Jacobian - Implications \& Applications

Part 2: Design - Manipulability Ellipsoid \& Performance Index

Performance Index - Manipulability

- Kinematic Singularity - The robot end effector loses its ability to translate or rotate in one or more directions
- Kinematic Singularity - Binary - A kinematic singularity presents a binary proposition - a particular configuration is either kinematically singular or it is not
- Proximity to Singularity - it is reasonable to ask if a nonsingular configuration is "close" to being singular.
- Manipulability Ellipsoid - The manipulability ellipsoid allows one to visualize geometrically the
 directions in which the end-effector moves with least effort or with greatest effort

Jacobian - Singularity - Mathematical Introduction

Jacobian - Singularity - Mathematical Introduction

Jacobian - Singularity - Mathematical Introduction

General expression of the end effector velocity ellipsoid

Jacobian - Singularity - Mathematical Introduction

- Linear Algebra - Norm - Definition
- Norm P- L_{p} norm of x

$$
\|x\|_{p}=\left[\sum_{i}\left|x_{i}\right|^{p}\right]^{\frac{1}{p}}=\sqrt[\frac{1}{p}]{\sum_{i}\left|x_{i}\right|^{p}}
$$

- $\left|x_{i}\right|$ Calculate the absolute value of the i-th element
- $\left|x_{i}\right|^{p}$ take its power p
- $\sum_{i}\left|x_{i}\right|^{p}$ sum all these power absolute values
- $\left[\sum_{i}\left|x_{i}\right|^{p}\right]^{\frac{1}{p}}$ take the power $\frac{1}{p}$ of the result

Jacobian - Singularity - Mathematical Introduction

- Norm P=0- L_{0} norm of x

$$
\|x\|_{0}=\left[\sum_{i}\left|x_{i}\right|^{0}\right]^{\frac{1}{0}}
$$

- Using the power of 0 with an absolute values will get you
- 1 for every non-zero value
- 0 for every zero value
- This norm corresponds to the number of non-zero elements in the vector
- Norm P=1- L_{1} norm of x

$$
\|x\|_{1}=\left[\sum_{i}\left|x_{i}\right|^{1}\right]^{\frac{1}{1}}=\sum_{i}\left|x_{i}\right|
$$

- The sum of the absolute values

Jacobian - Singularity - Mathematical Introduction

- Norm P=2- L_{2} norm X (Euclidean Norm)
- The absolute value is not needed anymore since x is squared
- Provide the length of the vector in Pythagorean theorem

$$
\|x\|_{2}=\left(\sum_{i} x_{i}^{2}\right)^{\frac{1}{2}}=\sqrt{\sum_{i} x_{i}^{2}}
$$

- Example

$$
u=\left\{\begin{array}{l}
3 \\
4
\end{array}\right\}
$$

$$
\|u\|_{2}=\sqrt{|3|^{2}+|4|^{2}}=\sqrt{25}=5
$$

Jacobian - Singularity - Mathematical Introduction

- L_{2}^{2} - Squared Euclidean norm (Squared L_{2}^{2} norm)

$$
\left(\|u\|_{2}\right)^{2}=\left(\sqrt{\sum_{i} x_{i}^{2}}\right)^{2}=\sum_{i} x_{i}^{2}
$$

- Alternative expressions for L_{2}^{2}

$$
\left(\|u\|_{2}\right)^{2}=x \cdot x=x^{T} x
$$

Jacobian - Singularity - Mathematical Introduction

Jacobian - Singularity - Mathematical Introduction

- A circle/sphere of joint velocities, like the circle shown here is defined by the equation

$$
\dot{\theta}^{T} \dot{\theta}=1
$$

- Using the definition of the Jacobian

$$
\begin{aligned}
& v=J(\theta) \dot{\theta} \\
& \dot{\theta}=J^{-1} v \\
& \dot{\theta}^{T}=\left(J^{-1} v\right)^{T}
\end{aligned}
$$

- Assume that the Jacobian is invertible (not strictly necessary) the previous equation can be rewritten as

$$
\left(J^{-1} v\right)^{T}\left(J^{-1} v\right)=1
$$

Jacobian - Singularity - Mathematical Introduction

- Based on Linear Algebra property
- The previous equations

$$
\begin{gathered}
(A x)^{T}=x^{T} A^{T} \\
\left(J^{-1} v\right)^{T}\left(J^{-1} v\right)=1
\end{gathered}
$$

- Can be rewritten as

$$
v^{T}\left(J^{-1}\right)^{T} J^{-1} v=1
$$

- Based on linear Algebra properties

$$
\begin{aligned}
& \left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T} \quad(\star) \\
& (A B)^{-1}=B^{-1} A^{-1} \quad(\star \star)
\end{aligned}
$$

- The previous equation can be rewritten as

$$
\begin{aligned}
& \text { from } \star \rightarrow v^{T}\left(J^{T}\right)^{-1} J^{-1} v=0 \\
& \text { from } \star \star \rightarrow v^{T}\left(J J^{T}\right)^{-1} v=0
\end{aligned}
$$

Jacobian - Singularity - Mathematical Introduction

- Rewriting

$$
\begin{aligned}
& v^{T}\left(J J^{T}\right)^{-1} v=0 \\
& v^{T}(A)^{-1} v=0
\end{aligned}
$$

- where

$$
\begin{gathered}
A=J J^{T} \\
A \in \mathbb{R}^{m \times m}, J \in \mathbb{R}^{m \times n}, J^{T} \in \mathbb{R}^{n \times m}
\end{gathered}
$$

A^{-1}, A properties:
$\mathrm{A}^{-1}, \mathrm{~A}$ - is positive $\mathrm{A}^{-1}, \mathrm{~A}$ - symmetric

Performance Index - Manipulability

- Performing eigenvector/eigenvalue analysis of $A=J J^{T}$ defining
- Eigenvectors v_{i}
- eigenvalues λ_{i}
- The directions of the principal axes of the ellipsoid are v_{i} and the lengths of the principal semi-axes are $\sqrt{\lambda_{i}}$

Jacobian - Singularity - Mathematical Introduction

- Replace v (velocity of the tip) by a vector x

$$
x^{T} A^{-1} x=0
$$

- $A \in \mathbb{R}^{m \times m}$ (symmetric, positive definite)

Eigenvalues of $A \rightarrow \lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$
Eigenvectors of $\mathrm{A} \rightarrow v_{1}, v_{2}, \ldots, v_{m}$

- The A matrix defines an ellipsoid of x values that satisfy the equation

- If $A=J J^{T} \quad x=v_{\text {tip }}$
- Then Manipulability Ellipsoid Resulting from a unit sphere of joint velocity

Jacobian - Singularity - Mathematical Introduction

$$
x^{T} A^{-1} x=0
$$

- If $\quad A=J J^{T} \quad x=v_{t i p}$
- Then Manipulability Ellipsoid Resulting from a unit sphere of joint velocity
- If $\quad A=\left(J J^{T}\right)^{-1} \quad x=F_{\text {tip }}$

- Then Force Ellipsoid Resulting from a unit sphere of joint forces or torques

Performance Index - Manipulability

$$
\dot{q}=\dot{X}=J \dot{\Theta}
$$

$$
\begin{aligned}
& \tau=J^{T} F \\
& F=J^{-T} \tau
\end{aligned}
$$

Jacobian - Singularity - Mathematical Introduction

- Same principle axes
- Same semi axis lengths

Small forces can be applied in direction of large velocities

Small velocity can be applied in direction of large forces

Jacobian - Singularity - Mathematical Introduction

- Assigning a single number representing how close the robot is to being a singular

OR

- Reducing the representation of the ellipsoid into a single number

Performance Indices

Definition

Performance Index Measure No. 1 - Isotropy

- Isotropy - The ratio of the longest and shortest semi-axes of the manipulability ellipsoid

$$
\begin{gathered}
\mu_{1}\left(J J^{T}\right)=\frac{\sqrt{\lambda_{\max }}}{\sqrt{\lambda_{\min }}} \geq 1 \\
1 \leq \mu_{1}\left(J J^{T}\right) \leq \infty
\end{gathered}
$$

- When $\mu_{1}\left(J J^{T}\right) \rightarrow 1$ then the manipulability ellipsoid is nearly spherical or isotropic,
 meaning that it is equally easy to move in any direction. This situation is generally desirable
- When $\mu_{1}\left(J J^{T}\right) \rightarrow \infty$ the robot approaches a singularity

Performance Index Measure No. 2 - Condition Number

- Manipulability Measure No. 2 - Condition Number - Squaring the isotropy measure

$$
\begin{gathered}
\mu_{2}\left(J J^{T}\right)=\left(\mu_{1}\left(J J^{T}\right)\right)^{2}=\frac{\lambda_{\max }}{\lambda_{\min }} \\
1 \leq \mu_{2}\left(J J^{T}\right) \leq \infty \\
0 \geq \frac{1}{\mu_{2}\left(J J^{T}\right)}=\frac{\lambda_{\min }(A)}{\lambda_{\max }(A)} \geq 1
\end{gathered}
$$

- When $\frac{1}{\mu_{2}\left(J J^{T}\right)} \rightarrow 1$ then the manipulability
 ellipsoid is nearly spherical or isotropic, meaning that it is equally easy to move in any direction. This situation is generally desirable
- When $\frac{1}{\mu_{2}\left(J J^{T}\right)} \rightarrow 0$ the robot approaches a singularity

Performance Index - Manipulability

- Manipulability Measure No. 3 - Manipulability The volume V of the ellipsoid is proportional to the product of the semi-axis lengths

$$
V \propto \sqrt{\lambda_{1} \lambda_{2} \cdots \lambda_{m}}=\sqrt{\operatorname{det}\left(J J^{T}\right)}
$$

- The Manipulability is defined as

$$
\begin{gathered}
\mu_{3}\left(J J^{T}\right)=w=\sqrt{\lambda_{1} \lambda_{2} \cdots \lambda_{m}}=\sqrt{\operatorname{det}\left(J J^{T}\right)} \\
0 \leq w<\infty
\end{gathered}
$$

- A good manipulator design has large area of characterized by high value of the manipulability (w)

Performance Index - Manipulability

- Given the structure of the Jacobian matrix, it makes sense to separate it into the two sub matrixes because the units of
- J_{v} are linear velocities (m / s) and the unites of
- J_{ω} are angular velocities (rad/s)

$$
J(\theta) \in \mathbb{R}^{6 \times n} \quad J(\theta)=\left[\begin{array}{c}
J_{v} \\
J_{\omega}
\end{array}\right] \quad \begin{aligned}
& J_{v} \in \mathbb{R}^{3 \times n} \rightarrow \text { Linear velocity/force ellipsoids } \\
& J_{w} \in \mathbb{R}^{3 \times n} \rightarrow \text { Angular velocity/moment ellipsoids }
\end{aligned}
$$

- This leads to two three-dimensional manipulability ellipsoids, one for linear velocities and one for angular velocities.

$$
\begin{aligned}
& J_{v} J_{v}{ }^{T} \\
& J_{\omega} J_{\omega}{ }^{T}
\end{aligned}
$$

Performance Index - Manipulability

When calculating the linear-velocity manipulability ellipsoid $\left(J_{v} J_{v}{ }^{T}\right)$,
it generally makes more sense to use the Jacobian expressed in the end effector space

$$
{ }^{N} J_{v}{ }^{N} J_{v}{ }^{T}
$$

instead of the Base Frame

$$
{ }^{0} J_{v}{ }^{0} J_{v}{ }^{T}
$$

since we are usually interested in the linear velocity of the end effector in its own coordinate system than a fixed frame at the base

Designing Well Conditioned Workspace - Rational

- Challenge
- Difficulty in operating at
- Workspace Boundaries
- Neighborhood of singular point inside the workspace
- Goal
- Singularity - The further the manipulator is away from singularities the better it moves uniformly and apply forces in all directions
- Performance Criterion
- It is useful to assign a single scalar measure defining how easily the robot can move at a given posture.

Recap

Performance Index - Manipulability

- Manipulabity Ellipsoid - For a general n-joint serial (open chain) and a task space with coordinates the ${ }_{q}$ manipulability ellipsoid corresponds to the end-effector velocities for joint rates \dot{q}

$$
\Theta=\left\{\begin{array}{c}
\theta_{1} \\
\theta_{2} \\
d_{i} \\
\theta_{n}
\end{array}\right\} q=X=\left\{\begin{array}{c}
x \\
y \\
Z \\
\theta_{x} \\
\theta_{y} \\
\theta_{z}
\end{array}\right\} \quad \dot{\Theta}=\left\{\begin{array}{c}
\dot{\theta}_{1} \\
\dot{\theta}_{2} \\
\dot{d}_{i} \\
\dot{\theta}_{n}
\end{array}\right\} \quad \dot{q}=\dot{X}=\left\{\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{Z} \\
\dot{\theta}_{x} \\
\dot{\theta}_{y} \\
\dot{\theta}_{z}
\end{array}\right\} \quad \begin{aligned}
& \dot{q}=J \dot{\Theta} \\
& \dot{\Theta}=J^{-1} \dot{q}
\end{aligned}
$$

satisfying the norm of $\dot{\Theta}$ to be equal to 1

$$
\|\dot{\Theta}\|=\dot{\Theta}^{T} \dot{\Theta}=1
$$

representing a unite sphere in the n -th dimensional joint velocity space

Performance Index - Manipulability

Assuming J is invertible, the unit joint-velocity condition can be written

$$
\begin{aligned}
& 1=\dot{\Theta}^{T} \dot{\Theta} \\
& 1=\left(J^{-1} \dot{q}\right)^{T}\left(J^{-1} \dot{q}\right) \\
& 1=\dot{q}^{T}\left(J^{-1}\right)^{T} J^{-1} \dot{q} \\
& =\dot{q}^{T} J^{-T} J^{-1} \dot{q} \\
& 1=\dot{q}^{T}\left(J J^{T}\right)^{-1} \dot{q}
\end{aligned}
$$

If J is full rank the matrix $J J^{T}$ and $\left(J J^{T}\right)^{-1}$ are

- square,
- symmetric
- positive definite

Performance Index - Manipulability

For any symmetric positive-definite $J J^{T}$, the set of vectors \dot{q} satisfying

$$
\dot{q}^{T}\left(J J^{T}\right)^{-1} \dot{q}=1
$$

defines an ellipsoid in the m-dimensional space.

Recap

- Represent an circle / sphere $\dot{\theta}^{T} \dot{\theta}=1$
- Represent a ellipse / ellipsoid $\dot{q}^{T}\left(J J^{T}\right)^{-1} \dot{q}=1$

Performance Indices - Design

Optimization Approach

Jacobian - Design - Performance Index - Optimization - Pseudo Code

Jacobian - Design - Performance Index - Optimization

Jacobian - Design - Performance Index - Optimization

Jacobian - Design - Performance Index - Optimization

$$
\begin{aligned}
& L_{1}+L_{2}<d \\
& \left.L_{1}+L_{2}<\sqrt{(d+w)^{2}+(\underline{l} 2}\right)
\end{aligned}
$$

Jacobian - Design - Performance Index - Optimization

CONDIFTON ON $\mathrm{La}_{1} \mathrm{~L}_{2}$

$$
\begin{aligned}
& L_{1}+L_{2}<d \\
& L_{1}+L_{2}<\sqrt{(d+w)^{2}+\left(\frac{h}{2}\right)^{2}}
\end{aligned}
$$

For $L_{1}: 0 \rightarrow 500+L_{1} L_{1}$
for $L_{2}: 0 \longrightarrow 500 \Delta t_{2}$

- Check if the link lengths allows the tip to reach all points of the work space
IF $L_{1}+L_{2}<d$
IF $\quad l_{1}+l_{2}<\sqrt{\left(d^{\prime} w\right)^{2}+(n / 2)^{2}}$

$$
\begin{aligned}
& \text { For } x: \quad x+d \longrightarrow x+d+w \Delta x \\
& \text { For } y: y-\frac{h}{2} \longrightarrow y+\frac{h}{2} \Delta y \\
& \begin{array}{c}
\text { calculate the } A_{1}, \theta_{2} \text { using } \\
\text { the Ik }
\end{array}
\end{aligned}
$$

Jacobian - Design - Performance Index - Optimization

$$
\begin{aligned}
& \text { FOR } L_{1}: 0 \rightarrow 500++\Delta L_{1} \\
& \text { FOR } L_{2}: 0 \rightarrow 500++\Delta L_{2} \\
& \text { Check if the link lengths allows the tip to reach all the points in the } \\
& \text { workspace by solving the IK for every point in the workspace } \\
& \text { IF } L_{1}+L_{2}<d \\
& \text { IF } L_{1}+L_{2}<\sqrt{(d+w)^{2}+\left(\frac{h}{2}\right)^{2}} \\
& \text { FOR } x: x+d \rightarrow x+d+w++\Delta x \\
& \text { FOR } y: y-\frac{h}{2} \rightarrow y+\frac{h}{2}++\Delta y \\
& \text { [Calculate the angles } \theta_{1}, \theta_{2} \text { using IK] }
\end{aligned}
$$

Calculate J and J^{\top}
Calculate the eigenvalues of $J J^{\top}$
calculate $\sqrt{\frac{x_{m}^{2}}{\lambda_{\text {max }}^{2}}}$

$$
\begin{aligned}
& \operatorname{END}(\text { for } y) \\
& \operatorname{ENID}(\text { for } x)
\end{aligned}
$$

Jacobian - Design - Performance Index - Optimization

[Calculate J and J^{T}]
[Calculate the eigenvalues of $J J^{T}$]
[Calculate $\sqrt{\frac{\lambda_{\text {min }}^{2}}{\lambda_{\text {max }}}}$]
[Populate κ]
END (FOR y)
END (FOR x)

Jacobian - Design - Performance Index - Optimization
calculate: $\sum K_{i}=$

$$
\begin{aligned}
& \text { Kirin } \\
& C=\frac{\sum K_{i} K_{\text {min }}}{L_{1}^{3}+L_{2}^{3}} \\
& O P T=\begin{array}{|l|l|l|l|l|}
\hline L_{1} & L_{2} & L_{c_{i}} & k_{\text {min }} & C \\
\hline & & & & \\
\hline
\end{array} \\
& \text { END (of } L_{2} \text {) } \\
& \text { EN刀 (of } L_{1} \text {) }
\end{aligned}
$$

Jacobian - Design - Performance Index - Optimization

Jacobian - Design - Performance Index - Optimization

```
- sexrch for max c ink opt
- Find }\mp@subsup{L}{1}{},\mp@subsup{L}{2}{
```


Jacobian - Design - Performance Index - Optimization

- Search for MAX C in OPT
- Find $\mathrm{L}_{1}, \mathrm{~L}_{2}$

Design - Example

RAVEN - A SURGICAL ROBTICS SYSTEM DESIGN - SPECIFICATIONS

$$
2
$$

狍

Engineering Specifications - BlueDRAGON

Device				DRAGON	UC Berkeley	UC Berkeley	UC Berkeley	DeVinchi	Zeus
Generation				R1-E(95\%)		1	2		
Referance					Measured	Traget	Obtained		
Base	Overall Geomtery	Shaft Diameter	[m]			$0.01-0.015$	0.01-0.015	0.01	0.005
	Position / Oriantataion	Delta Thetax	[Deg]	53.8047				+/-60	
		Delta Thetay	[Deg]	36.3807				+/-80	
		Delta Thetaz	[Deg]	148.0986	90	180-270	720	+/-180	
		R	[m]	0.1027				0.2	
		Grasping Jaw s	[Deg]	24.0819				200	
		Grasping Jaw s	[m]	*	0.006	0.002-0.003	0.008 min		
		Delta X	[m]	0.1026					
		Delta Y	[m]	0.0815					
		Delta Z	[m]	0.0877					
	Velocity (Angular Linear)	wx	[Rad/sec]	0.432					
		Wy	[Rad/sec]	0.486					
		Wz	[Rad/sec]	1.053			9.4 min		
		VR	[$\mathrm{m} / \mathrm{sec}$]	0.072					
		Wg	[Rad/sec]	0.0468					
	Force	Fx	[N	14.7299					
		Fy	[N	13.1981					
		Fz	[N	184.3919					
		Fg	[N	41.6085	15	5 min	40 min		
	Torque	Tx	[Nm]	2.3941					
		Ty	[Nm]	1.6011					
		Tz	[Nm]	0.0464	0.088	0.022			

Kinematic Analysis Playback Simulation using Measured Data

Robot Optimization - Workspace

```
\(60^{\circ}-60^{\circ}\)
```

- Dexterous Workspace (DWS)
- High dexterity region defined by a right circular cone with a vertex angel of 60응
- Contains 95% of the tool motions based on in-vivo measurements.

1 \qquad
\& 1 $+5-2$

Spherical Mechanism - Robot Optimization

Optimization of Raven IV -

Problem \& Parameters (7) Definitions

1 \qquad
\qquad

RAVEN - A SURGICAL ROBTICS SYSTEM

DESIGN - KINEMATIC ANALYSIS \& OPTIMIZATION

Direct Kinematics -

Coordinate Systems Assignment

Direct Kinematics -
 Coordinate Systems Assignment

Direct Kinematics:

DH Parameters - Left and Right Robot

Robot	$i-1$	i	α_{i}	a_{i}	d_{i}	θ_{i}
Reft Robot	0	1	$\pi-\alpha$	$\pi-\alpha$	0	0
	1	2	$-\beta$	0	0	$-\theta_{2}(t)$
	2	3	0	0	0	$\pi / 2-\theta_{3}(t)$
	3	4	$-\pi / 2$	0	$d_{4}(t)$	0
	4	5	$\pi / 2$	a_{5}	0	$\pi / 2-\theta_{5}$
	5	6	$-\pi / 2$	0	0	$\pi / 2+\theta_{6}$
	0	1	$\pi-\alpha$	0	0	$\pi-\theta_{1}(t)$
Robot $(2,4)$	1	2	$-\beta$	0	0	$\theta_{2}(t)$
	2	3	0	0	0	$\pi / 2+\pi+\theta_{3}(t)$
	3	4	$-\pi / 2$	0	$d_{4}(t)$	0
	4	5	$-\pi / 2$	a_{5}	0	$\pi / 2+\theta_{5}$
	5	6	$-\pi / 2$	0	0	$\pi / 2-\theta_{6}$

Direct Kinematics:

Transform Matrix for Left Robot

$$
\begin{aligned}
& { }_{1}^{0} T \\
& =\left[\begin{array}{cccc}
c_{1} & -s_{1} c \alpha & s_{1} s \alpha & 0 \\
s_{1} & c_{1} c \alpha & -c_{1} s \alpha & 0 \\
0 & s \alpha & c \alpha & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad{ }_{2}^{1} T=\left[\begin{array}{cccc}
c_{2} & -s_{2} c \beta & s_{2} s \beta & 0 \\
s_{2} & c_{2} c \beta & -c_{2} s \beta & 0 \\
0 & s \beta & c \beta & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad{ }_{6}^{5} T
\end{aligned}
$$

Direct Kinematics:
Transform Matrix for Right Robot

${ }_{1}^{0} T$
$=\left[\begin{array}{cccc}-c_{1} & s_{1} c \alpha & s_{1} s \alpha & 0 \\ s_{1} & c_{1} c \alpha & c_{1} s \alpha & 0 \\ 0 & s \alpha & -c \alpha & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \quad{ }_{2}^{1} T=\left[\begin{array}{cccc}c_{2} & -s_{2} c \beta & -s_{2} s \beta & 0 \\ s_{2} & c_{2} c \beta & c_{2} s \beta & 0 \\ 0 & -s \beta & c \beta & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

$$
\begin{aligned}
& \begin{array}{l}
{ }_{3}^{2} T \\
=\left[\begin{array}{cccc}
s_{3} & c_{3} & 0 & 0 \\
-c_{3} & s_{3} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{array} \\
& \begin{array}{l}
{ }_{4}^{3} T \\
=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & d_{4} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{array} \\
& \begin{array}{l}
{ }_{5}^{4} T \\
=\left[\begin{array}{cccc}
-s_{5} & 0 & -c_{5} & -a_{5} s_{5} \\
c_{5} & 0 & -s_{5} & a_{5} c_{5} \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{array} \\
& \begin{array}{l}
{ }_{6}^{5} T \\
=\left[\begin{array}{cccc}
s_{6} & 0 & -c_{6} & 0 \\
c_{6} & 0 & s_{6} & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{array}
\end{aligned}
$$

Direct Kinematics: Solution

$$
\begin{aligned}
& { }_{1}^{0} T \mathrm{C}=\left[\begin{array}{cccc}
-c_{1} & s_{1} c \alpha & s_{1} s \alpha & 0 \\
s_{1} & c_{1} c \alpha & c_{1} s \alpha & 0 \\
0 & s \alpha & -c \alpha & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad{ }_{2}^{1} T=\left[\begin{array}{cccc}
c_{2} & -s_{2} c \beta & -s_{2} s \beta & 0 \\
s_{2} & c_{2} c \beta & c_{2} s \beta & 0 \\
0 & -s \beta & c \beta & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad=\left[\begin{array}{cccc}
{ }_{3} T & =\left[\begin{array}{cccc}
s_{3} & c_{3} & 0 & 0 \\
-c_{3} & s_{3} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{array}\right. \\
& \begin{array}{l}
{ }_{4}^{3} T \\
=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & d_{4} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{array} \\
& =\left[\begin{array}{cccc}
{ }_{5}^{4} T \\
& \\
-s_{5} & 0 & -c_{5} & -a_{5} s_{5} \\
c_{5} & 0 & -S_{5} & a_{5} c_{5} \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& { }^{{ }_{6}^{5} T}\left[\begin{array}{cccc}
s_{6} & 0 & -c_{6} & 0 \\
c_{6} & 0 & s_{6} & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& { }_{6}^{0} T={ }_{1}^{0} T T_{2}^{1} T_{3}^{2} T_{4}^{3} T_{5}^{4} T{ }_{6}^{5} T=\left[\begin{array}{cccc}
r_{11} & r_{12} & r_{13} & P_{x} \\
r_{21} & r_{22} & r_{23} & P_{y} \\
r_{31} & r_{32} & r_{33} & P_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Inverse Kinematics

- 6 DOFs for positioning and orienting \rightarrow Inverse Kinematics
- 1 DOF for the opening and closing of the grasper \rightarrow Redundancy
- Joint Limit Range

θ_{i}	range	\sin	\cos
θ_{1}	$\left[0^{\circ}, 90^{\circ}\right]$	+	+
θ_{2}	$\left[20^{\circ}, 140^{\circ}\right]$	+	$+/-$
θ_{3}	$\left[-86^{\circ}, 86^{\circ}\right]$	$+/-$	+
d_{4}	$[-250,-0] \mathrm{mm}$	N / A	N / A
θ_{5}	$\left[-86^{\circ}, 86^{\circ}\right]$	$+/-$	+
θ_{6}	$\left[-86^{\circ}, 86^{\circ}\right]$	$+/-$	+

Inverse Kinematics: Homogeneous Transformation Matrix and Its Inverse

- Homogenous Transform Matrix \rightarrow Inverse

$$
{ }_{6}^{0} T={ }_{1}^{0} T_{2}^{1} T_{3}^{2} T_{4}^{3} T_{5}^{4} T_{6}^{5} T=\left[\begin{array}{cccc}
r_{11} & r_{12} & r_{13} & P_{x} \\
r_{21} & r_{22} & r_{23} & P_{y} \\
r_{31} & r_{32} & r_{33} & P_{z} \\
0 & 0 & 0 & 1
\end{array}\right] \quad \Rightarrow \quad{ }_{0}^{6} T=\left[{ }_{1}^{0} T_{2}^{1} T_{3}^{2} T_{4}^{3} T_{5}^{4} T_{6}^{5} T\right]^{-1}=\left[\begin{array}{cccc}
r_{11}^{\prime} & r_{12}^{\prime} & r_{13}^{\prime} & P_{x i n v} \\
r_{21}^{\prime} & r_{22}^{\prime} & r_{23}^{\prime} & P_{\text {yinv }} \\
r_{31}^{\prime} & r_{32}^{\prime} & r_{33}^{\prime} & P_{\text {zinv }} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- For the left robot,
$P_{\text {xinv }}=\left(-d_{4} c_{5}+a_{5}\right) c_{6}$
$P_{\text {zinv }}=\left(-d_{4} c_{5}+a_{5}\right) s_{6}$
- Define
$P_{i n v}^{2}=P_{x i n v}^{2}+P_{y i n v}^{2}+P_{z i n v}^{2}$
$=\left(a_{5}-d_{4} c_{5}\right)^{2} c_{6}^{2}+\left(a_{5}-d_{4} c_{5}\right) s_{6}^{2}+s_{5}^{2} d_{4}^{2}$
\Rightarrow
$P_{\text {inv }}^{2}=\left(a_{5}-d_{4} c_{5}\right)^{2}+s_{5}^{2} d_{4}^{2}=a_{5}^{2}-2 a_{5} d_{4} c_{5}+d_{4}^{2} c_{5}^{2}+d_{4}^{2} s_{5}^{2}$
$P_{i n v}^{2}=a_{5}^{2}-2 a_{5} d_{4} c_{5}+d_{4}^{2}$
- For the right robot,
$P_{x i n v}=\left(d_{4} c_{5}-a_{5}\right) c_{6}$
$P_{\text {yinv }}=s_{5} d_{4}$
$P_{\text {zinv }}$
$=-\left(d_{4} c_{5}-a_{5}\right) s_{6}$
- Which gives

$$
c_{5}^{2}=\left(\frac{a_{5}^{2}+d_{4}^{2}-P_{i n v}^{2}}{2 a_{5} d_{4}}\right)^{2}
$$

Inverse Kinematics

- For the left robot,
$\left.\begin{array}{l}P_{\text {xinv }}=\left(-d_{4} c_{5}+a_{5}\right) c_{6} \\ P_{\text {yinv }}=s_{5} d_{4} \\ P_{\text {zinv }}=\left(-d_{4} c_{5}+a_{5}\right) s_{6}\end{array}\right\}$
- For the right robot,

$P_{\text {xinv }}=\left(d_{4} c_{5}-a_{5}\right) c_{6}$ | $P_{\text {yinv }}=s_{5} d_{4}$ |
| :--- |
| $P_{\text {zinv }}$ |

$=-\left(d_{4} c_{5}-a_{5}\right) s_{6}$

$$
c_{5}^{2}=\left(\frac{a_{5}^{2}+d_{4}^{2}-P_{i n v}^{2}}{2 a_{5} d_{4}}\right)^{2}
$$

$$
\Rightarrow \quad d_{4}
$$

Inverse Kinematics

- Four Possible Solutions of d_{4}

\Rightarrow

- Resolve
θ_{6}
For the left robot,

$$
\begin{aligned}
& c_{6}=\frac{P_{z i n v}}{\left(-c_{5} d_{4}+a_{5}\right)} \\
& s_{6}=\frac{P_{x i n v}}{\left(-c_{5} d_{4}+a_{5}\right)} \\
& s_{6}=\frac{-P_{x i n v}}{\left(-c_{5} d_{4}+a_{5}\right)}
\end{aligned}
$$

For the right robot,

$$
\theta_{6}=A \tan 2\left(s_{6}, c_{6}\right)
$$

- Resolve θ_{5}

$$
s_{6}=\frac{P_{y i n v}}{d_{4}}
$$

$$
c=\sqrt{1-\frac{1}{8}}
$$

$\theta_{6}=A \tan 2\left(s_{6}, c_{6}\right)$

Inverse Kinematics

- With resolved d_{4}, θ_{5} and θ_{6}

- Where
$a_{32}=s_{2} s_{\alpha} c_{3}+\left(c_{2} s_{\alpha} c_{\beta}+c_{\alpha} s_{\beta}\right) s_{3}$ $a_{33}=c_{2} s_{\alpha} c_{\beta}-c_{\alpha} s_{\beta}$
- Resolve θ_{2}

$$
\begin{aligned}
& c_{2}=\frac{c_{\alpha} s_{\beta}+a_{33}}{s_{\alpha} c_{\beta}} \\
& s_{2}=\sqrt{1-c_{2}^{2}}
\end{aligned}
$$

\square

- Define

$$
b=c_{2} s_{\alpha} c_{\beta}+c_{\alpha} s_{\beta}
$$

- We have
$a_{32}=a c_{3}+b s_{3}$
- According to [1]
$\theta_{3}=2 A \tan \left(\frac{b+\sqrt{a^{2}+b^{2}-a_{32}}}{a+a_{32}}\right)$

Inverse Kinematics

Check a_{13} to select between the two solution of θ_{3}
For the left robot, $\quad a_{13}=-s_{2} s_{\alpha} s_{3}+c_{2} s_{\alpha} c_{3} c_{\beta}+s_{\alpha} c_{3} s_{\beta}$
For the right robot, $\quad a_{13}=s_{2} s_{\alpha} s_{3}-c_{2} s_{\alpha} c_{3} c_{\beta}-s_{\alpha} c_{3} s_{\beta}$

- With resolved $\theta_{5}, \theta_{5}, d_{4}, \theta_{3}$ and $\ln ^{2}+\theta_{6}$
- Where

For the left robot, $\left.\begin{array}{c}s_{1}=b_{11}, c_{1}=b_{21}\end{array}\right\}$
For the right robot,

Jacobian \& Isotropy

- The mechanism isotropy is determined by the eigen-values of Jacobian matrix, which can be derived by velocity propagation
- General equations for velocity propagation: $\dot{X}=j \dot{\Theta}$

For the angular velocity,	${ }^{i+1} \omega_{i+1}={ }_{i}^{i+1} R^{i} \omega_{i}+\dot{\theta}_{i+2} \hat{Z}_{i+1}$
For the linear velocity,	${ }^{i+1} v_{v_{i+1}}={ }_{i+1}^{i+1} R\left({ }^{i} \omega_{i} \times P_{i+1}+{ }^{i} v_{i}\right)+\dot{d}_{i+2} \hat{Z}_{i+1}$
For the revolute joint,	$\dot{\theta}_{i+2}=0$
For the prismatic joint,	$\dot{d}_{i+2}=0$

Jacobian \& Isotropy

- Initial Condition

Link 1 is rotating at $\dot{\theta}_{1}$ about z_{0} :

$$
{ }^{0} \omega_{0}=\left[0,0, \dot{\theta}_{1}\right]^{T} \quad{ }^{0} v_{0}=[0,0,0]^{T}
$$

Link 2 is rotating at $\dot{\theta}_{2}$ about z_{1}
Link 3 is frozen with $\dot{\theta}_{3}=0$
Translation in homogeneous transformation matrix: $\quad{ }^{0} P_{1}={ }^{1} P_{2}={ }^{2} P_{3}=[0,0,0]^{T}$ Link 4 is translating at \dot{d}_{4} along z_{3}

- Rotation Matrices ${ }_{i+1}^{i} R={ }_{i+1}{ }^{i} R^{T} \quad$, which leads to

For the left robot

$$
{ }_{0}^{1} R=\left[\begin{array}{ccc}
c_{1} & s_{1} & 0 \\
s_{1} c \alpha & -c_{1} c \alpha & s \alpha \\
s_{1} s \alpha & -c_{1} s \alpha & -c \alpha
\end{array}\right]
$$

${ }_{1}^{2} R=\left[\begin{array}{ccc}c_{2} & -s_{2} & 0 \\ s_{2} c \beta \\ c_{2} c \beta & c_{1} c \beta & -s \beta \\ c_{1} s \beta & c \beta\end{array}\right]$
${ }_{2}^{\frac{3}{2} R}=\left[\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$
For the right robot

$$
{ }_{0}^{1} R=\left[\begin{array}{ccc}
-c_{1} & s_{1} & 0 \\
s_{1} c \alpha & c_{1} c \alpha & s \alpha \\
s_{1} s \alpha & c_{1} s \alpha & -c \alpha
\end{array}\right]
$$

${ }_{1}^{2} R=\left[\begin{array}{ccc}c_{2} & s_{2} & 0 \\ -s_{2} c \beta & c_{1} c \beta & -s \beta \\ -s_{2} s \beta & c_{1} s \beta & c \beta\end{array}\right]$
${ }_{2}^{3} R$
$=\left[\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$

Jacobian \& Isotropy

- Angular velocity propagation

$$
\begin{aligned}
& { }^{1} \omega_{1}={ }_{0}^{1} R^{0} \omega_{0}+\dot{\theta}_{2} \hat{Z}_{1} \\
& { }^{2} \omega_{2}={ }_{1}^{2} R^{1} \omega_{1} \\
& { }^{3} \omega_{3}={ }_{2}^{3} R^{2} \omega_{2}
\end{aligned}
$$

- Linear velocity propagation

$$
\begin{aligned}
& { }^{1} v_{1}={ }_{0}^{1} R\left({ }^{0} \omega_{0} \times P_{1}+{ }^{0} v_{0}\right) \\
& { }^{2} v_{2}={ }_{1}^{2} R\left({ }^{1} \omega_{1} \times P_{2}+{ }^{1} v_{1}\right) \\
& { }^{3} v_{3}={ }_{2}^{3} R\left({ }^{2} \omega_{2} \times P_{3}+{ }^{2} v_{2}\right)+\dot{d}_{4} \hat{Z}_{3}
\end{aligned}
$$

Jacobian \& Isotropy

- Hence, the velocity of the end-point of Link 3 is with reference to Frame 3 is

Angular Velocity

For the left robot

$$
=\left[\begin{array}{c}
{ }_{3}^{3} \omega \\
c_{2} c \beta s \alpha \dot{\theta_{1}}+s \beta c \alpha \dot{\theta}_{1}-s \beta \dot{\theta}_{2} \\
c_{2} s \beta s \alpha \dot{\theta}_{1}-c \beta c \alpha \dot{\theta}_{1}+c \beta \dot{\theta}_{2}
\end{array}\right]
$$

For the right robot

Linear Velocity For both the left robot and right robot

$$
\begin{aligned}
& { }_{3}^{3} v \\
& =\left[\begin{array}{c}
0 \\
0 \\
\dot{d}_{4}
\end{array}\right]
\end{aligned}
$$

Jacobian \& Isotropy

- Hence, the Jacobian Matrix is

For the left robot $\left[\begin{array}{l}{ }^{3} \omega_{x} \\ { }^{3} \omega_{y} \\ \dot{3}_{y} \\ { }^{3} d_{z}\end{array}\right]={ }^{3} J\left[\begin{array}{c}\dot{\theta}_{1} \\ \dot{\theta}_{2} \\ \dot{d}_{4}\end{array}\right]=\left[\begin{array}{ccc}c_{2} c \beta s \alpha+s \beta c \alpha & -s \beta & 0 \\ s_{2} s \alpha & 0 & 0 \\ c_{2} s \beta s \alpha-c \beta c \alpha & c \beta & 1\end{array}\right]\left[\begin{array}{c}\dot{\theta}_{1} \\ \dot{\theta}_{2} \\ \dot{d}_{4}\end{array}\right]$

For the right robot

$$
\left[\begin{array}{c}
{ }^{3} \omega_{x} \\
{ }^{3} \omega_{y} \\
{ }_{y}{ }^{3} d_{z}
\end{array}\right]={ }^{3} J\left[\begin{array}{c}
\dot{\theta_{1}} \\
\dot{\dot{\theta}_{2}} \\
\dot{d_{4}}
\end{array}\right]=\left[\begin{array}{ccc}
-\left(c_{2} c \beta s \alpha+s \beta c \alpha\right) & -s \beta & 0 \\
s_{2} s \alpha & 0 & 0 \\
c_{2} s s s \alpha-c \beta c \alpha & c \beta & 1
\end{array}\right]\left[\begin{array}{c}
\dot{\theta}_{1} \\
\dot{\theta}_{2} \\
\dot{d_{4}}
\end{array}\right]
$$

- The mechanism isotropy only depends on the 2X2 sub-matrix to the left corner

$$
{ }^{3} J_{s}=\left[\begin{array}{cc}
\pm\left(c_{2} c \beta s \alpha+s \beta c \alpha\right) & -s \beta \\
s_{2} s \alpha & 0
\end{array}\right]
$$

Mechanism Isotropy

- Mechanism isotropy - the end-effector's ability of moving in all direction given a specific manipulator configuration.
- Definition

$$
\text { Iso }=\frac{\lambda_{\min }}{\lambda_{\max }}
$$

- Range
$0 \leq I$ so ≤ 1

Jacobian \& Isotropy

- The eigen-values of the Jacobian matrix can be found by solving

$$
\operatorname{det}\left({ }^{3} J_{s}{ }^{3} J_{s}^{T}-\lambda I_{2 \times 2}\right)=0
$$

- Which gives

$$
\operatorname{det}\left({ }^{3} J_{s}{ }^{3} J_{s}^{T}-\lambda I_{2 \times 2}\right)=\lambda^{2}-\left[\left(c_{2} c \beta s \alpha+s \beta c \alpha\right)^{2}+(s \beta)^{2}\right] \lambda-\left(c_{2} c \beta s \alpha+s \beta c \alpha\right)^{2}\left(s_{2} s \alpha\right)^{2}
$$

- Define

$$
\begin{aligned}
& B=\left(c_{2} c \beta s \alpha+s \beta c \alpha\right)^{2}+(s \beta)^{2} \\
& C=-\left(c_{2} c \beta s \alpha+s \beta c \alpha\right)^{2}\left(s_{2} s \alpha\right)^{2}
\end{aligned}
$$

$$
\text { Iso }=\frac{\lambda_{\min }}{\lambda_{\max }=\frac{B-\sqrt{B^{2}-4 C}}{B+\sqrt{B^{2}-4 C}}=1-\frac{2 \sqrt{B^{2}-4 C}}{B+\sqrt{B^{2}-4 C}}}
$$

1 \qquad
\qquad

Optimization of Raven IV -

Problem \& Parameters (7) Definitions

World Coordinate Frame

Optimization of Raven IV - Cost Function

- Cost Function
- Geometry - Largest circular common workspace (Area Circumference Ratio)
- Manipulations - Best Isotropy
- Across the common workspace
- Worst case value (min/max problem)
- Mechanics - Stiff mechanism (Smallest Mechanism)
- Method
- Brute force search across all the free parameters

Common Workspace - Reference Plane

Area-Circumference Ratio

- Definition

$$
\varsigma=\frac{\text { Area }}{\text { Circumference }}
$$

- According to the Isoperimetric Inequality, a circle has the largest possible area among all the figures with the length of boundary

$$
\varsigma_{c}=\frac{\pi r^{2}}{2 \pi r}=\frac{r}{2}
$$

Effect of Limiting Minimum Isotropy Performance

Fig. 13. Four Raven Arms: Distribution of ς for different α and β,
$I s_{\text {min }}=0.2$.

Optimization of Raven IV surgical System

 Effect of Limiting Minimum Isotropy Performance- Workspace propagation - Minimum Mechanism Isotropy $=0.2$

Optimization of Raven IV surgical System Overall simulation result

- Parameter ranges, resolutions and optimal values

	Range	Optimal Value	Resolution
α	$\left[5^{\circ}, 90^{\circ}\right]$	85°	20°
β	$\left[5^{\circ}, 90^{\circ}\right]$	65°	20°
ϕ_{x}	$\left[-20^{\circ}, 20^{\circ}\right]$	20°	10°
ϕ_{y}	$\left[-20^{\circ}, 20^{\circ}\right]$	10°	10°
ϕ_{z}	$\left[-20^{\circ}, 20^{\circ}\right]$	-20°	10°
b_{x}	$[50,200](\mathrm{mm})$	$100(\mathrm{~mm})$	$50(\mathrm{~mm})$
b_{y}	$[50,200](\mathrm{mm})$	$50(\mathrm{~mm})$	$50(\mathrm{~mm})$
$I o_{\min }$	$[0.1,0.9]$	0.5	0.2
Result	$C_{\max }=526.3$ for Iso min $^{\circ}=0.5$		

Optimization of Raven IV - Conclusion

