Jacobian — Implications & Applications

Part 2. Design - Manipulability Ellipsoid & Performance Index

Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Performance Index — Manipulability

« Kinematic Singularity — The robot end effector
loses its ability to translate or rotate in one or more

directions

« Kinematic Singularity — Binary - A kinematic
singularity presents a binary proposition — a . Scale of
particular configuration is either kinematically 0 1 ellipsoid

singular or it is not

« Proximity to Singularity - it is reasonable to ask if
a nonsingular configuration is “close” to being
singular.

> X

« Manipulability Ellipsoid - The manipulability
ellipsoid allows one to visualize geometrically the
directions in which the end-effector moves with
least effort or with greatest effort

Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Jacobian — Singularity — Mathematical Introduction

Robotic
System

Non Singular
Conditions

Singular

Conditions

Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Jacobian — Singularity — Mathematical Introduction

P(x, y)

AN
N

v =](0)6
T =J1(O)F

_; Scale of
0 1 ellipsoid

Instructor: Jacob Rosen
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UCLA



Jacobian — Singularity — Mathematical Introduction

General expression of the end effector velocity ellipsoid
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Jacobian — Singularity — Mathematical Introduction

* Linear Algebra — Norm — Definition

— Norm P -L, norm of x

1

Ixll, =[Syl = 5/zi|xi|p

- |x4| Calculate the absolute value of the i-th element
|x;|P take its power p
- Y.Ix;|” sum all these power absolute values

1
— [Zilxilp]p take the power % of the result

Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Jacobian — Singularity — Mathematical Introduction

— Norm P=0 -Ly norm of x

Ixllo = [Z1%:1°]°

« Using the power of 0 with an absolute values will get you
— 1 for every non-zero value
— 0 for every zero value
« This norm corresponds to the number of non-zero elements in the vector

— Norm P=1 -L; norm of x

lelly = Xl ] = il

« The sum of the absolute values

Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Jacobian — Singularity — Mathematical Introduction

— Norm P=2 - L, norm X (Euclidean Norm)

» The absolute value is not needed anymore since x is squared
» Provide the length of the vector in Pythagorean theorem

x|, = (Zixiz)E = /Zixiz

ooy
- Example U= {3} 2 ﬂ\’;tl

lull, = VI312 + 412 = V25 = 5

Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Jacobian — Singularity — Mathematical Introduction

- L3 - Squared Euclidean norm (Squared L% norm)

2
(lullz)? = ( /Zl-xl?) =X x{

- Alternative expressions for L

(lull)? = x-x = x"x

Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Jacobian — Singularity — Mathematical Introduction

P(x, y)

AN
N

v =](0)6
T =J1(O)F

_; Scale of
0 1 ellipsoid

Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA
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Jacobian — Singularity — Mathematical Introduction

A circle/sphere of joint velocities, like the circle
shown here is defined by the equation

079 =1

Using the definition of the Jacobian

v =7](6)6
0=]1y
o7 = U‘lv)T

Assume that the Jacobian is invertible (not strictly
necessary) the previous equation can be rewritten
as

U ) =1

Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA

UCLA



Jacobian — Singularity — Mathematical Introduction

. Based on Linear Algebra property (Ax)T =|xTAT

. . “1 NTlr-1.,) —
« The previous equations U v)'J v =
«  Can be rewritten as IOy =1

« Based on linear Algebra properties

AHT=UAHD" ™)
(AB)™t = B71A™! (%)

« The previous equation can be rewritten as
from x> vI ()Y lv=0

from *x > vI(JJT) v =0

Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Jacobian — Singularity — Mathematical Introduction

* Rewriting
vI(JJH) v =0

vI(AD)v=0
« where A =]]T

AE Rmxm ] € ]Rmxn ]T € Rnxm

A~1 A properties:
A1 A —is positive
A1 A — symmetric

Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Performance Index — Manipulability

- Performing eigenvector/eigenvalue analysis of A = JJT defining
— Eigenvectors v;
— eigenvalues A;

« The directions of the principal axes of the ellipsoid are v; and the lengths of the principal semi-axes are \/Z

Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Jacobian — Singularity — Mathematical Introduction

 Replace v (velocity of the tip) by a vector x
xTA ™ x =0
e A€ R™™ (symmetric, positive definite)

Eigenvalues of A— A4, 1,, ..., 4,
Eigenvectors of A— vy, vy, ..., Uy,

« The A matrix defines an ellipsoid of x values that
satisfy the equation

o |f A= ]]T X = Vtip
« Then Manipulability Ellipsoid Resulting from a unit
sphere of joint velocity

Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Jacobian — Singularity — Mathematical Introduction

xTA 1x =0

- If A=]J" X = Vtip

« Then Manipulability Ellipsoid Resulting from a unit
sphere of joint velocity

. f A=J/")™t x=Fy

« Then Force Ellipsoid Resulting from a unit sphere
of joint forces or torques

Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Performance Index — Manipulability

g=X=JO t=Jr
F=]T¢

Joint Space Task Space Joint Space Task Space

f2 A
6> A

ad »
DO N
R

(1
N

b

Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Jacobian — Singularity — Mathematical Introduction

Fal FO_VC;G ellipsoid Manipulability ellipsoid

Small forces can be
applied in direction of
large velocities

p

_ Same princiole axes Small velocity can be
P P applied in direction of

— Same semi axis lengths large forces

Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Jacobian — Singularity — Mathematical Introduction

— Assigning a single number representing how close the robot is to being a singular
OR

— Reducing the representation of the ellipsoid into a single number

¥

Performance Index

Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Performance Indices

Definition

Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Performance Index Measure No.1 - Isotropy

* Isotropy — The ratio of the longest and shortest
semi-axes of the manipulability ellipsoid

(Jj7) = Ymax

Amin

=1

U1

1<u(JJjf) <o

— When p;(JJT) - 1 then the manipulability
ellipsoid is nearly spherical or isotropic,
meaning that it is equally easy to move in any
direction. This situation is generally desirable

— When p;(JJT) - oo the robot approaches a
singularity

Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA

UCLA



Performance Index Measure No.2 — Condition Number

* Manipulability Measure No. 2 — Condition
Number — Squaring the isotropy measure

Amax
w7 = (mQIh)” =

Amin

1<pu,(JJ") <o

1 Amin (A)
> = >1
.Uz (I]T) Amax (A)

— When L
€ p2(JJ7)

ellipsoid is nearly spherical or isotropic,
meaning that it is equally easy to move in any
direction. This situation is generally desirable

1
— When uz(JJ7)

singularity

0

— 1 then the manipulability

— 0 the robot approaches a

Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA

UCLA



Performance Index — Manipulability

* Manipulability Measure No. 3 — Manipulability —
The volume V of the ellipsoid is proportional to the
product of the semi-axis lengths

V A1 - Ay = y/det(JJT)

« The Manipulability is defined as

ws(JJH =w = \//11/12 o Am = \/det(]]T)

O<w<o

— A good manipulator design has large area of
characterized by high value of the
manipulability (w)

Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Performance Index — Manipulability

« Given the structure of the Jacobian matrix, it makes sense to separate it into the two sub matrixes because
the units of

— ], are linear velocities (m/s) and the unites of
— J,are angular velocities (rad/s)

J(0) € R*™ J(6) =

Iy ] J, € R3*™ > Linear velocity/force ellipsoids

Jo

J.» € R3™ — Angular velocity/moment ellipsoids

« This leads to two three-dimensional manipulability ellipsoids, one for linear velocities and one for angular
velocities.

"
JoJo'

Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Performance Index — Manipulability

When calculating the linear-velocity manipulability ellipsoid ( ]v]vT),
it generally makes more sense to use the Jacobian expressed in the end effector space
Ny Ny T
vy
instead of the Base Frame
oy o7 T
vl

since we are usually interested in the linear velocity of the end effector in its own coordinate system than a fixed
frame at the base

Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Designing Well Conditioned Workspace — Rational

 Challenge
— Difficulty in operating at
* Workspace Boundaries
* Neighborhood of singular point inside the workspace

e Goal

— Singularity - The further the manipulator is away from singularities the better it moves uniformly and
apply forces in all directions

« Performance Criterion
— It is useful to assign a single scalar measure defining how easily the robot can move at a given posture.

Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Recap

Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Performance Index — Manipulability

Manipulabity Ellipsoid - For a general n-joint serial (open chain) and a task space with coordinates the 4
manipulability ellipsoid corresponds to the end-effector velocities for joint rates ¢

(61 (X)) féﬂ ”:”
2 Y 0, Y
A . N 16
O=1419=X=3g.¢ 0=1,p 4=X=1¢ q=]
i X d; _ 0 =]—1
0 0y 1
\6,,J Y . ;
kezj kHTLJ \ ZJ
satisfying the norm of ® to be equal to 1
|6]| =676 =1

representing a unite sphere in the n-th dimensional joint velocity space

Instructor: Jacob Rosen

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA

UCLA



Performance Index — Manipulability

Assuming J is invertible, the unit joint-velocity condition can be written

1=07T0
1=t 19)
1=4¢"gH" g
=q"]7 "] q
1=4"JJ") g

If Jis full rank the matrix /7 and UJ") ™" are
— square,
— symmetric
— positive definite

Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Performance Index — Manipulability

For any symmetric positive-definite JJ* , the set of vectors ¢ satisfying

qg" g/ g =1

defines an ellipsoid in the m-dimensional space.

Recap
 Represent an circle / sphere  ¢T¢ =1

- Represent a ellipse / ellipsoid gy g=1

Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Performance Indices - Design

Optimization Approach

Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Jacobian — Design - Performance Index — Optimization

Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Jacobian — Design - Performance Index — Optimization — Pseudo Code

FOR L;:0 = 500 4+ 4+AL,

FOR L,:0 = 500 + +AL,

Check if the link lengths allows the tip to reach all the points in
the workspace by solving the IK for every point in the workspace
IF NOT — select a new pair of Ly, L,

FORx:x+d->x+d+w + +Ax

FORy:y—§—>y+§ + +Ay
[Calculate the angles 64, 6, using IK]

[Calculate J and J7]
[Calculate the eigenvalues of JJ7]

Ao
[Calculate ,fﬂ

[Populate k]
END (FOR y)

END (FOR x)
[Calculate ¥ k;]
[Calculate ;]

_ B il
[Calculate C = FEpYE

[Calculate optimal L1, Ly, Y. K; , Kmin, C]
END (FOR L,)
END (FOR L,)
[Select max C — L4, L]

Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Jacobian — Design - Performance Index — Optimization
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Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Jacobian — Design - Performance Index — Optimization

_ (k) Kmin

Li,Lp, —

L3 + 13
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S
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Instructor: Jacob Rosen

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA
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Jacobian — Design - Performance Index — Optimization

conmistorl el L L, berle
La-Leo
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Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Jacobian — Design - Performance Index — Optimization

CoN P f/(@ / / oM A( [ Z L aowils
| ‘/"’f‘“"* L;+L,<d
r4 Y
et Li +L, < |(d+w)?+ <—>
. - 2
Litl, gy

Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Jacobian — Design - Performance Index — Optimization

For Ly ¢—> 502

for- o, t =2 59 . g
’}/éA{{'L’ "éz %Zé /'k/"’ Lp;f{AS a//oou; ZZ/( “Z/{_ /U

/ & , j » :
1 Peack o i "P%'» i3 of 1 g Wmfv[ct Pa £ L.

T+ [4+[_?/<dz
—

LA AR COR

For Xt X+d = ol vt A X

My Yk et sy

calcylote  tle .quel US e,
. Lk J

Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Jacobian — Design - Performance Index — Optimization

FOR L;:0 - 500 + +AL,4
FOR L,:0 = 500 + +AL,
Check if the link lengths allows the tip to reach all the points in the
workspace by solving the IK for every point in the workspace
IFLi+L,<d

IF L + L, < \/(d +w)2 + (2)2
FORx:x+d->x+d+w + +Ax
FOR y:y—%—>y+g + +Ay
[Calculate the angles 6, 6, using IK]

Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA

UCLA



Jacobian — Design - Performance Index — Optimization

Ca/a//a‘hz\a. T and 17

Caloslile  the oqonuelus ot 377
(ﬁ’(u(&ée \(}}:’

END ( Lov /{ )
T NID [%f X )

Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Jacobian — Design - Performance Index — Optimization

[Calculate J and J7]
[Calculate the eigenvalues of JJT]

2
[Calculate %
[Populate k]
END (FOR y)

END (FOR x)

Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Jacobian — Design - Performance Index — Optimization

END/ ot [, 5
Ean (oF L )

\
i 1

Instructor: Jacob Rosen

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA

UCLA



Jacobian — Design - Performance Index — Optimization

[Calculate }; k;]
[Calculate ki, ]

[Calculate C = %]

[Calculate optimal Ly, L,, Y. ki , Kimin, C]
END (OF L))

END (OF L,)

gpf = | ——t——1—"1""

Instructor: Jacob Rosen

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA

UCLA



Jacobian — Design - Performance Index — Optimization

— SFARcH  TFeR MAX < it OPT

) 2

Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Jacobian — Design - Performance Index — Optimization

- Search for MAX C in OPT
- Find L1, L,

Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Design — Example

Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA UCLA



RAVEN - A SURGICAL ROBTICS SYSTEM

DESIGN — SPECIFICATIONS

BIONICS =.















Engineering Specifications - BlueDRAGON

Device DRAGON [ UC Berkeley | UC Berkeley | UC Berkeley DeVinchi Zeus
Generation R1 - E(95%) 1 2
Referance Measured Traget Obtained
Base Overall Geomtery Shaft Diameter [m] 0.01-0.015 | 0.01-0.015 0.01 0.005
Position / Oriantataion Delta Theta x [Deg] 53.8047 +/-60
Delta Theta y [Deg] 36.3807 +/-80
Delta Theta z [Deg] 148.0986 90 180-270 720 +-180
R [m] 0.1027 0.2
Grasping Jaw s [Deg] 24.0819 200
Grasping Jaw s [m] * 0.006 0.002-0.003 0.008 min
Delta X [m] 0.1026
Delta Y [m] 0.0815
Delta Z [m] 0.0877
Velocity (Angular Linear) Wx [Rad/sec] 0.432
Wy [Rad/sec] 0.486
Wz [Rad/sec] 1.053 9.4 min
VR [m/sec] 0.072
Wg [Rad/sec] 0.0468
Force Fx [N 14.7299
Fy [N] 13.1981
Fz [N] 184.3919
Fg N 41.6085 15 5 min 40 min
Torque TX [Nm] 2.3941
Ty [Nm] 1.6011
Tz [N 0.0464 0.088 0.022




Kinematic Analysis —
Playback Simulation using Measured Data

Ei:Robotics Laboratory

University of Washington
y J

BIONICS =.



Robot Optimization - Workspace

60°- 60°

« Dexterous Workspace (DWS)

— High dexterity region defined by
a right circular cone with a
vertex angel of 60°

— Contains 95% of the tool
motions based on in-vivo
measurements.

BIONICS =.









Spherical Mechanism - Robot Optimization




Optimization of Raven IV —
Problem & Parameters (7) Definitions

| Axis3
200 -
[ L Axis 2
™ 0 - Axis 1
-200
500 . 200
5 0 ;_:_,ef*’* 0
) I:r} .Y X 2200
I:;: World Coordinate Frame







RAVEN - A SURGICAL ROBTICS SYSTEM

DESIGN - KINEMATIC ANALYSIS & OPTIMIZATION

BIONICS =.



Direct Kinematics —
Coordinate Systems Assignment

Right Robaot

BIONICS =.



Direct Kinematics —
Coordinate Systems Assignment

BIONICS =.



Direct Kinematics:
DH Parameters - Left and Right Robot

Robot | 2—1 | 1 v, a; d; 0,
Left 0 1 | 7m—a | O 0 01(t)
Robot | 1 2 | —f3 0 0 —6a(1)
(1.3) 2 310 0 0 w/2 — 65(t)
3 4 | —7m/2 | 0 da(t) | O
4 5 | w/2 as | 0O /2 — 05
5 6 | —m/2 | 0 0 /24 g
Right | 0 1 | 7m—a | O 0 ™ — 01(t)
Robot | 1 2 | —f3 0 0 B2(t)
(2.4) 2 310 0 0 /24 7+ O3(1)
3 4 | —7m/2 | 0 da(t) | O
4 h | —m/2 as | 0O /24 O5
5 6 | —7m/2 | O 0 w/2 — b5

BIONICS =.




Direct Kinematics:
Transform Matrix for Left Robot

T
A s3 —c3 0 0
0 —— —'--1_;-:___ — C3 S3 0 O
[ F 0 0 10
Axisl 7 ol 0 0O 0 1
P 7 .:'I' Yo Anis2
: ¥ N Awi
% “'4.% W LK1 3T
L eft Bobot L ‘i.:"l . \-’J;I 4 o 0 0 0
S N, A 0 0 1 0
’ e o ¥ L L | ] —
<57 I?!I'.:;".A P J ;}L.&"f; f_#-ﬂf Axis2 0 -1 0 d,
= W ) / 0 0 0 1
| ( - | BT, N
2 | | i
= H‘:&:‘- .""-; - _ v Axis | Sg 0 Cs asSs
) T o cs 0 —sgz asc
b . =155 5 5Cs5
s Right Robot 0 1 0 0
0 0 O 1
or C2 =S¢ spsp 0 5
0 S;  Ccf —cysp 0 eT
c1 —Sica  SiSa 7= |52 ¢ 2 “se 0 —c5 0
_|s1 cca  —cisa 0 g Soﬂ Coﬂ (1) e 0 -s¢ 0
0 sa ca 0 0 -1 0 0
0 0 0 1 0o 0 o0 1

BIONICS =.



Direct Kinematics:
Transform Matrix for Right Robot

sjca
cica
sa
0

Axia | l{"’"’

Left Rob ot

ol

515

c15a

—ca
0

__:.;"_.:I
e
" B
"—\—l_\_ "'\.‘
1 v I Y Axis2
axd ¥ -"-"-L Axis
= - .. p
LR T s
L, o7
g K A2
¥ - L o 1 1
T _{*.I"-I. | ) :
= L ¥ — *-d Axis2
d k\ Ly .'I
i .'I |'.
Axia |
Right Robot
€2 =SB —s2SP
IT = Sz C20B 2B
0 —sB cB
0 0 0

= O O O

T
S3 (3
—_|7¢ S3
0 0
0 0
T
1 0 O
_lo 0 1
0O —1 O
0O 0 O
T
—5'5 0 —C5
— Cs 0 —Sg
0 -1 0
0 0 0
2T
S¢ 0 —cq4
_|cs O Se
0O -1 0
0 O 0

o = O O

= o o O

= o O O

BIONICS =.



Direct Kinematics: Solution

T

—c; sica sisa 0
|1 s1 cceca c¢sa 0
| o sa —ca 0
0 0 0 1

3T
1 0 0 O
10 0 1 O
10 -1 0 d,
0 0 0 1

Cc; —Sycff —sysB 0
ir — |52 c2¢B csp 0
z 0 -—sB cp 0
0 0 0 1
T
—Ss 0 —Cs —ds5Ss
Cs 0 —Ss5 a5 Cs

0 -1 0 0
0 0 0 1

1 Tz Tz B
T T T P,
or = grirsririTer = | 2 s B

r31 T3y T3z By
0 0 0 1

o = O O

= o o O

o O O

BIONICS =.



<

Inverse Kinematics

6 DOFs for positioning and orienting = Inverse Kinematics

1 DOF for the opening and closing of the grasper = Redundancy

Joint Limit Range

0; range Sh COS
01 09, 90°] + +

fo | [20°,140°] + +/—
03 | [—869,86° +/— | +
dy | [—250,—0]l mm | N/A | N/A
05 | [—869,86° +/— | +

Hﬁ o 86-:::- 8 El-:::- _|_ , _ _|_

BIONICS =.




Inverse Kinematics:
Homogeneous Transformation Matrix and Its Inverse

Homogenous Transform Matrix = Inverse

1 Tz Tz B 1 T2 T3 Prinw
8T = (TiT3TiTiTIT = |2 T2 T iy o7 = [9TiT2r3riTsT)t = |21 22 723 Pyinw
31 T32 T3z Iz = T31 T2 733 Pany
0 0 0 1 0 0 0 1
«  For the left robot, « Define
ﬁxinv = (—;455 +as)ce Pi%lv = P)?L'TLU + P}%inv + Pzzinv
— _ _ 2.2 _ 2 2 32
P _ (id‘:CSJraS)Sé ; (as —dycs)cs + (as — dycs)sg + s5d;
P2, = (as — d4cs)? + s2d? = aZ — 2agd,cs + d2c? + d2s?
=
PZ, = a% — 2asd,cs + d?
 For theright robot,
Priny = (daC5 = as)ce  Which gives
P,in, = scd
Py.lnv 504 2 _ ag‘l'dZ_Pi%wz
zZinv Cs —_—

—(d4cs — as)se




Inverse Kinematics

 For the left robot,

Priny = (—d4cs + as)ce

D —c d
ymr o597
Pyiny = (—daCs +)as)se }

 For theright robot,

o

xinv = (d4C5 — as5)Ce
yinv = S5d4

T

zZiny
—(dycs — as)sg

aZ +dz—P;

2a5d4

2
va 2

c2+st=1

BIONICS =.




Inverse Kinematics

« Four Possible Solutions of d,

dy = |a?+ P2, +2as+ |PE, — P2,

T

— |a% + P2, +2as + |P%, — P2,

7

T

2
2,

d4—ja5+P2 +2as + , — PZ

— |a2 + P2, — 2as + v~ Prin

7

Painy
- Resolve ¢, = Cesds +ag) . Resolve g,
Pyiny Pyins
For the left robot, T Cady o) s =4
% " (mesdy + a5)
For the right robot, w3




Inverse Kinematics

*  Withresolved d,, 6.and @, A, iy Q3 Gy

0 _ Oplg2g _ 6qr374ms1—1 _ |21 @G22 G233 Gy

T =2T5T5T = ST[3T=T2T]~* =

3 11213 ol [2TsTgT] A3y A3y Gaz G,
0 0 0 1

Where _
 Define
a3y = S35qC3 + (C254Cp + €4Sp)S3 he s
A3z = C2SqCp — CqSp b =zczgacﬁ + CaSp
* Resolve ¢, * We have
_ CaSp tas3 az; = acz + bss

C.
2 SaCﬁ

s 1-d  According to [1]




Inverse Kinematics

Check a5 to select between the two solution of 64

For the left robot, (13 = —S254S3 T €254C3Cp + SqC35p

For the right robot, Q13 = S35453 — C254C3Cp — SqC3Sp

* With resolved 6;, O, dy. BQM@

by1 by, byz by
b3y b3, bsz b,

bi1 by by bx‘
0 0 0 1

o7 = §TLTETET i = l

*  Where
For the left robot, S1.= biyer = bay }

For the right robot,  «=tua=-n

u
—|
-}
md B




Jacobian & Isotropy

« The mechanism isotropy is determined by the eigen-values of Jacobian matrix, which can be
derived by velocity propagation

« General equations for velocity propagation: X =J0

For the angular velocity, Hlayy = PRIy + 0140710

For the linear velocity, Hly = MRy X Py + ) + diyaZien
For the revolute joint, ém =0

For the prismatic joint, C.ii+2 =0

BIONICS =.



Jacobian & Isotropy

* |nitial Condition

¥

Link 1 is rotating at 6,about Zy: o = [0,0,6,]" %0 = [0,0,0]7
Link 2 is rotating at ézabout Z4

Link 3 is frozen with % ~°
Translation in homogeneous transformation matrix: P = ‘P, = *P3 = [0,0,0]"
Link 4 is translating at d.4 along Z3

. Rotation Matrices "iR=u1R"  which leads to

Cl Sl 0 CZ _52 0 gR
For the left robot R =|sice —cea sa iR =|5:cf crcp —sp I
s1sa  —cisa —ca s,sB cisB P =|-1 0 O
0 0 1
-1 S5 0 Cy Sy 0 3R o 1 0
. iR =|sica cica  sa 2R = |—s,¢B B —sPB -
For the right robot " sisa asa —ca Vi s o :(1) 8 (1)

BIONICS =.



Jacobian & Isotropy

« Angular velocity propagation
e A
1(1)1 = %RO(I)O + 9221

2(})2 - %lel

3(1)3 = ngwz

« Linear velocity propagation
1171 = lR(O(A)O X P1 + Ovo)
2, _2pr1 1
v; = 1RCwy X P+ "vy)

e A

37)3 == ER(Z(,UZ X P3 + sz) + d423

BIONICS =.



Jacobian & Isotropy

Hence, the velocity of the end-point of Link 3 is with reference to Frame 3 is

Angular Velocity

For the left robot For the right robot
s 3 : .
cycfsaf; + spcab; — spo, —Ccfsab; — spcaby + spo,
= staél - . Spsab; . .
czsﬁsaﬁ.l — cﬁcaél + Cﬁéz cpsPsaby — cfecaby + cfo;
Linear Velocity For both the left robot and right robot
3v

BIONICS =.



Jacobian & Isotropy

e Hence, the Jacobian Matrix is

3 r e
wa 6, cycBsa + spca —sB 0 49.1
For the left robot wyl|= 3y 6,|= 5,Sa 0o oflg,
) c,spsa — cpca ¢ 111 -
3, d, 25P B p M
For the right robot 3 P - e -
° 3wx 01 —(cycBsa + spca) —sB 0 9.1
a)y = 3] 02 = S,SQ 0 0 02
) . c,sfsa — cfca c 111 -
3dZ d4 2 ﬁ ﬁ IB _d4__

* The mechanism isotropy only depends on the 2X2 sub-matrix to the left corner

_ [£(cefsa + spca) —sp
B S,sa 0

I

BIONICS =.



Mechanism Isotropy

Mechanism isotropy - the end-effector's ability of moving in all direction given a specific manipulator
configuration.

Definition Iso =

0<Iso<1

Range

BIONICS =.



& Jacobian & Isotropy

« The eigen-values of the Jacobian matrix can be found by solving

det (%] °Jf = Ayp) =0

* Which gives

det ( 315 3T — Mysp) = 22 — [(cycfsa + sBea)? + (sB)?]A — (ccfsa + sBea)?(sysa)?

B = (cycBsa + sPca)® + (sB)?

* Define C = —(cycfsa + sPeca)?(sysa)?

Amin
B-VB?-4C _, _2VB?—4C

Ao =2"VN2 T _evo- — 2L
M p 4+ VB2 —4C B ++VB2 —4C

Iso =

BIONICS =.






Optimization of Raven IV —
Problem & Parameters (7) Definitions

200
N () -
-200
500
0, T e
) :r} .. X 2200
- 1; 500 y
D::‘ World Coordinate Frame




Optimization of Raven IV — Cost Function

e Cost Function

— Geometry - Largest circular common workspace (Area
Circumference Ratio)

— Manipulations - Best Isotropy
» Across the common workspace
« Worst case value (min/max problem)

— Mechanics - Stiff mechanism (Smallest Mechanism)

1Y Iso - Isopin

¢
C = max 2 2 {
(B, 93,9y, Pzbx,by) r L ﬁ y,

 Method
— Brute force search across all the free parameters

BIONICS =.



Common Workspace — Reference Plane

e

e 200
0

-
400

3

2

[0

O --

L0

30

.

200 el

| Reference Plain ;|

0 200 -100 0 100 200 300
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Area-Circumference Ratio

 Definition

Area

¢ ==
Circumference

« According to the Isoperimetric Inequality, a circle has the largest possible area among all the figures with
the length of boundary

BIONICS =.



Effect of Limiting Minimum Isotropy Performance

n oo

Distribution of ¢ for Four Raven Ams for lsg = 0.20 Distribution of ¢ for Four Raven Arme forlsg = 0.20
Bestgata=80.00, p =40.00 Best gat w=280.00, f =40.00

(a) (b)
Common Workspace of Four Raven Arms Robot &rm Configuration (Top View)
= 80 =40, g= 4.16 a= 80, f= 40
100 & : ; ;
0
E -
E -100 E
= Red - =
_opp| Cemman Werkspace of Four Raven Arms
= Grﬁf— H
Common Workspace:for Two Raven Arms i i ; ;
300}, R : T NS S R N
-200 0 _ 200 400 -400 -200 0 200 400  &0D
® (mm) X (mm)
(c) (d)

Fig. 13, Four Raven Arms: Distribution of ¢ for different v and /3,
I“S—Onli?l = 0.2.
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Optimization of Raven |V surgical System
‘ Effect of Limiting Minimum Isotropy Performance

Workspace propagation — Minimum Mechanism Isotropy = 0.2
a= 5 p= 5 ,¢= 0.00
200

100 |

-100
200 f Iso > 0.2,;132 from 54to 160

-300 |

-400 |

-300 -200 -100 0 100 200 300 400 500




& Optimization of Raven |V surgical System
Overall simulation result

« Parameter ranges, resolutions and optimal values

Range Optimal Value Resolution

v 5°,90°] 85° 20°

3 5°,90°] 65° 20°

Do —20°, 20°] 20° 10°

Dy —20°,20° 10° 10°

D~ —20°, 20°] —20° 10°

b l'irU 20(}] (mm) 100 (mm) 50 (mm)
by 50, 200] (mm) 50 (mm) 50 (mm)
Is0,,in 0.1,0.9] 0.5 0.2

Result Craxz = 526.3 for Iso,,,;,, =0.5




Optimization of Raven IV - Conclusion

7010 SRR

Red - CW of Four Raven Arms

Grey — CW of Two Raven Arms
Cthers — CW of One Raven Arm

~200 0 200 400




