Time

Robot - 6 DOF

Single Series Chain
Revolute & Prismatic Joints

——

A 4 A 4
e

Close Form Solution
Sufficient Condition
Three adjacent axes

Iterations

(rotary or prismatic)
must intersect




Mathematical Equations

Law of Sinus / Cosines - For a general triangle

Sum of Angles

sinA_sinB _sinC
a b C

a’ =b*+c?—2bccos A

cos(6,+6,)=c, =CcC, FS5,




Inverse Kinematics - Planar RRR (3R) -
Algebraic Solution - 1/12

-1 | @-1 d; 0;
0 0 0 0,
0 Ll 0 B2
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Inverse Kinematics - Planar RRR (3R) -

Algebraic Solution - 2/12

co —-so 0 a
sésa., Cclsa, Ca, Co_d
0 0 0 1
i (o FRN | a; - (l,‘ 0;
1 0 0 0 0,
2 0 Ll 0 82
3 0 Lo 0 03

cl

-5l




Inverse Kinematics - Planar RRR (3R) -
Algebraic Solution - 3/12

[ clc2c3— c1s253 - s1s2c3—s1c2s3  —clc2s3 — cls2c3 + s1s2s3—s1c2c3 0 cl(L2c2 + L1) —sls2 L2 ]
B+ 0+ 0 slcc3—s1s2s3+ cls2c3+ clc2s3  —slc2s3—s1s2¢c3—cls2s3+clc2c3 0 s1(L2c2+ L1)+cls2L2
wl=3T=T ;T 23T =

0 0 1 0

i 0 0 0 1

« Using trigonometric identities to simplify VST , the solution to the forward
kinematics is:
__—~ Px
- ) _
Cios  —Sips 0 L1C1 + chlz

S C 0 Ls +Ls
(BT :OT — 123 123 . L 1 ZE‘
L R o | = %)

0 0O O 1

. were Ca=C0S(6,+0,+6,)  Sipy=5in(6,+6,+6;)




Inverse Kinematics - Planar RRR (3R) -
Algebraic Solution - 4/12

 Given:
— Direct Kinematics: The homogenous transformation from the base to the
wrist VST
— Goal Point Definition: For a planar manipulator, specifying the goal can be

accomplished by specifying three parameters: The position of the wrist in
space ( X, Y ) and the orientation of link 3 in the plane relative to the X axis

(¢)




Inverse Kinematics - Planar RRR (3R) -
Algebraic Solution - 5/12

* Problem:

What are the joint angles (4, 6,,6,) as a function of the wrist position and
orientation (X, Y,® )

« Solution:
« The goal in terms of position and orientation of the wrist expressed in terms of
the homogeneous transformation is defined

Qi,ezle?: i
ARIEAT @ ~S;,3 0 H:lJrchlj
BT _ 51 G 0 Yy BT 0T — @ Cis O {:51"‘ LS,
e 0 1 0N " 7 40 0 1 0
T 0 0 0 0 0 |

\,




Inverse Kinematics - Planar RRR (3R) -
Algebraic Solution - 6/12

B _ 0
WTGoaI _ 3T

A set of four nonlinear equations which must be solved for 6,,6,,6,

Cs =Cio3
Sy = Si23

{ x=1c +1lc,
y=Ls, +1,8,

Solving for 6,

If we square X and Y add them while making use of C;, =C,C, —S,S, iS;, =C,;S, + S,C,
we obtain

X2+ y =17+12 +2l1c,

—




Inverse Kinematics - Planar RRR (3R) -
Algebraic Solution - 6/12 (Continue)

x =1 +1,C, Cip = GG, =S5,
y=1s,+15s, S12 =G5, + 5,6,
T * T
= Ler 4 () + 2 L, C,C4L

\/7.: L S’-f L (342.) 42[[

X“)’ L (/ )-l-l. (n £41>+2[L (C, Cz”C/SZ-‘-%gl
L 1

— X4y =1I2+12+2llc

)




Inverse Kinematics - Planar RRR (3R) -
Algebraic Solution - 7/12

Solving for C, we obtain

Jx\ {

21,1,

Note: In order for a solution to exist, the right hand side must have a value
between -1 and 1. Physically if this constraints is not satisfied, then the goal
point is too far away for the manipulator to reach.

Assuming the goal is in the workspace, and making use of
we write an expression for S;as ¢ +s) =1 <—

—> 5, {H/1-¢c°

Note: The chose of the sign corresponds to the multiple solutions in which we
can choose the “elbow-up” or the “elbow-down” solution




Inverse Kinematics - Planar RRR (3R) -
Algebraic Solution - 8/12

Finally, we compute @, using the two argument arctangent function

L 2 2 12 2
6, = Atan2(s,,c,) = Atan2(x41-c2, > Y d I2)

211
\’~—JL 12




Inverse Kinematics - Planar RRR (3R) -
Algebraic Solution - 8/12

« Solving for

* For solving '1 we rewrite the original nonlinear equations using a change of
variables as follows

x=1Ic +1lc,
y= |131 + |2312

X= klcl - k251 ‘L l( )
=2 y= klsl + k2C1 i
e where

— k=l +1Lc,

— k,=Ls, T
T




Inverse Kinematics - Planar RRR (3R) -
&, Algebraic Solution - 8/12 (continue)

Geometrical E&grpretation
m

A

=,
T

— “1 3 |§l<£_,
N s, wo e (L ga) - s (L)
\eA
\ \Q4/L - 4 —;C(LZS>-"S(L"(£X

\/ X { T

'>L=L4<4"‘('4CIL = (, C 4( Cy (Z‘(qf

y = L, S 20, S “-(451 +LLC4 1*(7-5'51




Inverse Kinematics - Planar RRR (3R) -
Algebraic Solution - 9/12

Changing the way in which we write the constants K, and K,

r=+kf +k>

y = Atan2(k,, k)

Then
K, =rcosy
K, =rsiny




Inverse Kinematics - Planar RRR (3R) -
Algebraic Solution - 10/12

« Base on the previous two transformations the equations can be rewritten as

[ X =k,c, — ks, k, =rcosy x:rCOSycosﬁ—rsinysingL
y =kis; +K,C k, =rsiny y =rcos ysing, +rsiny cos 6,
e Or

X .

— =C0SyCoSE, —sinysing,

;

XZCOS)/Sin 6, +sin y cos 6,

;
« or X

—=Cos(y +6,)

r

y =sin(y +6,)

;




Inverse Kinematics - Planar RRR (3R) -
Algebraic Solution - 11/12

*  Using the two argument arctangent we finally get a solution for 6,

y+6 = AtanZ(%,%):m

By Definition _— » = Atan2(k,,k,) 3 C ;
—
—> ¢, = Atan2(y, x) — Atan2(k,, k)
T 14
k, =1, +1,c,
ky = 1, i, & a2
«  Note: 2 e L
p N\
(1) When a choice of a sign is made in the solution of g, (- A2, e.)- ama(efi-e L) ),
it will cause a sign change in k2 thus affecting 0, T
é 25 480
2) If X =Y =0 then the solyfion becomes undefined - in this case &, is arbitrary
4, = 180

All 4,-= ArLfbV'éY‘7




Inverse Kinematics - Planar RRR (3R) -
Algebraic Solution - 12/12

Solving for @,
Base on the original equations

C, = Cip3

Sy = Si23

We can solve for the sum of 4,,6,,6,
v v
6, + 06, +6,=Atan 2(s¢, c¢) =¢

i )
— 0,=¢-06,+0,

Note: It is typical with manipulators that have two or more links moving in a
plane that in the course of a solution, expressions for sum of joint angles arise




Inverse Kinematics - Planar RRR (3R) -
Geometric Solution - 1/5

« Given:
— Manipulator Geometry

— Goal Point Definition: The position X,Y and orientation ¢ of the wrist in
space

e Problem:

What are the joint angles ( ,,6,,6, ) as a function of the goal (wrist position and
orientation)




Inverse Kinematics - Planar RRR (3R) -
Geometric Solution - 2/5

Solution:

We can apply the law of cosines to solve

for 0, A 7.
r’ =x*+y*=1>+12-2l1, cos(180-6,)
Since
cos(180—-46,) = —cosé,
-—
We have

X2+ y? =17 —

211,

2
|2

C, =




Inverse Kinematics - Planar RRR (3R) -
Geometric Solution - 3/5

|2

X2+y2_|12_ 2

211,
i }/ 2

— 6, = Atan2(s,,C,)




Inverse Kinematics - Planar RRR (3R) -
Geometric Solution - 4/5

Note : Condition - Should be checked by
the computational algorithm to verify +
existence of solutions.

2 2
L+l >x"+y 1

Assuming that the solution exist it lies in
the range of

0° <6, <180°

The other possible solution may found by

symmetry to be




- 9
& Inverse Kinematics - Planar RRR (3R) - z{ﬁ{\
/N8B

Geometric Solution - 5/5

By definition - 0, <0
O=pty

\lﬁz >0

Defining £ as a function of X,y

£ =Atan2(y, x)

Applying the law of cosine to find

@*{“ (o
+ 2 2 2 2
A COSl//:x +y 4+ -1

L4 21,/ X% +y°
Note: 0% <y <180°

6, = [ty =Atan2(y,X) £ Atan 2(\/1—cos2 v ,COSy)




Inverse Kinematics - Planar RRR (3R) -
Geometric Solution - 6/5

Angle in the plane add up to define the
orientation of the last link

¢=0+06,+0,

v

|
0; =¢£{91 + 52)




Inverse Manipulator Kinematics (2/4)




Central Topic - Inverse Manipulator Kinematics -
Examples

» Geometric Solution - Concept
Decompose spatial geometry into several plane
geometry

Examples - Planar RRR (3R) manipulators -
Geometric Solution

« Algebraic Solution - Concept A

- .
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3AS \ 0 0 N-1
=S NIT =

e
\,\)‘Q.\S"é "Q-r 6

A 4“-—-4

Direct Kinematics Goal (Numeric values)

Examples - PUMA 560 - Algebraic Solution




Inverse Kinematics - Planar RRR (3R) -
Geometric Solution - 1/5

 Given:
— Manipulator Geometry

— Goal Point Definition: The position X,y and orientation ¢ of the wrist in
space

* Problem:

What are the joint angles ( 6,,6,,6, ) as a function of the goal (wrist position and
orientation)




Inverse Kinematics - Planar RRR (3R) -
Geometric Solution - 2/5

Solution:

« We can apply the law of cosines to solve

for 92

2
=
| - [

x> +y? =01+ -2l cos(180-6,)

1\
« Since

cos(180—-6,)=—cos 0,

« We have L L

x4y =L -

T




Inverse Kinematics - Planar RRR (3R) -
Geometric Solution - 3/5

(. Xy ==
§ ? 211,
\ s, =1/1-¢; = 5in"q, + cos' g,

0, = Atan 2(s,,c,)

T




Inverse Kinematics - Planar RRR (3R) -
Geometric Solution - 4/5

Note : Condition - Should be checked by
the computational algorithm to verify
existence of solutions.

L+1L>x"+y> < /
7

Assuming that the solution exist it Iies/n
the range of

0° <6, <180°
1 )

The other possible solution may found by
symmetry to be

(92 - _‘92
-




Inverse Kinematics - Planar RRR (3R) - P
Geometric Solution - 5/5 V

« By definition

Defining [ asa function of X,y

= Atan2(y,x)

« Applying the law of cosine to find

X+ =1

Cosy =
- 21 x°+ y2

Note: 0" <y <180° e




Inverse Kinematics - Planar RRR (3R) -
Geometric Solution - 6/5

Angle in the plane add up to define the
orientation of the last link

N 03 ! dz
¢:(91+(92+(93 \\)/—\; /QS

/77




Inverse Kinematics - PUMA 560 -
Algebraic Solution - 1/

 Given:
— Direct Kinematics: The homogenous transformation from the base to the
. B ]
wrist [T T
— Goal Point Definition: The position and orientation of the wrist in space




Inverse Kinematics - PUMA 560 -
Algebraic Solution - 2/

Problem:

What are the joint angles ( &, --- 6, ) as a function of the wrist position and
orientation ( or when 2T is given as numeric values)

\4 ”11”12?3@

= T(0) \T(0,) 7O @) T 7o) =|" D
By B Iy | P

N L N SO W B I -

?
W W
Direct Kinematics Goal




Inverse Kinematics - PUMA 560 -
Algebraic Solution - 3/

Solution (General Technique): Multiplying each side of the direct kinematics
equation by a an inverse transformation matrix for separating out variables in
search of solvable equation

Put the dependence on ¢ on the left hand side of the equation by multiplying
the direct kinematics eq. with [ST(6,)]"' gives

| ! L
[T@) T =[TO)]" \T(6)],T(6,) T©,) T8, T(6) T(6,) =
) a . 2 I b
[3T(6,(6,)0)]" T =[5T(0)] “T(8) ,T(6,) T(6)|,T(O,) T(6;) ;T(6,) L
e ——

[\7(6,,6,,6,,0)1" T =|[7(6,,6,,6,,6)1" \T(8) 1T(8,) *T(8,) (6, T@) iT(8,)

[X7(6,,0,,6,,6,,001" T [[T(6,,6,,0,,6,,001" T(8) (6, °T(8,) T(6,) ‘T(0.)|:T @)




Inverse Kinematics - PUMA 560 -
Algebraic Solution - 4/

« Put the dependence on &, on the left hand side of the equation by multiplying
the direct kinematics eq. with [17(9,)]"' gives

[T T =[TO)] T(6) ;T(6,) ST(8y) T(6,) ST(6) (T(6)




Inverse Kinematics - PUMA 560 -
Algebraic Solution - 5/

¢ s 0 0)n K #Ky P,
=5, ¢ 0 0l n n Py _ip
0 0 1 Ofrn n ny p, ’
0 0 0 IJJO0 0 0 I |




Inverse Kinematics - PUMA 560 -
Algebraic Solution - 6/

cd, —-s6, 0 0
7 0 0 1 0 1, C {C ]
_ = C5Cg — 848g] — 8538584,
) 56, —c6, 0 0 11 23 [C4C5Cq 456 23555¢
0 0 0 1 17"21 = —84C5Cg — €436,
(¢, —s0, 0 a, '731 = —823 [C4C5Cq — 5456] — C2385C,
2y _ s@, c6;, 0 0
T =
0 0 1 4 'rip = —ca3 [caCs S + 54Cq] + 5238556,
0 0 0 1 K ! ~ C]

[c0, -s0, 0 a i ha hs  Px "22 = 946586 ~ Cale)

= 833 [C4C5 86 + 84C6] + 335556,

Bow
N
Il

|
<=
D
|
o o
D
oS O = O
=
~
Il
oY
Nt
oY
)
oY
N
@
-
-
w
)

7"31 1"32 1”33 pz 1”"”13 = —Cg3C485 — S33Cs,

0 1
I P O} 00 0 1] -
’ s6;, c6; 0 0 T33 = $23C455 — C23Cs,
0 0 0 1
cd, -s6, 0 0 'Pe = ag¢s + agcoz — dysys,
= —fe —fe é 8 g Py =ds
0 ‘ 0 ‘ 0 1 |:> P, = —agSa3 — G385 — dycay.




Inverse Kinematics - PUMA 560 -
Algebraic Solution - 7/

_Cl s; 0 O“’”n ha N3 px_ f ?
E> =85 ¢ 0 0fn n K p, _Ip
=IT -
O 0 I O)n n n p, 9
0 00 1J0 0 0 1 L2oo 4
« Equating the (2,4) elements from both sides of the equation we have B

- /
\_Slpx—i_clpy_zgf‘\ 4
— ’ 1

» To solve the equation of this form we make the trigonometric substitution

y 7 :
p. = peos _
{py -~ psing VAL IS




Inverse Kinematics - PUMA 560 -
Algebraic Solution - 8/

¢=Atan2(p,,p,)

- Substituting p_, p, with p,¢ we obtain

C,S, —8,C s
1Pg — 91by —
o
» Using the difference of angles formula
: d
sin(¢—6,) ==

e,




Inverse Kinematics - PUMA 560 -
Algebraic Solution - 9/

« Basedon

e andso

* The solution for 6, may be written

—

sin’(¢—0,)+cos’(p—60,)=1 <=—

d2
— cos(p—6,) = /1 — ,0— A = Atan? ( P]zﬁ)

2 P - -
Qe — dtan2 & 1—d— 4
P D4

2
HI:AtanZ(py,px)—AtanZ[d l—dJ

2

P P

 Note: we have found two possible solutions for §, corresponding to the +/- sign




¢

Inverse Kinematics - PUMA 560 -
Algebraic Solution - 10/

« Equating the (1,4) element and (3,4) element

« We obtain

w

»
oY

»
5N

— v
)\ 4

¢ s 0 00K n, Ky p
=5, ¢ 0 Ofn n n p, _ip
0 0 1 O)n n n p, ’
0 0 0 1J0 O O 1|

S

CP,+ 8D, =a;Cy; —dySy + azcz_.)

f _ d
( — P, =045Cy; T d S, T a0, )
L )




Inverse Kinematics - PUMA 560 -
Algebraic Solution - 11/

« If we square the following equations and add the resulting equations

L
v () E> =8P, +¢p, =d;
3
( ) » C\pP, T8 P, =a5Cy3 —d s, +a,c,

2

( ) » — p. =a;8,, +d,c,s +a,5,
(Ly =25, c//[a F7 + | Sy Px
rey 42 5./() P,,—r cs [;q s:tLé,_
ARTANL Ses]-2d, 5.0 S

o - 203){sd‘tca5 +/2}2}a
Px'l + Pyz’ 4 Pz"' +2a}azc3 - 2qz dﬁ{
—> PVL + P ‘/‘L -




Inverse Kinematics - PUMA 560 -
Algebraic Solution - 11/ (Continue)

thfpyt“f sz’a:—dql—-azl '—OP-;Z

- a,c, - d. s,
204 .
W
ko
— —
Ad“°§c¢ ’}é’: 635515—5315




Inverse Kinematics - PUMA 560 -
Algebraic Solution - 11/ (Continue)

l<.

9‘5»93?—/\{%2 E)ié?—-\i

£
é*@}“—A{IW\L <[( z \rfl“kl )
O

?5'95 :Amv\‘{; L (\L T ‘\a;“d“‘z"kz >

<

e

FTay 4 dat =t

>}




Inverse Kinematics - PUMA 560 -
Algebraic Solution - 12/

we obtain

where
2 2 2 2 2 2 2
P, tp,tTp.—a, —a; —d; —a,
2a,

K

Note that the dependence on 0, has be removed. Moreover the eq. for g, is of
the same form as the eq. for o, and so may be solved by the same kind of
trigonometric substitution to yleld a solution for g,




Inverse Kinematics - PUMA 560 -
Algebraic Solution - 13/

\

l
b
—> | 6, = AtanZ(a3,d4)—Atan2(K@/a32 +d? —KZ)

/ \
DI &
) v

Note that the +/- sign leads to two different solution for o,




[T(6,(6,) 0] T =

CiCy3
T C1823
—s,
0

Inverse Kinematics - PUMA 560 -
Algebraic Solution - 14/

I/

[T(@)]"

\T(6) ,T(6,) 5T(6,)

$1C TS TAG | Ky
TS8S TG Sy (I Ip
¢ 0 —d; By

0 0 I |0 0

—_

» CiCos Py T 81C3 P, = Sy P, — ayC3 =

) ¢
¥

hs pﬂ
hy D,
s P
0 1

—_

C4CsCq — 8456
S5Cs
— §,C5Cs — C,S¢

0

Equating the (1,4) element and (2,4) element we obtain

J©@) T(65) T(0)

—C,Cs8c — S,Cs  —CySs
—_—
— 855 -c, d,
—
§,Cs8¢ —CCs 8,85 0
0 0 1
4. éy
/

» —CSpu Py TS8P, —CpP, T A8y = d,

* These equations may be solved simultaneously for s,,and Cy3 resulting in




Inverse Kinematics - PUMA 560 -
Algebraic Solution - 14/ (Continue)

G Su feu [apetsiey | - S [p2]) = assa e,
co [ P4 s [i/aws{flj‘._—dﬁaza;
A = (64'{);"' Scr)7)

a;*a:.( 3 - F‘L
! Q- 53 '0(\1 4«"3:4944 = (a’_a, +02¢4 )((' Px"' Sql)x\“’ PL (03§,-/’6,)

Cay = - - A
, C,\", +é4r7 Al +a<(;[
PL aL5)"0(‘1 (C’ng + 54 P)r )[Q353 ) lg/
. - 7
Sie © 4 4 %,

<—
)




Inverse Kinematics - PUMA 560 -
Algebraic Solution - 15/

(—a; —a,c,)p, +(c,p, +s,p,)Na,s,—d,)
p22 +(op, + Slpy)2

_ (a3 —d)p. —(—a; —a,c;) (¢ p, + $\p,)

pzz +(op, + Slpy)2

Sy3

Chs

Since the denominator are equal and positive, we solve for the sum of 6, and «93

as
@I‘g/«k 43 L
/-__> 0,, = Atan2[(-a; —a,c,)p. +(c,p, + Slpy)(a2S3 —d,),

(a3 —d,)p. —(—a;—a,c)(ep, +5,p,)] Q'z, <
The equation computes four values of @, according to the four possible \
combination of solutions for ¢ and 0,

Yoo

A

—

. o

I



O <

Inverse Kinematics - PUMA 560 -
Algebraic Solution - 16/

* Then, four possible solutions for g, are computed as

« Equating the (

CiCys §1C3

—CSy3 T 883

— S ¢
0 0
« we get

— 8

—Cy

0
0

)

—a,G,
a,S,

_d3

1

[> N3C1Co3 T 1938103 = Sy3l33 = —CySs

5N

‘92 = ‘923 _‘93

) and the (3,2) elements
—J

pxw | C4CsCs — 5456
P, | S5C6
p: —84CsC6 — €4S
1] | 0
b

— 138 T30 = 8,85

— C,C5Sg — 8,Cq t"c4s5 ) a,

— 8556
$,Cs8s — C4Cq

0

o
V%

5485

0

d,
0
1

o O



Inverse Kinematics - PUMA 560 -
Algebraic Solution - 17/

Aslong as s, # (0 we can solve for §,

/7

‘94 = Atan 2(—7;8, + 13, = F3C\Con — 13381Cy3 + 8y3133)

When 95 = 0 the manipulator is in a singular configuration in which joint axes
4 and 6 line up and cause the same motion of the last link of the robot. In this
case all that can be solved for is the sum or difference of 6, and O, . This
situation is detected by checking whether both arguments of Atan2 are near
zero. If so 6, is chosen arbitrary (usually chosen to be equal to the present
value of joint 4) and 6, is computed later, it will be computed accordingly




Inverse Kinematics - PUMA 560 -
Algebraic Solution - 18/

[ZT(619029€3994)]_1 2T:

» C\Cy3Cy T 515,
— 0538, + 8,4
— (1S3

0 0

85183

[.7(6,,6,,6:,0)1" "T(6) ,T(8,) ST(6;) T(6,)

$1€33C4 — Gy

81638, — GGy

\ 4
¥

=830, — a0 tdis,—ae, | By Ky T p,ﬂ
SuSy A0Sy tdie,—ass, |y Ky By P, _| e
Cys a,s; — d4 iy I hKy P, S5C6
0 1 1o o0 0 1] [0

« Equating the (1,3) and the (3,3) elements we get

. M3 (C1C03C, +818,) + 155 (81055¢4 = €,8,) =135 (83¢,) = =5

=S

« We can solve for

13(—€1853) + 13 (=8,8,3) + (=) = ¢4

2

0, = Atan2(ss,c5)

CsCs  —

— 858 @ 0
0 0

A;T(HS) 2T(t96)
¥

csSg (—53) O]
Co 0 0

L




Inverse Kinematics - PUMA 560 -
Algebraic Solution - 19/

[7(60,,6,,6,,0,,001" T 41°7(6,,6,,6,,6,,6)1" T(8) 1T(8,) °T(8,) T(6,) ‘T(6,)]:T @)

D A ad _

C1C23C4Cs  85154C5 = 81C23C4 S5 15485 $iCy ClCyCySs + 818,85 + 8103005 —C8,Cs —a,C3¢,+dys, —ase, | Ky, Ky P,

—CICp384Cs +S1C4Cs + 81038y 85 +C1Cy S5 T89Sy T CIC8Ss TS ICSs T SIC8,Cs —CICuCs AyC3S, T diCy —ayS, || Ty Ty Ty D,

» = C1853C5 + 815385 —Cy T C182385 T 815365 a,s;—d, By 1 s P
i 0 0 0 1 1o 0 0 1
\Z»UD —s, 0 0]

0 1 0
cSs) —¢ 0 0
0 0 0 1]

« Equating the (3,1) and the (1,1) elements we get
. 111(€1853C5 = 818385) + 75, (Cy3) + 73, (+€,8 385 + 8,53C5) = S

» 11 (€1C03C4C5 + 8184C5 = 810530485+ €18,85) + 151 (853C4) + 731 (€1C03C485 + 818,85 +.81C3€,C5 = €8,65) = Cg

« We can solve for O,

0, = Atan2(s,,c,)




Inverse Kinematics - PUMA 560 -
Algebraic Solution - 21/

«  Summary - Number of Solutions

d, d;
0, =Atan2(p,,p,)— Atan2| — £ [1-—
P P

o, :14‘[3112(513,51’4)—AtanZ(K,J_r\/a32 +d; —Kz)

* Four solution

« For each of the four solutions the wrist can be flipped
0, =06, +180°
0, = -0,
0, =0, +180°




Inverse Kinematics - PUMA 560 -
Algebraic Solution - 22/

After all eight solutions have been computed, some or all of them may have to
be discarded because of joint limit violations.

Of the remaining valid solutions, usually the one closest to the present
manipulator configuration is chosen.




Inverse Manipulator Kinematics (3/4)




Central Topic - Inverse Manipulator Kinematics -
Examples

« Geometric Solution - Concept
Decompose spatial geometry into several
plane geometry

Example - 3D - RRR (3R) manipulators -
Geometric Solution

« Algebraic Solution (closed form) -
‘Piepers Method - Last three consecutive
axes intersect at one point

Example - Puma 560 —




Inverse Kinematics - 3D RRR (3R) -
Geometric Solution - 1/

Given:
— Manipulator Geometry
— Goal Point Definition: The position x,,y,,z, of the wrist in space

AN iy i
+'
:
14

Problem:

What are the joint angles ( 6,,6,,6, ) as a function of the goal (wrist position and
orientation)




Inverse Kinematics - 3D RRR (3R) -
Geometric Solution - 2/

=\




Inverse Kinematics - 3D RRR (3R) -
Geometric Solution - 3/

* The planar geometry - top view of the robot

V —| 6 =Atan2(y,.x,)

—> 1 =X, + Y,




Inverse Kinematics - 3D RRR (3R) -
Geometric Solution - 4/




& Inverse Kinematics - 3D RRR (3R) - 160+~ }> .
Jd

Geometric Solution - 5/ / 7

o

Lo Q™

« The planar geometry - side view of the robot:

L1+L2

zd

A 70

e where




& Inverse Kinematics - 3D RRR (3R) -

Geometric Solution - 6/

By Apply the law of cosines we get

1wy =L +1L, —2LL,cos(180+8,) = L) + L; +2L,L, cos(8,)

— = 4} tq
Rearranging gives
2 L
_ B —(L+L) - 3

’ 2L,L,

and ) r
> C,+$, =1 2
s, =4/l =¢;

Solving for 4, we get

0, = Atan(++/1-c5,c;)
A

\
Where c;is defined above in terms of known parameters [, [, x,, y,,and z,




Inverse Kinematics - 3D RRR (3R) -
Geometric Solution - 8/

* Finally we need to solve for g,

0,=a+p
a = Atan2(z,r,)

* where 7’1:‘\/x§+y§ z=z,—(L+L,)




& Inverse Kinematics - 3D RRR (3R) -

Geometric Solution - 9/

Based on the law of cosines we can solve for £

=+ -2rL =

, =1 + L5 —2r,L;cos(f3) -
) ‘

CcC, = 5 t\l.{-—f T§

/ 2r,L, [ r

— PB= Atan2(i1/1—cz,cﬁ)

0, = Atan2(z, — (L, + L,),+/ x; +y§)+Atan2(i1/1—cz,cﬂ)
- ~ — ——

. p




¢

Inverse Kinematics - 3D RRR (3R) -
Geometric Solution - 10/

«  Summary

0, = Atan2(y,,x,)

Xd

Yy 4

Z4d

0, =Atan2(z, — (L, + L,), /x> +y> )+

2
2 2 _ 2 2 2 2 2 _ 2 2 g2
Atan2(i\/1[xd+yd+(zd (L1+L2)) + L L4} xd+yd+(zd (L1+L2)) + L L4)

2\/)65 +y§ +(z, — (L +L2)L3)2 ’ 2\/)65 +y§ +(z, — (L +L2)L3)2

K 0, = Atan(i\/l—{

2
X4y +(z, — (L + L)) — (L2 +Lj)} X4y +(z, — (L + L)) = (L2 +Lj))

2L, 2L,L,




Inverse Kinematics -
Generalized Algebraic (Analytical) Solutions — Case 1-7




Inverse Kinematics -
Generalized Algebraic (Analytical) Solutions — Case 1

Equation sinf=a ae[-1,1]

cos@=b bel-1,1]

Solution (Unique) 6 = Atan2(a,b)




Inverse Kinematics -
Generalized Algebraic (Analytical) Solutions — Case 2

Equation sinf=a ae[-1,1]

cos@ =+\1-a’

Soluti
oHHen 0= Atan 2(a,+\1—a?)
— Two Solutions 91 _9
6,=180-0

— Singularity at the Boundary

When 6=190°, |a|=1

cos@=b ae[-1,1]

sin @ = ++/1- b’

0 = Atan2(x/1-b",b)

6,=0
6,=-0

When 6=0°,180°, |b/=1




Inverse Kinematics -
Generalized Algebraic (Analytical) Solutions — Case 3

Equation a(cos@)+b(sind) =0
sind a
cosd b

Solution

— Two Solutions 180° apart

0 = Atan2(a,—b)
0 = Atan2(—a,b)

— Singularity b=0




Inverse Kinematics -
Generalized Algebraic (Analytical) Solutions — Case 4

« Equation .
a(cos@)+b(sinh) =c

a,b,c#0

« Solution
— Two Solutions

0= Atan2(=Na’ +b> —c?,c) + Atan2(b,a) <—
—

— For a solution to exist at+b>—cr>0 &\E
— No solution (outside of the workspace) 42 +p% —¢c? <0 ﬁ\/

— One solution (singularity) a’+b°—c*=0




¢

Inverse Kinematics -
Generalized Algebraic (Analytical) Solutions — Case 4

{ Cl;- j;» sing

Coscf CoSo + Saki) c0s) = —

/_%
Cosd

>

A cosg+b¢ing- <

a,b ¢ >o

g =

g Atan2(5, )

c

2! <
Q-#: A'ljak?_([‘;‘~f_ )
LIRS
| Vah”
= Ak a ¢t
A (L \I o :e-b‘: l‘o\;-e'o")

8 = Atan2 (t \;Qz‘fl.)z%z < ) +

At&l«.2<bic‘.>

"

8




Inverse Kinematics -
Generalized Algebraic (Analytical) Solutions — Case 4




Inverse Kinematics -
Generalized Algebraic (Analytical) Solutions — Case 5

-« Equation sinfsing =a
cos@sing =b
*  Solution — 0= Atan2(a,b) if sing 1s positive

— @ = Atan2(—a,—b) 1if singisnegative




Inverse Kinematics -
Generalized Algebraic (Analytical) Solutions — Case 6

+ Equation acosO+csinf =d Cos ¢ st d
ecosf@+ fsinf=g

«  Solution 0 = Atan2(ag —de,df —cg)
— For an exiting solution (the determinant must be positive)

A= af —ce>0




Algebraic Solution by Reduction to Polynomial
£asC -]

Transcendental equations are difficult to solve because they are a function of

cl,so
f(cO,s0)=k

Making the following substitutions yields an expression in terms of a single
veritable u , Using this substitutions, transcendental equation are converted
into polynomial equation

u =tan—
1—u?
cosf = 5
1+u
. 2u
sin @ =




& Algebraic Solution by Reduction to Polynomial - Example

 Transcendental equation

acO+bsl =c

« Substitute c@,s6 with the following equations

1—u’
cos@ = 5
1+u
sin @ = 2u2
1+u

* vyields
a(l—u’)+2bu =c(1+u?)

(a+c)u’=2bu+(c—a)=0




Algebraic Solution by Reduction to Polynomial - Example

«  Which is solved by the quadratic formula to be

u_bi\/bz—az—c2
a+c
bi\/bz—azz—c2

— @=2tan"

a+c

* Note

— If U is complex there is no real solution to the original transcendental
equation

- If g+c¢=0 then =180’




Solvability

Robot - 6 DOF

Single Series Chain
Revolute & Prismatic Joints

Close Form Solution
Sufficient Condition
Three adjacent axes

(rotary or prismatic)
must intersect

A 4

"\

<ReaI-Time

N




Pieper’s Solution - Three consecutive Axes Intersect

Pieper’s Solution - Closed form solution for a serial 6 DOF in which three
consecutive axes intersect at a point (including robots with three consecutive
parallel axes, since they meet at a point at infinity)

Pieper’'s method applies to the majority of commercially available industrial
robots

Example: (Puma 560)

— All 6 joints are revolute joints
— The last 3 joints are intersecting




Pieper’s Solution - Three consecutive Axes Intersect

« Given:

— Manipulator Geometry: 6 DOF & DH parameters
Al 6 joints are revolute joints
» The last 3 joints are intersecting

— Goal Point Definition: The position and orientation of the wrist in space

] /_‘f
hy hy Nhs| P

X

i T 3P,
B T )| Py

0O 0 0 1

 Problem: (V)
What are the joint angles ( 6,,0,,0.,6,,0.,0, ) as a function of the goal (wrist

position and orientation) L._//_k"

T -




Pieper’s Solution - Three consecutive Axes Intersect

When the last three axes of a 6 DOF robot intersect, the origins of link frame {4},

{5}, and {6} are all located at the point of intersection. This point is given in the
base coordinate system as

 —

0 01 3
2~ Blorg — 1TZTV
| =

"

From the general forward kinematics method for determining homogeneous
transforms using DH parameters, we know:

i-1 i-1
iR Borg
7 C@ —S@ 0 a;
N\ sbca,; cOca,, —so||-sa,_d,

\ |sOsa_, cOsa_, ca_ || ca_d,

— 1

4 0 0 0 1




& Pieper’s Solution - Three consecutive Axes Intersect

o F i=4
ori SR 3})40rg v
I — 50, 0 a,

sO,sa, cO,sa, ca, || cad,
0

0

* Using the fourth column and substituting for 3P4,0rg we find

/\ a, _ﬁ((93)_
FP _O 72 3?, _Og g2 ](2(‘93)
4 {r QTZT' 4org 1 2T3T fg((%)

or,
S

\/ 1 1




& Pieper’s Solution - Three consecutive Axes Intersect

where _f1(93)_ a,
f2(93) =2T _Sa3d4
f3(65) : cayd,
Rl
_]”1(03)_ i co, - 56, 0 a, Nl a, |

1,(6,) sO,ca, cbyca, —sa, —sa,d,|—-sayd,
15(6,) s, sa, cO;sa, ca, cad, | cad,
1 0 0 0 1 1

fl(‘93) = as¢; +dsonsy +a,
£,(6,)=aca,s,—dsaca,c,—d,soca,—dsa,
£.(0,)=aysa,s, —d,sasa,c, +d,ca,ca, +d,ca,
—
T




& Pieper’s Solution - Three consecutive Axes Intersect

_gl(‘gz)_
2,(6,) B

g(0,)

:g1(92)_

g,(0,)
g,(6,)

L

1,(65)

13(65)
|

co,

56, ca,

50, s,
0

£1(6))]

Repeating the same process again

40rg 1T2T'2'!T'3])40rg ?T2T

— 50,
cO,ca,
cO,sa,

0

—sa,

 £1(6)) ]

1>(65)

13(6)
1

ca,

a,

-sa,d,

ca,d,

| @]

12(6)
13(65)




& Pieper’s Solution - Three consecutive Axes Intersect

‘*3 gl(‘gz)zczfl‘l'szfz"'al
( gz( 2)=S2S0(1f1+Czca1f2—SOllf3—d2S051
&3 (‘92): s,sa fi+e,sa f,+ca fi+dca,

_J

* Repeating the same process for the last time

_g1(‘92)_
g,(0,)
0})40rg :(iT;T%TV?Rlorg :OIT g, (92)
L 1 —
| ct, — 50, 0 a, __gl(92)_

0 sO,ca, cOca, —-sa, —sayd, | g,(0,)
})401”g:

s6,sa, cOsa, co, cad, | g6,
0 0 0 1 1




Pieper’s Solution - Three consecutive Axes Intersect

Frame {0} - The frame attached to the base of the robot or link O called frame
{0} This frame does not move and for the problem of arm kinematics can be
considered as the reference frame.

Assign {0} to match {1} when the first joint veritable is zero
LY 0+#0 o,=d =a,=0
\ } 1 0 1 0 N )
co, — 56, 0 4, g,(6,)

s6ca, cbca, —-sa, —sad, | g,(006,)

0
Fiorg = s@sa, cOsa, ca, cad | g0,
0 0 0 T
8 =518, +—1 \'Lq_
~> op _ 5,8 +¢8, — ) 7

1




Pieper’s Solution - Three consecutive Axes Intersect

Through algebraic manipulation of these equations, we can solve for the desired
joint angles ( 6,0,,0, ).

The first step is to square the magnitude of the distance from the frame {0}
origin to frame {4} origin.

w
2 (0;) )2 (op )2 (OP )2 2 2 2 T
~— ' = 4orgx T 4orgy + 4orgz ) 81 + &2 + gi (/
x*t + \/ : + z* —

Py *

Using the previously define function for g, we have

=14 il firal +di +2d,f, +alc, f, -5, 1)




Pieper’s Solution - Three consecutive Axes Intersect

N I”2=f12+fzz+f32+a12+d22+2d2f3+a1(02f1_szf2)
U{A —(Z="P

dorgz — 83 = s,sa, fi+esa f, +ca, f;+dyca
— — ] 1 J

Applying a substitution of temporary variables, we can write the magnitude
squared term along with the z-componen{ of the {0} frame origin to the {4} frame
origin distance. 0

/——/\ k=,
]/‘2 = (k1C2 + k2S2 )Zal + k3 k2 = _f‘2
A RO PO
V\/\———/

‘ k, = fica, +d,cq,
0
These equations are useful because dependence on @ has been eliminated,

and dependence on ¢, takes a simple form




Pieper’s Solution - Three consecutive Axes Intersect

« Consider 3 cases while solving for & : ¥,y
—_
- Casel1- g, =0 ‘//3:\/
[
- r’ =k,

ky=f+fl+f+a' +d; +2d,f,

(6,)=a,c, +d,sa,s, +a,
£,(6,)=aca,s,—dsaca,c,—d,soca, —dsa,

£(0,)=aysa,s, —d,sasa,c, +d,ca,ca, +dca,
—

« Solution Methodology - Reduction to Ploynomial => Quadratic Equation

. 2
u:tang cosé?:1 “ sin@ = 2u

2 2
e —_

1+u l+u




Pieper’s Solution - Three consecutive Axes Intersect

« Case2- so,=0 ®=0

@) =a,sa,s, —d,sasa,c, +d,co,ca,+dsca,
*
« Solution Methodology - Reduction to Ploynomial => Quadratic Equation

. 2
u:tang 0050:1 u2 sin@ = 2u2
2 1+u

l+u




& Pieper’s Solution - Three consecutive Axes Intersect

« Case 3 (General case) : We can find 6, through the following algebraic

manipulation:
r*—k oo
s = (ke, +k,s,) |
—+ 2611 I I ™
( £k = (k1S2 _kzcz) )
sa,

« squaring both sides, we find

2 _ 2
(r 2ak3j = (klc2 +k,s, )2 = kfcz2 + k225§ +2kk,c,s,
1

2
(ZS_Otk4 j - (k1S2 —kyc, )2 = k12S22 + k22622 —2kkyc,5,
1




Pieper’s Solution - Three consecutive Axes Intersect

« Adding these two equations together and simplifying using the trigonometry
identity (Reduction to Ploynomial), we find a fourth order equation for o,

2 kY (z-k Y
2a, sa

T
ﬁ:fl
k2=—f2

ky= 1+ f+f+a +d:+2d,f,
k,= fica, +d,cq,

f1(93) =asc, +dsonsy +a,
£,(6,)=a,ca,s, —d,saca,c, —dsaco, —dsa,
10

)=asa,s, —d,saso,c, +d,coca, +dca,




& Pieper’s Solution - Three consecutive Axes Intersect

+ With @, solved, substitute into 7%, Z to find 6, v
—

Z = ks, —kyc,)sa, +k,
/

{ r* = (kc, +kys, 2a, +k,

klzfl

ky= 2+ fi+ fi +al +di +2d,f,

k,= fica, +d,ca,

f1(93) =a,c; +dsays, +a,

£,(6,)=aca,s, —dsacac,—dsa,ca, —dsa,

£(68,)=asa,s, —d,sasac, +d,ca,ca, +dca,




Pieper’s Solution - Three consecutive Axes Intersect

* With 6,,0; solved, substitute into °P,  to find

L
G881 758>
op  _ 5181 TC1&,
dorg g
3
L 1 —
0
X < P40rgx :Clgl_SIgZ 41

0 —

g(0,)=crf, +5, /5 +a, k_\ f1(93):a3c3+d45a353+a2
2,(0,)=s,s50a,f, +c,car fy —sa, f, —dysay £,(6,)=aca,s, —d,sacac,—d,saca, —dsa,

g,(0,)=s,5a, /i +eysa f; +ca f, +dyca £(0,)=asa,s, —d,sasa,c,+d,coca, +dca,

 Solve for g using the reduction to polynomial method




Pieper’s Solution - Three consecutive Axes Intersect

 To complete our solution we need to solve for @,,0.,0,
—J

« Since the last three axes intersect these joint angle affect the orientation of only
the last link. We can compute them based only upon the rotation portion of the
specified goal g R

G«,q}_(’€3
/

v
. fR‘ 0,0 - The orientation of link frame {4} relative to the base frame {0} when

—  6,=0

+0,,0,,0, are the Euler angles applied to g‘R‘@FO




Inverse Manipulator Kinematics (4/4)
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Central Topic - Inverse Manipulator Kinematics -
Examples

« Algebraic Solution (closed form) - Piepers Method (Continue) - Last three
consecutive axes intersect at one point

« Consider a 3 DOF (wrist) non-planar robot whose axes all intersect at a point.




Mapping - Rotated Frames - Z-Y-Z Euler Angles

N

Start with frame {4}.

* Rotate frame {4} about 24 by an angle o

« Rotate frame {4} about YAby an angle [ } Euler Angles .

* Rotate frame {4} about Z,by an angle Y

Note - Each rotation is preformed about an axis of the moving reference frame
{4}, rather then a fixed reference.
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Mapping - Rotated Frames - X-Y-Z Euler Angles

R,y (a,B,7) =R, ()R, (LR, (y) =

—2 R,y (a,B,7)=

—
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Three consecutive Axes Intersect - wrist

| b
n, T, Ti| |cacBey-sasy —cacPsy—sacy (casp
By Iy by |=|sacfcy+casy —sacfsy+cacy (sasf
By Iy | | —spcy ;S,BS7/> @
% \
32
Goal Y Direct Kinematics
[ ' |




Three consecutive Axes Intersect - wrist

« Solve for(ﬂ) using element 75, 75;, 753

gﬂz (ca2 + S0[2)

1

2 2
By 15, =

!
=P

2 2
SP =x\r, +1,

» Using the Atan2 function, we find

B = AtanZ(i 75+ 75 s r33)

—




Three consecutive Axes Intersect - wrist

« Solve for o using elements r,,,7,;
| I—

l

"3 :tc_(jfsﬂ

Vyy = fgsf

o = Atan2(r, / sf, 7,/ sf5)
T 7




& Three consecutive Axes Intersect - wrist

- Solvefor 7 using elements r,,,7;,

|
&Y :S,BSVL

1y =—spcy

y = A‘[an2(r32 /sfB,—ry, /S,b’)
T f




Three consecutive Axes Intersect - wrist

« Note: Two answers exist for angle £ which will result in two answers each for
angles @ and 7 .

P = AtanZ(i NS r33)

o =Atan2(r, /s, 1,/ sf)

y = Atan2(r,, / sp,—r,, / s3)
T

+ If B=0°,8=180°= 5B =0 thesolution degenerates

l——/"_—'l—___J




Three consecutive Axes Intersect - wrist
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_c(a +v) —s(a+y) 0
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731 T 3| | —spcy spsy cf |
p=0°

/
(1, 1, 1| |cacy—-sasy —casy—sacy O]
ry, Fy by |=|sacy+casy —sasy+cacy 0 s(a+y)
o T s | 0 0 Iy [ 0

cla+y)
0

0
1

We are left with (7/ + a) for every case. This means we can't solve for either,

just their difference.




& Three consecutive Axes Intersect - wrist

« One possible convention is to choose ¢ =(°

« The solution can be calculated to be ( Q

D)

£=0 £ =180

y = AtanZ(— iy 1 ) = Atan2(s7/, cy) y = Atan2(r12 —T ) = AtanZ(sy/, 07/)

— ‘N




Three consecutive Axes Intersect - wrist

« For this example, the singular case results in the capability for self-rotation.
That is, the middle link can rotate while the end effector’s orientation never
changes.

T

..




Gimbal Lock

Normal situation Gimbal lock:

The three gimbals are independent Two out of the three gimbals are in the
same plane, one degree of freedom is lost

Instructor: Jacob Rosen
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA UCLA


http://youtu.be/zc8b2Jo7mno

Gimbal Lock — Robotics

* Inrobotics, gimbal lock is commonly referred to as "wrist flip", due to the use of
a "triple-roll wrist" in robotic arms, where three axes of the wrist, controlling yaw,
pitch, and roll, all pass through a common point.

 An example of a wrist flip, also called a wrist singularity, is when the path
through which the robot is traveling causes the first and third axes of the robot's
wrist to line up. The second wrist axis then attempts to spin 180° in zero time to
maintain the orientation of the end effector. The result of a singularity can be
quite dramatic and can have adverse effects on the robot arm, the end effector,
and the process.

« The importance of non-singularities in robotics has led the American National
Standard for Industrial Robots and Robot Systems — Safety Requirements to
define it as "a condition caused by the collinear alignment of two or more robot
axes resulting in unpredictable robot motion and velocities".

Instructor: Jacob Rosen
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