
Inverse Manipulator Kinematics (1/3) 

Instructor: Jacob Rosen Ph.D. 

Models of Robot Manipulation – CE 215 - Department of Computer Engineering 



Direct Versus Inverse Kinematics 

Direct (Forward) Kinematics  

 

Given:      Joint angles and links geometry 

Compute: Position and orientation of the end 

                 effector relative to the base frame 

 

 

Inverse Kinematics  

 

Given:       Position and orientation of the end  

                 effector relative to the base frame 

Compute: All possible sets of joint angles and 

                 links geometry which could be 

                 used to attain the given position and 

                 orientation of the end effetor  
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Central Topic - Inverse Manipulator Kinematics - 

Examples 

•  Geometric Solution - Concept 

      Decompose spatial geometry into several plane 

      geometry     

      

     Examples  -  Planar RRR (3R) manipulators - 

      Geometric Solution 

                 

•   Algebraic Solution - Concept 

 

 

 

 

 

 

        Examples - PUMA 560 - Algebraic Solution  
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Solvability - PUMA 560 

Given : PUMA 560 - 6 DOF, 

 

Solve:  

 

 

 

 

 

 

 

 

 

Total Number of Equations: 12 

 

Independent Equations: 3 - Rotation Matrix 

                                      3 - Position Vector 

Type of Equations: Non-linear 
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Solvability 

 

 

• Existence of Solutions 

 

• Multiple Solutions  

 

• Method of solutions  

 

– Close form solution 

• Algebraic solution  

• Geometric solution 

 

– Numerical solutions 
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Solvability - Existence of Solution 

• For a solution to exist,       must be in the workspace of the manipulator 

 

• Workspace - Definitions 

 

– Dexterous Workspace (DW): The subset of space in which the robot end 

effector can reach all orientation.  

 

– Reachable Workspace (RW): The subset of space in which the robot end 

effector can reach in at least 1 orientation  

 

• The Dexterous Workspace is a subset of the Reachable Workspace   
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Solvability - Existence of Solution - Workspace - 2R  

Example 1 -  21 LL 

Reachable 

Workspace 

Dexterous 

Workspace 
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Solvability - Existence of Solution - Workspace - 2R  

Example 2 -  21 LL 

Reachable 

Workspace 

NO Dexterous 

Workspace 
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Solvability - Existence of Solution - Workspace - 3R  

Example 3 -  21 LL 

Reachable 

Workspace 

& 

Dexterous 

Workspace 

End Effector 

Rotation  
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Solvability - Multiple Solutions 

• Multiple solutions are a common 

problem that can occur when solving 

inverse kinematics because the 

system has to be able to chose one  

 

• The number of solutions depends on 

the number of joints in the 

manipulator but is also a function of 

the links parameters   

 

• Example: The PUMA 560 can reach 

certain goals with 8 different 

(solutions) arm configurations 

– Four solutions are depicted  

– Four solutions are related to a 

“flipped” wrist 
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Solvability - Multiple Solutions 

• Problem: The fact that a manipulator 

has multiple multiple solutions may 

cause problems because the system 

has to be able to choose one 

 

• Solution: Decision criteria  

– The closest (geometrically) - 

minimizing the amount that each 

joint is required to move  

• Note 1: input argument - 

present position of the 

manipulator 

• Note 2: Joint Weight - 

Moving small joints (wrist) 

instead of moving large 

joints (Shoulder & Elbow) 

– Obstacles exist in the workspace 

- avoiding collision   
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Solvability - Multiple Solutions - Number of Solutions 

• Task Definition - Position the end 

effector in a specific point in the 

plane (2D)  

 

• No. of DOF  = No. of DOF of the task 

 

Number of solution: 2  

(elbow up/down) 

 

 

• No. of DOF  > No. of DOF of the task 

 

Number of solution:  

Self Motion - The robot can be 

moved without moving the the end 

effector from the goal 
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Solvability - Methods of Solutions 

• Solution (Inverse Kinematics)- A “solution” is the set of joint variables 

associated with an end effector’s desired position and orientation.   

 

• No general algorithms that lead to the solution of inverse kinematic equations. 

 

• Solution Strategies 

 

– Closed form Solutions - An analytic expression includes all solution sets.   

• Algebraic Solution - Trigonometric (Nonlinear) equations  

• Geometric Solution -  Reduces the larger problem to a series of plane 

geometry problems.   

 

– Numerical Solutions - Iterative solutions will not be considered in this 

course. 
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Solvability 

Robot - 6 DOF  

Single Series Chain 
Revolute & Prismatic Joints  

 

Analytic Solution   

  

 

Numeric Solution   

  

Close Form Solution 
 Sufficient Condition   

Three adjacent axes  

(rotary or prismatic)  

must intersect  

Industrial 

Robots 

Real-Time 
Non 

Real-Time 
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Iterations 

  



Mathematical Equations  

• Law of Sinus / Cosines - For a general triangle 

 

 

 

 

 

 

 

 

 

 

• Sum of Angles  
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Inverse Kinematics - Planar RRR (3R) -  

Algebraic Solution - 1/12  

 

03 L
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Inverse Kinematics - Planar RRR (3R) -  

Algebraic Solution - 2/12  
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Inverse Kinematics - Planar RRR (3R) -  

Algebraic Solution - 3/12  

 

 

 

 

 

• Using trigonometric identities to simplify       ,  the solution to the forward 

kinematics is: 

 

 

 

 

 

 

 

• were 
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Inverse Kinematics - Planar RRR (3R) -  

Algebraic Solution - 4/12  

• Given: 

– Direct Kinematics: The homogenous transformation from the base to the 

wrist  

– Goal Point Definition: For a planar manipulator, specifying the goal can be 

accomplished by specifying three parameters: The position of the wrist in 

space (         ) and the orientation of link 3 in the plane relative to the     axis  

(    ) 
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Inverse Kinematics - Planar RRR (3R) -  

Algebraic Solution - 5/12  

• Problem: 

     What are the joint angles (              ) as a function of the wrist position and 

orientation (             ) 

 

• Solution: 

• The goal in terms of position and orientation of the wrist expressed in terms of 

the homogeneous transformation is defined as follows   
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Inverse Kinematics - Planar RRR (3R) -  

Algebraic Solution - 6/12  

 

 

• A set of four nonlinear equations which must be solved for   

 

 

 

 

 

 

• Solving for 

• If we square     and     add them while making use of                            ;  

      we obtain 
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Inverse Kinematics - Planar RRR (3R) -  

Algebraic Solution - 6/12 (Continue) 
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Inverse Kinematics - Planar RRR (3R) -  

Algebraic Solution - 7/12  

• Solving for       we obtain 

 

 

 

 

• Note: In order for a solution to exist, the right hand side must have a value 

between -1 and 1. Physically if this constraints is not satisfied, then the goal 

point is too far away for the manipulator to reach.  

 

• Assuming the goal is in the workspace, and making use of 

      we write an expression for      as 

 

 

 

• Note: The chose of the sign corresponds to the multiple solutions in which we 

can choose the “elbow-up” or the “elbow-down” solution  
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Inverse Kinematics - Planar RRR (3R) -  

Algebraic Solution - 8/12  

 

• Finally, we compute         using the two argument arctangent function 
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Inverse Kinematics - Planar RRR (3R) -  

Algebraic Solution - 8/12  

• Solving for 

• For solving      we rewrite the original nonlinear equations using a change of 

variables as follows 

 

 

 

 

 

 

 

• where    
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Inverse Kinematics - Planar RRR (3R) -  

Algebraic Solution - 8/12 (continue)  

• Geometrical Interpretation  
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Inverse Kinematics - Planar RRR (3R) -  

Algebraic Solution - 9/12  

• Changing the way in which we write the constants      and 
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Inverse Kinematics - Planar RRR (3R) -  

Algebraic Solution - 10/12  

• Base on the previous two transformations the equations can be rewritten as 

 

 

 

 

• or 
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Inverse Kinematics - Planar RRR (3R) -  

Algebraic Solution - 11/12  

• Using the two argument arctangent we finally get a solution for 

 

 

 

 

 

 

 

• Note: 

  

 (1) When a choice of a sign is made in the solution of      (                                             ),  

            it will cause a sign change in     thus affecting 

  

 (2) If                    then the solution becomes undefined - in this case     is arbitrary  

1

),(2tan),(2tan1 xyA
r

x

r

y
A 

),(2tan),(2tan 121 kkAxyA 

222

2211

slk

cllk





1
2

2k

0 yx 1

),(2tan 12 kkABy Definition  

Instructor: Jacob Rosen Ph.D. 

Models of Robot Manipulation – CE 215 - Department of Computer Engineering 

  )
2

,1(2tanc,sAtan2
21

2

2

2

1

22
2

2222
ll

llyx
cA






Inverse Kinematics - Planar RRR (3R) -  

Algebraic Solution - 12/12  

• Solving for 

 

• Base on the original equations 

 

 

 

 

 

• We can solve for the sum of 

 

 

 

 

• Note: It is typical with manipulators that have two or more links moving in a 

plane that in the course of a solution, expressions for sum of joint angles arise  
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Inverse Kinematics - Planar RRR (3R) -  

Geometric Solution - 1/5 

• Given: 

– Manipulator Geometry 

– Goal Point Definition: The position            and orientation       of the wrist in 

space 

• Problem: 

     What are the joint angles (                 ) as a function of the goal (wrist position and 

orientation) 
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Inverse Kinematics - Planar RRR (3R) -  

Geometric Solution - 2/5 

• Solution: 

 

• We can apply the law of cosines to solve 

for 

 

 

 

• Since   

 

 

 

• We have  
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Inverse Kinematics - Planar RRR (3R) -  

Geometric Solution - 3/5 
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Inverse Kinematics - Planar RRR (3R) -  

Geometric Solution - 4/5 

• Note : Condition - Should be checked by 

the computational algorithm to verify 

existence of solutions. 

 

 

 

• Assuming that the solution exist it lies in 

the range of  
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Inverse Kinematics - Planar RRR (3R) -  

Geometric Solution - 5/5 

• By definition 

 

 

 

• Defining      as a function of  x,y 

 
 

• Applying the law of cosine to find 

 

 

 

 

• Note:     
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Inverse Kinematics - Planar RRR (3R) -  

Geometric Solution - 6/5 

• Angle in the plane add up to define the 

orientation of the last link 

213  
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Inverse Manipulator Kinematics (2/4)Inverse Manipulator Kinematics (2/4)

Models of Robot Manipulation - EE 543 - Department of Electrical Engineering - University of Washington



Central Topic - Inverse Manipulator Kinematics -
ExamplesExamples

• Geometric Solution - Concept
Decompose spatial geometry into several plane
geometry    

Examples - Planar RRR (3R) manipulators -
G t i S l tiGeometric Solution

• Algebraic Solution - Concept
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Inverse Kinematics - Planar RRR (3R) -
Geometric Solution - 1/5Geometric Solution 1/5

• Given:
– Manipulator Geometry
– Goal Point Definition: The position            and orientation       of the wrist in 

space
• Problem:

What are the joint angles ( ) as a function of the goal (wrist position and

yx,

θθθ

φ

What are the joint angles (                 ) as a function of the goal (wrist position and 
orientation)
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Inverse Kinematics - Planar RRR (3R) -
Geometric Solution - 2/5Geometric Solution 2/5

• Solution:

• We can apply the law of cosines to solve 
for
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Inverse Kinematics - Planar RRR (3R) -
Geometric Solution - 3/5Geometric Solution 3/5
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Inverse Kinematics - Planar RRR (3R) -
Geometric Solution - 4/5Geometric Solution 4/5

• Note : Condition - Should be checked by 
the computational algorithm to verify 

i f l iexistence of solutions.

22
21 yxll +≥+

• Assuming that the solution exist it lies in 
the range of 
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• The other possible solution may found by 
symmetry to be
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Inverse Kinematics - Planar RRR (3R) -
Geometric Solution - 5/5Geometric Solution 5/5

• By definition

ψβθ ±=1
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• Defining      as a function of  x,y
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Inverse Kinematics - Planar RRR (3R) -
Geometric Solution - 6/5Geometric Solution 6/5

• Angle in the plane add up to define the 
orientation of the last link

321 θθθφ ++=
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Inverse Kinematics - PUMA 560 -
Algebraic Solution - 1/Algebraic Solution 1/

• Given:
– Direct Kinematics: The homogenous transformation from the base to the 

wrist
– Goal Point Definition: The position and orientation of the wrist in space

TBW
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Inverse Kinematics - PUMA 560 -
Algebraic Solution - 2/Algebraic Solution 2/

• Problem:
What are the joint angles (             ) as a function of the wrist position and 61 θθ L
orientation ( or when         is given as numeric values)
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Inverse Kinematics - PUMA 560 -
Algebraic Solution - 3/Algebraic Solution 3/

• Solution (General Technique): Multiplying each side of the direct kinematics 
equation by a an inverse transformation matrix for separating out variables in 

h f l bl isearch of solvable equation 

• Put the dependence on       on the left hand side of the equation by multiplying 
the direct kinematics eq.  with                  gives    1
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Inverse Kinematics - PUMA 560 -
Algebraic Solution - 4/Algebraic Solution 4/

• Put the dependence on       on the left hand side of the equation by multiplying 
the direct kinematics eq.  with                  gives    1
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• Equating the (2 4) elements from both sides of the equation we have

pz333231

10001000
000

⎥
⎥

⎦
⎢
⎢

⎣
⎥
⎥

⎦
⎢
⎢
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Equating the (2,4) elements from both sides of the equation we have

311 dpcps yx =+−

• To solve the equation of this form we make the trigonometric substitution 

φρ
φρ

sin
cos

=
=x

p
p

φρ sinyp
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22 pp +=ρ

S b tit ti ith bt i

),(2tan yx

yx

ppA

pp

=

+=

φ

ρ

φ• Substituting             with          we obtainyx pp , φρ ,

ρφφ
3

11
dcssc =−

• Using the difference of angles formula       

ρ

ρ
θφ 3

1)sin( d
=−
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• Based on 1)(cos)(sin 1
2

1
2 =−+− θφθφ

• and so
2

2
3

1 1)cos(
ρ

θφ d
−±=−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−±=− 2

2
33

1 1,2tan
ρρ

θφ ddA

• The solution for       may be written

⎟
⎞

⎜
⎛

±
2
33 12t)(2tθ ddAA

1θ

• Note: we have found two possible solutions for    corresponding to the +/- sign  

⎟
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⎜
⎜
⎝
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ρρ

θ AppA xy

1θ
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• Equating the (1,4) element and (3,4) element
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• We obtain
2223423311 casdcapspc yx +−=+

casdcap ++=− 22234233 casdcapz ++=
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• If we square the following equations and add the resulting equations

dpcps =+− 311 dpcps yx =+

2223423311 casdcapspc yx +−=+

22234233 sacdsapz ++=−
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• we obtain

Kd

• where

Ksdca =− 3433

2222222

2

2
4

2
3

2
3

2
2

222

2a
adaappp

K zyx −−−−++
=

• Note that the dependence on      has be removed. Moreover the eq. for      is of 
the same form as the eq. for     and so may be solved by the same kind of 
trigonometric substitution to yield a solution for 

1θ 3θ
1θ

3θ
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• Note that the +/- sign leads to two different solution for 3θ

( )22
4

2
3433 ,2tan),(2tan KdaKAdaA −+±−=θ
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• Equating the (1,4) element and (2,4) element we obtain
⎦⎣⎦⎣⎦⎣

33223231231 acapspcspcc zyx =−−+

• These equations may be solved simultaneously for      and         resulting in  

43223231231 dsapcpsspsc zyx =+−−−

23s 23c
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43211223 ))(()( yxz dsapspcpcaa
s
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= 2
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223 )( yxz pspcp

s
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=

22
11323432

23 )(
))(()( yxz

pspcp
pspccaapdsa

c
++

+−−−−
=

• Since the denominator are equal and positive, we solve for the sum of      and     
as

11 )( yxz pspcp ++

2θ 3θ

)])(()(
),)(()[(2tan

11323432

4321122323

yxz
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−++−−=θ

• The equation computes four values of       according to the four possible 
combination of solutions for      and    

23θ
3θ1θ
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• Then, four possible solutions for       are computed as

θθθ
2θ

• Equating the (1,3) and the (3,3) elements
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• As long as              we can solve for05 ≠s 4θ

)(2tAθ

• When             the manipulator is in a singular configuration in which joint axes 
4 and 6 line up and cause the same motion of the last link of the robot. In this 
case all that can be solved for is the sum or difference of and This

),(2tan 332323123231131231134 rscsrccrcrsrA +−−+−=θ
05 =θ

θ θcase all that can be solved for is the sum or difference of        and       . This 
situation is detected by checking whether both arguments of Atan2 are near 
zero. If so        is chosen arbitrary (usually chosen to be equal to the present 
value of joint 4), and      is computed later, it will be computed accordingly 

4θ 6θ

4θ
6θ

5

6

4
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• Equating the (1,3) and the (3,3) elements we get

5423334142312341423113 )()()( scsrscccsrsscccr −=−−++

• We can solve for
523332312323113 )()()( ccrssrscr =−+−+−

5θ
)(2tan csA=θ ),(2tan 555 csAθ
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• Equating the (3,1) and the (1,1) elements we get
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• We can solve for 
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6θ ),(2tan 666 csA=θ ),(2tan 666 csAθ

Instructor: Jacob Rosen Ph.D.
Models of Robot Manipulation – CE 215 - Department of Computer Engineering



Inverse Kinematics - PUMA 560 -
Algebraic Solution - 21/Algebraic Solution 21/

• Summary - Number of Solutions

• Four solution

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
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2
33

1 1,2tan),(2tan
ρρ

θ ddAppA xy

( )22
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2
3433 ,2tan),(2tan KdaKAdaA −+±−=θ
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⎠

⎜
⎝ ρρ

• For each of the four solutions the wrist can be flipped  
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'
4 +=θθ

o1806
'
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5
'
5

+=

−=

θθ

θθ
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• After all eight solutions have been computed, some or all of them may have to 
be discarded because of joint limit violations. 

• Of the remaining valid solutions, usually the one closest to the present 
manipulator configuration is chosenmanipulator configuration is chosen.
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Central Topic - Inverse Manipulator Kinematics -
ExamplesExamples

• Geometric Solution - Concept
Decompose spatial geometry into several
plane geometry    

Example - 3D - RRR (3R) manipulators -
G t i S l tiGeometric Solution

• Algebraic Solution (closed form) -Algebraic Solution (closed form) 
Piepers Method - Last three consecutive 
axes intersect at one point

Example - Puma 560
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• Given:
– Manipulator Geometry
– Goal Point Definition: The position                    of the wrist in spaceddd zyx ,,

• Problem:
What are the joint angles (                 ) as a function of the goal (wrist position and 
orientation)

321 ,, θθθ
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• The planar geometry - top view of the robot 

yd
L4

x3

x0

y0

xd

2

z3
L3

1θ
x2

z2

),(2tan1 dd xyA=θ

22
1 dd yxr +=
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• The planar geometry - side view of the robot:

L3
L4

r2

3θ−

L1+L2 zd

r1
ẑ

z0

( )22222222 )(ˆˆ LLyxyxrr ++++++

• where

( )2112 )( LLzyxzyxzrr ddddd +−++=++=+=

)(ˆ 21 LLzz d +−=
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• By Apply the law of cosines we get

• Rearranging gives

)cos(2)180cos(2 343
2
4

2
3343

2
4

2
3

2
2 θθ LLLLLLLLr ++=+−+=

222

• and 43

2
4

2
3

2
2

3 2
)(

LL
LLrc +−

=

21

• Solving for        we get 

2
33 1 cs −=

2

3θ

• Where     is defined above in terms of known parameters   

),1tan( 3
2
33 ccA −±=θ

3c ddd zyxLL   and,,,4,3
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L3
L4

r2
α

β

2θ

3θ−

ẑ

• Finally we need to solve for

r1
2

2θ

βαθ +=2

),ˆ(2tan 1rzA=α

• where  22
1 dd yxr += )(ˆ 21 LLzz d +−=

Instructor: Jacob Rosen Ph.D.
Models of Robot Manipulation – CE 215 - Department of Computer Engineering



Inverse Kinematics - 3D RRR (3R) -
Geometric Solution - 9/Geometric Solution 9/

• Based on the law of cosines we can solve for β

)cos(2 32
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• Summary
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• Equation 

[ 1 1]bco
     [-1,1]a      sin

∈=
∈=

bs
a

θ
θ

S l ti (U i )

[-1,1]bco ∈= bsθ

• Solution (Unique)      ),(2tan baA=θ
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Inverse Kinematics  -
Generalized Algebraic (Analytical) Solutions – Case 2Generalized Algebraic (Analytical) Solutions Case 2

• Equation 

21

     [-1,1]a      sin a

±

∈=

θ

θ
21i

     [-1,1]a      cos

b

b ∈=

θ

θ

S l ti

21co as −±=θ 21sin b−±=θ

• Solution 

– Two Solutions

      )1,(2tan 2aaA −±=θ

1 θθ =

      ),1(2tan 2 bbA −±=θ

1 θθ =

– Singularity at the Boundary 

 1802 θθ −=  2 θθ −=

1a    , 90  =±= oWhen θ 1b    , ,1800  0 == oWhen θ
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Inverse Kinematics  -
Generalized Algebraic (Analytical) Solutions – Case 3Generalized Algebraic (Analytical) Solutions Case 3

• Equation 

a
bs =+

θ
θθ

sin
0)(sin)a(co

• Solution
T S l ti t

b
a

s
−=

θ
θ

co
sin

1800– Two Solutions           apart

     ),(2tan
 ),(2tan
baA
baA

−=
−=

θ
θ

1800

– Singularity    

),(

    0=b
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Inverse Kinematics  -
Generalized Algebraic (Analytical) Solutions – Case 4Generalized Algebraic (Analytical) Solutions Case 4

• Equation 
)(sin)a(co =+ cbs θθ

• Solution
T S l ti

0,, ≠cba

– Two Solutions 

 ),(2tan ),(2tan 222 abAccbaA +−+±=θ

– For a solution to exist

     

0222 >−+ cba

– No solution (outside of the workspace)

– One solution (singularity)     

0222 <−+ cba

0222 =−+ cba

Instructor: Jacob Rosen Ph.D.
Models of Robot Manipulation – CE 215 - Department of Computer Engineering



Inverse Kinematics  -
Generalized Algebraic (Analytical) Solutions – Case 4Generalized Algebraic (Analytical) Solutions Case 4
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Inverse Kinematics  -
Generalized Algebraic (Analytical) Solutions – Case 4Generalized Algebraic (Analytical) Solutions Case 4
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Inverse Kinematics  -
Generalized Algebraic (Analytical) Solutions – Case 5Generalized Algebraic (Analytical) Solutions Case 5

• Equation 

bs
a

=
=

φθ
φθ

sinco
      sinsin

• Solution 

bs =φθ sinco

positiveissinif        ),(2tan φθ baA=
negative is sin if    ),(2tan
p)(

φθ
φ

baA −−=
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Inverse Kinematics  -
Generalized Algebraic (Analytical) Solutions – Case 6Generalized Algebraic (Analytical) Solutions Case 6

• Equation 

gfse
dcsa

=+
=+

θθ
θθ

sinco
        sinco

S l ti

gfse =+ θθ sinco

)(2 dfdAθ• Solution

– For an exiting solution (the determinant must be positive)  

     ),(2tan cgdfdeagA −−=θ

  0>− ceaf
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Algebraic Solution by Reduction to Polynomial 

• Transcendental equations are difficult to solve because they are a function of

θθ sc

• Making the following substitutions yields an expression in terms of a single 
veritable Using this substitutions transcendental equation are converted

θθ sc ,
kscf =),( θθ

uveritable      , Using this substitutions, transcendental equation are converted 
into polynomial equation 

u

θ

2

2

           
1
1cos

           
2

tan

u
u

u

+
−

=

=

θ

θ

21
2sin 

1

u
u
u

+
=

+

θ
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Algebraic Solution by Reduction to Polynomial - Example

• Transcendental equation

cbsac =+ θθ

• Substitute                with the following equations

cbsac =+ θθ

θθ sc ,

2

2

2i

           
1
1cos

u
u
u

+
−

=

θ

θ

• yields

21
sin

u+
=θ

)1(2)1( 22 +=+− ucbuua
0)(2)(

)()(
2 =−+−+ acbuuca
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Algebraic Solution by Reduction to Polynomial - Example

• Which is solved by the quadratic formula to be

ca
cabbu

+
−−±

=
222

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−−±

= −

ca
cabb 222

1tan2θ

• Note

– If u is complex there is no real solution to the original transcendental– If  u is complex there is no real solution to the original transcendental 
equation

– If                     then  0=+ ca o180=θ
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Solvability

Robot - 6 DOF 
Single Series Chain

Revolute & Prismatic Joints

Analytic Solution  Numeric Solution  Real-Time Non
Real-Time

Close Form Solution
Sufficient Condition  Industrial Three adjacent axes 
(rotary or prismatic) 

must intersect

Industrial
Robots
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Pieper’s Solution - Three consecutive Axes Intersect 

• Pieper’s Solution - Closed form solution for a serial 6 DOF in which three 
consecutive axes intersect at a point (including robots with three consecutive 

ll l i h i i fi i )parallel axes, since they meet at a point at infinity)

• Pieper’s method applies to the majority of commercially available industrial 
robots 

• Example: (Puma 560)

– All 6 joints are revolute joints
– The last 3 joints are intersecting

Instructor: Jacob Rosen Ph.D.
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Pieper’s Solution - Three consecutive Axes Intersect

• Given:

– Manipulator Geometry: 6 DOF & DH parameters
• All 6 joints are revolute joints
• The last 3 joints are intersecting

– Goal Point Definition: The position  and orientation of the wrist in space

⎥
⎤

⎢
⎡ 131211 xprrr

⎥
⎥
⎥
⎥

⎦
⎢
⎢
⎢
⎢

⎣

==

1000
333231

2322215
6

4
5

3
4

2
3

1
2

0
1

0
6

z

y

prrr
prrr

TTTTTTT

• Problem:
What are the joint angles (                                      ) as a function of the goal (wrist 
position and orientation)

  ,,,,, 654321 θθθθθθ

⎦⎣ 1000

position and orientation)
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Pieper’s Solution - Three consecutive Axes Intersect

• When the last three axes of a 6 DOF robot intersect, the origins of link frame {4}, 
{5}, and {6} are all located at the point of intersection. This point is given in the 
b dibase coordinate system as

orgorg PTTTP 4
32

3
1
2

0
14

0 =

• From the general forward kinematics method for determining homogeneous 
transforms using DH parameters, we know:

⎥
⎤

⎢
⎡ − −0 1iii asc θθ

Ri
i
1−

iorg
i P1−

⎥
⎥
⎥
⎥

⎦
⎢
⎢
⎢
⎢

⎣

−−
=

−−−−

−−−−−

1000
1111

11111

iiiiiii

iiiiiiii
i dccscss

dsscccs
T

αααθαθ
αααθαθ

⎦⎣ 000
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Pieper’s Solution - Three consecutive Axes Intersect

• For i=4
orgP4

3R34

⎥
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎢
⎡

−−
−

=

0

4333434

4333434

344

3
4 dccscss

dsscccs
asc

T
αααθαθ
αααθαθ

θθ

• Using the fourth column and substituting for we find

⎥
⎦

⎢
⎣ 1000

4333434

P3Using the fourth column and substituting for      ,     we find

⎥
⎥
⎤

⎢
⎢
⎡
− 43

3

21032100 ds
a

TTTPTTTP
α

orgP4

⎥
⎥
⎤

⎢
⎢
⎡

)(
)(

32

31

1032100 θ
θ

f
f

TTPTTTP

⎥
⎥
⎥

⎦
⎢
⎢
⎢

⎣

==

1
43

432
3

1
2

0
14

32
3

1
2

0
14

0

dc
TTTPTTTP orgorg α

⎥
⎥
⎥

⎦
⎢
⎢
⎢

⎣

==

1
)(
)(

33

321
2

0
14

32
3

1
2

0
14

0

θf
f

TTPTTTP orgorg
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Pieper’s Solution - Three consecutive Axes Intersect

• where

⎥
⎥
⎤

⎢
⎢
⎡

⎥
⎥
⎤

⎢
⎢
⎡

)(
)( 331

ds
a

f
f

αθ
θ

⎥
⎥
⎥
⎥

⎦
⎢
⎢
⎢
⎢

⎣

−
=

⎥
⎥
⎥
⎥

⎦
⎢
⎢
⎢
⎢

⎣ 11
)(
)(

43

432
3

33

32

dc
ds

T
f
f

α
α

θ
θ

⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡
−

⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

−−
−

=
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡ 0

)(
)(
)(

43

43

3

3222323

3222323

233

33

32

31

dc
ds

a

dccscss
dsscccs

asc

f
f
f

α
α

αααθαθ
αααθαθ

θθ

θ
θ
θ

⎥
⎥

⎦
⎢
⎢

⎣
⎥
⎥

⎦
⎢
⎢

⎣
⎥
⎥

⎦
⎢
⎢

⎣ 110001
)( 43322232333 dcdccscssf ααααθαθθ

( ) 23343331 αθ assdcaf ++=( )
( )
( ) 23324323432333

23324323432332

23343331

ααααααθ
ααααααθ
cdccdcssdssaf
sdcsdccsdscaf

f

++−=
−−−=
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Pieper’s Solution - Three consecutive Axes Intersect

• Repeating the same process again 

⎥
⎤

⎢
⎡

)(
)( 31

θ
θ

f
f

⎥
⎥
⎥
⎥

⎦
⎢
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Pieper’s Solution - Three consecutive Axes Intersect

( )
( ) 123121211222

1221221

ααααθ
θ

sdfsfccfssg
afsfcg

−−+=
++=

• Repeating the same process for the last time

( )
( ) 123121211223

123121211222

ααααθ cdfcfscfssg
fffg
+++=
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Pieper’s Solution - Three consecutive Axes Intersect

• Frame {0} - The frame attached to the base of the robot or link 0 called frame 
{0} This frame does not move and for the problem of arm kinematics can be 

id d h f fconsidered as the reference frame.

• Assign {0} to match {1} when the first joint veritable is zero

00 dθ

⎥
⎥
⎤

⎢
⎢
⎡

⎥
⎥
⎤

⎢
⎢
⎡

−−
−

)(
)(0

22

21

1000101

011

0 θ
θ
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g
g

dsscccs
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P

0      0 0101 ===≠ adαθ
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⎥
⎥
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⎣
⎥
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⎢
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1
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1000101
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P org
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⎥
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⎢
⎢
⎢
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g
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P org
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Pieper’s Solution - Three consecutive Axes Intersect

• Through algebraic manipulation of these equations, we can solve for the desired 
joint angles (                 ).  

321 ,, θθθ

• The first step is to square the magnitude of the distance from the frame {0} 
origin to frame {4} origin.  

( ) ( ) ( ) 2
3

2
2

2
1

2
4

02
4

02
4

02 gggPPPr orgzorgyorgx ++=++=

• Using the previously define function for      we have ig

( )2212132
2
2

2
1

2
3

2
2

2
1

2 2 fsfcafddafffr −++++++= ( )221213221321 2 fsfcafddafffr ++++++
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Pieper’s Solution - Three consecutive Axes Intersect

( )2212132
2
2

2
1

2
3

2
2

2
1

2 2 fsfcafddafffr −++++++=

• Applying a substitution of temporary variables, we can write the magnitude 
squared term along with the z component of the {0} frame origin to the {4} frame

123121211234
0 αααα cdfcfscfssgPZ orgz +++===

squared term along with the z-component of the {0} frame origin to the {4} frame 
origin distance.

( ) 312221
2 2 kaskckr ++=

22

11

fk
fk
−=

=

Th ti f l b d d h b li i t d

( ) 412221 ksckskZ +−= α

12134

32
2
2

2
1

2
3

2
2

2
13 2

αα cdcfk
fddafffk

+=
+++++=

θ• These equations are useful because dependence on        has been eliminated, 
and dependence on     takes a simple form     

1θ
2θ
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Pieper’s Solution - Three consecutive Axes Intersect

• Consider 3 cases while solving for      :3θ

• Case 1 - 01 =a

3
2 kr =

32
2
2

2
1

2
3

2
2

2
13 2 fddafffk +++++=

( ) 23343331 αθ assdcaf ++=
( )
( ) 23324323432333

23324323432332

ααααααθ
ααααααθ
cdccdcssdssaf
sdcsdccsdscaf

++−=
−−−=

• Solution Methodology - Reduction to Ploynomial => Quadratic Equation 

22

2

1
2sin            

1
1cos            

2
tan

u
u

u
uu

+
=

+
−

== θθθ
112 uu ++
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Pieper’s Solution - Three consecutive Axes Intersect

• Case 2 - 01 =αs

kZ 4kZ =

12134 αα cdcfk +=

( )θ dddf

• Solution Methodology - Reduction to Ploynomial => Quadratic Equation 

( ) 23324323432333 ααααααθ cdccdcssdssaf ++−=

22

2

1
2sin            

1
1cos            

2
tan

u
u

u
uu

+
=

+
−

== θθθ
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Pieper’s Solution - Three consecutive Axes Intersect

• Case 3 (General case) : We can find        through the following algebraic 
manipulation:

3θ

( )2221
1

3
2

2
kZ

skck
a
kr

+=
−

• squaring both sides, we find
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Pieper’s Solution - Three consecutive Axes Intersect

• Adding these two equations together and simplifying using the trigonometry 
identity (Reduction to Ploynomial), we find a fourth order equation for 3θ
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Pieper’s Solution - Three consecutive Axes Intersect

• With       solved, substitute into           to find 

( )2

3θ 2θZr ,2
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2 2
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Pieper’s Solution - Three consecutive Axes Intersect

• With            solved, substitute into            to find32,θθ
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• Solve for        using the reduction to polynomial method 
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Pieper’s Solution - Three consecutive Axes Intersect

• To complete our solution we need to solve for 654 ,, θθθ

• Since the last three axes intersect these joint angle affect the orientation of only 
the last link. We can compute them based only upon the rotation portion of the 
specified goal R06

RRR 0
60

10
40

4
6     

44 =
−

= = θθ

RRR 4
60

0
4

0
6 4 =

= θ

• - The orientation of link frame {4} relative to the base frame {0} when 0
0
4 4 =θR

04 =θ

• are the Euler angles applied to    654 ,, θθθ 0
4
6 4 =θR
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Inverse Manipulator Kinematics (4/4)Inverse Manipulator Kinematics (4/4)
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Central Topic - Inverse Manipulator Kinematics -
ExamplesExamples

• Algebraic Solution (closed form) - Piepers Method (Continue) - Last three  
consecutive axes intersect at one point

• Consider a 3 DOF (wrist) non-planar robot whose axes all intersect at a point.

Instructor: Jacob Rosen Ph.D.
Models of Robot Manipulation – CE 215 - Department of Computer Engineering



Mapping - Rotated Frames - Z-Y-Z Euler Angles

Start with frame {4}. 
• Rotate frame {4} about      by an angle 4Ẑ α}• Rotate frame {4} about      by an angle 
• Rotate frame {4} about      by an angle 
Note - Each rotation is preformed about an axis of the moving reference frame 

{4} th th fi d f

γ
BŶ
4

β} Euler Angles

4Ẑ

{4}, rather then a fixed reference.

Instructor: Jacob Rosen Ph.D.
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Mapping - Rotated Frames - X-Y-Z Euler Angles
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Three consecutive Axes Intersect - wrist
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Goal Direct Kinematics
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Three consecutive Axes Intersect - wrist

• Solve for         using element  β 333231 ,, rrr

( )2222
32

2
31 ααβ scsrr +=+

βcr =33 βcr33

2
32

2
31 rrs +±=β

• Using the Atan2 function, we find

( )22( )33
2

32
2

31 ,Atan2 rrr +±=β

Instructor: Jacob Rosen Ph.D.
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Three consecutive Axes Intersect - wrist

• Solve for       using elementsα 1323, rr

βαssr =23

βαscr =13

β23

( )ββα srsr /,/Atan2 1323=

Instructor: Jacob Rosen Ph.D.
Models of Robot Manipulation – CE 215 - Department of Computer Engineering



Three consecutive Axes Intersect - wrist

• Solve for       using elementsγ
3132 , rr

γβssr =32

γβcsr −=31

( )ββγ srsr /,/Atan2 3132 −=

Instructor: Jacob Rosen Ph.D.
Models of Robot Manipulation – CE 215 - Department of Computer Engineering



Three consecutive Axes Intersect - wrist

• Note: Two answers exist for angle       which will result in two answers each for 
angles       and       .

β
α γ

( )33
2

32
2

31 ,Atan2 rrr +±=β

( )ββα srsr /,/Atan2 1323=

( )ββγ srsr //Atan2 3132 −=

• If                                                       the solution degenerates                         

( )ββγ srsr /,/Atan2 3132=

0180,0 =⇒== βββ soo

Instructor: Jacob Rosen Ph.D.
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Three consecutive Axes Intersect - wrist
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• We are left with                  for every case.  This means we can’t solve for either, 
just their difference. 

( )αγ +

Instructor: Jacob Rosen Ph.D.
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Three consecutive Axes Intersect - wrist

• One possible convention is to choose  o0=α

• The solution can be calculated to be 

0=β

0=α

180=β

0=α

( ) ( )γγγ csrr ,Atan2,Atan2 1112 =−= ( ) ( )γγγ csrr ,Atan2,Atan2 1112 =−=

Instructor: Jacob Rosen Ph.D.
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Three consecutive Axes Intersect - wrist

• For this example, the singular case results in the capability for self-rotation.  
That is, the middle link can rotate while the end effector’s orientation never 
changes.

Instructor: Jacob Rosen Ph.D.
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Gimbal Lock 

Normal situation 

The three gimbals are independent

Gimbal lock: 

Two out of the three gimbals are in the 

same plane, one degree of freedom is lost

http://youtu.be/zc8b2Jo7mno

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA

http://youtu.be/zc8b2Jo7mno


Gimbal Lock – Robotics  

• In robotics, gimbal lock is commonly referred to as "wrist flip", due to the use of 

a "triple-roll wrist" in robotic arms, where three axes of the wrist, controlling yaw, 

pitch, and roll, all pass through a common point.

• An example of a wrist flip, also called a wrist singularity, is when the path 

through which the robot is traveling causes the first and third axes of the robot's 

wrist to line up. The second wrist axis then attempts to spin 180° in zero time to 

maintain the orientation of the end effector. The result of a singularity can be 

quite dramatic and can have adverse effects on the robot arm, the end effector, 

and the process.

• The importance of non-singularities in robotics has led the American National 

Standard for Industrial Robots and Robot Systems — Safety Requirements to 

define it as "a condition caused by the collinear alignment of two or more robot 

axes resulting in unpredictable robot motion and velocities".

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA


