

Jacobian – Implications & Applications

Part 2: Design - Manipulability Ellipsoid & Performance Index

Performance Index – Manipulability

- Kinematic Singularity The robot end effector loses its ability to translate or rotate in one or more directions
- Kinematic Singularity Binary A kinematic singularity presents a binary proposition – a particular configuration is either kinematically singular or it is not
- **Proximity to Singularity** it is reasonable to ask if a nonsingular configuration is "close" to being singular.
- **Manipulability Ellipsoid** The manipulability ellipsoid allows one to visualize geometrically the directions in which the end-effector moves with least effort or with greatest effort

General expression of the end effector velocity ellipsoid

- Linear Algebra Norm Definition
 - Norm P L_p norm of x

$$||x||_{p} = \left[\sum_{i} |x_{i}|^{p}\right]^{\frac{1}{p}} = \sqrt[\frac{1}{p}]{\sum_{i} |x_{i}|^{p}}$$

- $|x_i|$ Calculate the absolute value of the i-th element
- $|x_i|^p$ take its power p
- $\sum_{i} |x_{i}|^{p}$ sum all these power absolute values
- $\left[\sum_{i} |x_{i}|^{p}\right]^{\frac{1}{p}}$ take the power $\frac{1}{p}$ of the result

- Norm P=0 - L_0 norm of x

$$||x||_0 = \left[\sum_i |x_i|^0\right]^{\frac{1}{0}}$$

- Using the power of 0 with an absolute values will get you
 - 1 for every non-zero value
 - 0 for every zero value
- This norm corresponds to the number of non-zero elements in the vector
- Norm P=1 - L_1 norm of x

$$||x||_1 = \left[\sum_i |x_i|^1\right]^{\frac{1}{1}} = \sum_i |x_i|$$

• The sum of the absolute values

- Norm $P=2 L_2$ norm X (Euclidean Norm)
 - The absolute value is not needed anymore since x is squared
 - Provide the length of the vector in Pythagorean theorem

 $u = \begin{cases} 3 \\ {}_{\Lambda} \end{cases}$

$$||x||_2 = \left(\sum_i x_i^2\right)^{\frac{1}{2}} = \sqrt{\sum_i x_i^2}$$

Example

$$||u||_2 = \sqrt{|3|^2 + |4|^2} = \sqrt{25} = 5$$

- L_2^2 - Squared Euclidean norm (Squared L_2^2 norm)

$$(||u||_2)^2 = \left(\sqrt{\sum_i x_i^2}\right)^2 = \sum_i x_i^2$$

• Alternative expressions for L_2^2

$$(||u||_2)^2 = x \cdot x = x^T x$$

• A circle/sphere of joint velocities, like the circle shown here is defined by the equation

$$\dot{\theta}^T \dot{\theta} = 1$$

• Using the definition of the Jacobian

$$v = J(\theta)\dot{\theta}$$
$$\dot{\theta} = J^{-1}v$$
$$\dot{\theta}^{T} = (J^{-1}v)^{T}$$

 Assume that the Jacobian is invertible (not strictly necessary) the previous equation can be rewritten as

$$(J^{-1}v)^T (J^{-1}v) = 1$$

- Based on Linear Algebra property
- The previous equations
- Can be rewritten as

$$(Ax)^{T} = x^{T}A^{T}$$
$$(J^{-1}v)^{T}(J^{-1}v) = 1$$
$$v^{T}(J^{-1})^{T}J^{-1}v = 1$$

• Based on linear Algebra properties

$$(A^T)^{-1} = (A^{-1})^T (\star)$$

 $(AB)^{-1} = B^{-1}A^{-1} (\star\star)$

• The previous equation can be rewritten as

from
$$\star \to v^T (J^T)^{-1} J^{-1} v = 0$$

from $\star \star \to v^T (J J^T)^{-1} v = 0$

Rewriting

$$v^{T}(JJ^{T})^{-1}v = 0$$
$$v^{T}(A)^{-1}v = 0$$

• where

$$A = JJ^T$$

 $A \in \mathbb{R}^{m \times m}, J \in \mathbb{R}^{m \times n}, J^T \in \mathbb{R}^{n \times m}$

 A^{-1} , A properties: A^{-1} , A – is positive A^{-1} , A – symmetric

Performance Index – Manipulability

- Performing eigenvector/eigenvalue analysis of $A = JJ^T$ defining
 - Eigenvectors v_i
 - eigenvalues λ_i
- The directions of the principal axes of the ellipsoid are v_i and the lengths of the principal semi-axes are $\sqrt{\lambda_i}$

• Replace *v* (velocity of the tip) by a vector x

 $x^T A^{-1} x = 0$

• $A \in \mathbb{R}^{m \times m}$ (symmetric, positive definite)

Eigenvalues of $A \rightarrow \lambda_1, \lambda_2, ..., \lambda_m$ Eigenvectors of $A \rightarrow v_1, v_2, ..., v_m$

• The A matrix defines an ellipsoid of x values that satisfy the equation

• If $A = JJ^T$ $x = v_{tip}$

 Then Manipulability Ellipsoid Resulting from a unit sphere of joint velocity

$$x^T A^{-1} x = 0$$

• If
$$A = JJ^T$$
 $x = v_{tip}$

Then Manipulability Ellipsoid Resulting from a unit sphere of joint velocity

• If
$$A = (JJ^T)^{-1}$$
 $x = F_{tip}$

• Then Force Ellipsoid Resulting from a unit sphere of joint forces or torques

Performance Index – Manipulability

$$\dot{q} = \dot{X} = J\dot{\Theta}$$

$$\tau = J^T F$$
$$F = J^{-T} \tau$$

- Assigning a single number representing how close the robot is to being a singular

OR

- Reducing the representation of the ellipsoid into a single number

Performance Indices

Definition

Performance Index Measure No.1 - Isotropy

• **Isotropy** – The ratio of the longest and shortest semi-axes of the manipulability ellipsoid

$$\mu_1(JJ^T) = \frac{\sqrt{\lambda_{\max}}}{\sqrt{\lambda_{\min}}} \ge 1$$

$$1 \leq \mu_1(JJ^T) \leq \infty$$

- When $\mu_1(JJ^T) \rightarrow 1$ then the manipulability ellipsoid is nearly spherical or isotropic, meaning that it is equally easy to move in any direction. This situation is generally desirable
- When $\mu_1(JJ^T) \to \infty$ the robot approaches a singularity

Performance Index Measure No.2 – Condition Number

Manipulability Measure No. 2 – Condition **Number** – Squaring the isotropy measure

$$\mu_2(JJ^T) = \left(\mu_1(JJ^T)\right)^2 = \frac{\lambda_{\max}}{\lambda_{\min}}$$

$$1 \le \mu_2(JJ^T) \le \infty$$

$$0 \ge \frac{1}{\mu_2(JJ^T)} = \frac{\lambda_{min}(A)}{\lambda_{max}(A)} \ge 1$$

- When $\frac{1}{\mu_2(II^T)} \rightarrow 1$ then the manipulability ellipsoid is nearly spherical or isotropic, meaning that it is equally easy to move in any direction. This situation is generally desirable
- When $\frac{1}{\mu_2(JJ^T)} \rightarrow 0$ the robot approaches a singularity

Performance Index – Manipulability

• Manipulability Measure No. 3 – Manipulability – The volume V of the ellipsoid is proportional to the product of the semi-axis lengths

$$V \propto \sqrt{\lambda_1 \lambda_2 \cdots \lambda_m} = \sqrt{\det(JJ^T)}$$

• The Manipulability is defined as

$$\mu_3(JJ^T) = w = \sqrt{\lambda_1 \lambda_2 \cdots \lambda_m} = \sqrt{\det(JJ^T)}$$

$$0 \le w < \infty$$

 A good manipulator design has large area of characterized by high value of the manipulability (w)

- Given the structure of the Jacobian matrix, it makes sense to separate it into the two sub matrixes because the units of
 - J_{ν} are linear velocities (m/s) and the unites of
 - J_{ω} are angular velocities (rad/s)

$$J(\theta) \in \mathbb{R}^{6 \times n} \qquad J(\theta) = \begin{bmatrix} J_v \\ J_\omega \end{bmatrix} \qquad \begin{array}{l} J_v \in \mathbb{R}^{3 \times n} \to \text{Linear velocity/force ellipsoids} \\ J_w \in \mathbb{R}^{3 \times n} \to \text{Angular velocity/moment ellipsoids} \end{array}$$

• This leads to two three-dimensional manipulability ellipsoids, one for linear velocities and one for angular velocities.

$$J_{\nu}J_{\nu}^{T}$$
$$J_{\omega}J_{\omega}^{T}$$

Performance Index – Manipulability

When calculating the linear-velocity manipulability ellipsoid ($I_{\nu}I_{\nu}^{T}$),

it generally makes more sense to use the Jacobian expressed in the end effector space

 $^{N}J_{\nu}^{N}J_{\nu}^{T}$

instead of the Base Frame

 ${}^{0}J_{\nu}{}^{0}J_{\nu}{}^{T}$

since we are usually interested in the linear velocity of the end effector in its own coordinate system than a fixed frame at the base

- Challenge
 - Difficulty in operating at
 - Workspace Boundaries
 - Neighborhood of singular point inside the workspace
- Goal
 - Singularity The further the manipulator is away from singularities the better it moves uniformly and apply forces in all directions

Performance Criterion

- It is useful to assign a single scalar measure defining how easily the robot can move at a given posture.

Recap

• **Manipulabity Ellipsoid** - For a general n-joint serial (open chain) and a task space with coordinates the *q* manipulability ellipsoid corresponds to the end-effector velocities for joint rates *q*

$$\Theta = \begin{cases} \theta_1 \\ \theta_2 \\ \\ d_i \\ \\ \theta_n \end{cases} \quad q = X = \begin{cases} x \\ y \\ Z \\ \\ \theta_x \\ \\ \theta_y \\ \\ \theta_z \end{cases} \quad \dot{\Theta} = \begin{cases} \dot{\theta}_1 \\ \dot{\theta}_2 \\ \\ \dot{\theta}_2 \\ \\ \dot{d}_i \\ \\ \dot{\theta}_n \end{cases} \quad \dot{q} = \dot{X} = \begin{cases} \dot{x} \\ \dot{y} \\ \dot{z} \\ \dot{\theta}_x \\ \\ \dot{\theta}_x \\ \\ \dot{\theta}_y \\ \\ \dot{\theta}_z \end{cases} \quad \dot{q} = J\dot{\Theta}$$

satisfying the norm of $\dot{\Theta}$ to be equal to 1

$$\left\|\dot{\Theta}\right\| = \dot{\Theta}^T \dot{\Theta} = 1$$

representing a unite sphere in the n-th dimensional joint velocity space

Assuming J is invertible, the unit joint-velocity condition can be written

$$1 = \dot{\Theta}^{T} \dot{\Theta}$$

$$1 = (J^{-1} \dot{q})^{T} (J^{-1} \dot{q})$$

$$1 = \dot{q}^{T} (J^{-1})^{T} J^{-1} \dot{q}$$

$$= \dot{q}^{T} J^{-T} J^{-1} \dot{q}$$

$$1 = \dot{q}^{T} (JJ^{T})^{-1} \dot{q}$$

If J is full rank the matrix JJ^T and $(JJ^T)^{-1}$ are

- square,
- symmetric
- positive definite

Performance Index – Manipulability

For any symmetric positive-definite JJ^T , the set of vectors \dot{q} satisfying

 $\dot{q}^T (JJ^T)^{-1} \dot{q} = 1$

defines an ellipsoid in the m-dimensional space.

Recap

- Represent an circle / sphere $\dot{\Theta}^T \dot{\Theta} = 1$
- Represent a ellipse / ellipsoid $\dot{q}^T (JJ^T)^{-1} \dot{q} = 1$

Performance Indices - Design

Optimization Approach

Jacobian – Design - Performance Index – Optimization – Pseudo Code

Jacobian – Design - Performance Index – Optimization

CONDISTON ON LILZ LI+LZ La-Lz $L_1 + L_2 < d$ $L_1 + L_2 < (d + w)^2 + (h_2^2)$ hlz W Lith

CONDISTON ON LILZ LI+LZ LI-L2 $L_1 + L_2 < d$ $L_1 + L_2 < \sqrt{(d+w)^2 + \left(\frac{h}{2}\right)^2}$ h/2 W Lith

For L1: 0-> 500 +4L1 for 12:1-> 500 AEZ Check if the link lengths allows the tip to reach all points of the work space IF $L_1+L_2 < d$ IF $L_1+L_2 < \sqrt{(d+w)^2 + (\frac{w}{2})^2}$ For X: X+d -> X+d+W AX For y: y-h= > y+ h= Ay calculate the An, Az using the IK

FOR $L_1: 0 \rightarrow 500 + +\Delta L_1$ FOR $L_2: 0 \rightarrow 500 + +\Delta L_2$ Check if the link lengths allows the tip to reach all the points in the workspace by solving the IK for every point in the workspace IF $L_1 + L_2 < d$ IF $L_1 + L_2 < \sqrt{(d+w)^2 + (\frac{h}{2})^2}$ FOR $x: x + d \rightarrow x + d + w + +\Delta x$ FOR $y: y - \frac{h}{2} \rightarrow y + \frac{h}{2} + +\Delta y$ [Calculate the angles θ_1, θ_2 using IK]

- SEARCH FOR MAX C in OPT Find La, Lz

- Search for MAX C in OPT
- Find L_1, L_2

Design – Example

RAVEN – A SURGICAL ROBTICS SYSTEM

DESIGN – SPECIFICATIONS

Engineering Specifications - BlueDRAGON

Device				DRAGON	UC Berkeley	UC Berkeley	UC Berkeley	DeVinchi	Zeus
Generation				R1 - E (95%)		1	2		
Referance					Measured	Traget	Obtained		
Base	Overall Geomtery	Shaft Diameter	[m]			0.01 - 0.015	0.01 - 0.015	0.01	0.005
	Position / Oriantataion	Delta Theta x	[Deg]	53.8047				+/-60	
		Delta Theta y	[Deg]	36.3807				+/-80	
		Delta Theta z	[Deg]	148.0986	90	180-270	720	+/-180	
		R	[m]	0.1027				0.2	
		Grasping Jaw s	[Deg]	24.0819				200	
		Grasping Jaw s	[m]	*	0.006	0.002-0.003	0.008 min		
		Delta X	[m]	0.1026					
		Delta Y	[m]	0.0815					
		Delta Z	[m]	0.0877					
	Velocity (Angular Linear)	Wx	[Rad/sec]	0.432					
		Wy	[Rad/sec]	0.486					
		Wz	[Rad/sec]	1.053			9.4 min		
		VR	[m/sec]	0.072					
		Wg	[Rad/sec]	0.0468					
	Force	Fx	[N]	14.7299					
		Fy	[N]	13.1981					
		Fz	[N]	184.3919					
		Fg	[N]	41.6085	15	5 min	40 min		
	Torque	Tx	[Nm]	2.3941					
		Ту	[Nm]	1.6011					
		Tz	[Nm]	0.0464	0.088	0.022			

Kinematic Analysis – Playback Simulation using Measured Data

Robot Optimization - Workspace

60°- 60°

- Dexterous Workspace (DWS)
 - High dexterity region defined by a right circular cone with a vertex angel of 60°
 - Contains 95% of the tool motions based on *in-vivo* measurements.

Spherical Mechanism - Robot Optimization

Optimization of Raven IV – Problem & Parameters (7) Definitions

RAVEN – A SURGICAL ROBTICS SYSTEM

DESIGN – KINEMATIC ANALYSIS & OPTIMIZATION

Direct Kinematics – Coordinate Systems Assignment

Direct Kinematics – Coordinate Systems Assignment

Direct Kinematics: DH Parameters - Left and Right Robot

Robot	i-1	i	α_i	a_i	d_i	$ heta_i$
Left	0	1	$\pi - \alpha$	0	0	$\theta_1(t)$
Robot	1	2	$-\beta$	0	0	$-\theta_2(t)$
(1,3)	2	3	0	0	0	$\pi/2 - heta_3(t)$
	3	4	$-\pi/2$	0	$d_4(t)$	0
	4	5	$\pi/2$	a_5	0	$\pi/2 - heta_5$
	5	6	$-\pi/2$	0	0	$\pi/2 + \theta_6$
Right	0	1	$\pi - \alpha$	0	0	$\pi - \theta_1(t)$
Robot	1	2	$-\beta$	0	0	$\theta_2(t)$
(2,4)	2	3	0	0	0	$\pi/2 + \pi + \theta_3(t)$
	3	4	$-\pi/2$	0	$d_4(t)$	0
	4	5	$-\pi/2$	a_5	0	$\pi/2 + \theta_5$
	5	6	$-\pi/2$	0	0	$\pi/2 - heta_6$

Direct Kinematics: Transform Matrix for Left Robot

Direct Kinematics: Transform Matrix for Right Robot

Direct Kinematics: Solution

$ = \begin{bmatrix} -c_1 & s_1 c \alpha & s_1 s \alpha & 0 \\ s_1 & c_1 c \alpha & c_1 s \alpha & 0 \\ 0 & s \alpha & -c \alpha & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} $	${}_{2}^{1}T = \begin{bmatrix} c_{2} & -s_{2}c\beta & -s_{2}s\beta & 0\\ s_{2} & c_{2}c\beta & c_{2}s\beta & 0\\ 0 & -s\beta & c\beta & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$	${}^{2}_{3}T = \begin{bmatrix} s_{3} & c_{3} & 0 & 0 \\ -c_{3} & s_{3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
$ = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & d_4 \\ 0 & 0 & 0 & 1 \end{bmatrix} $	$ = \begin{bmatrix} -s_5 & 0 & -c_5 & -a_5s_5\\ c_5 & 0 & -s_5 & a_5c_5\\ 0 & -1 & 0 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} $	$ = \begin{bmatrix} s_6 & 0 & -c_6 & 0 \\ c_6 & 0 & s_6 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} $
	${}_{6}^{0}T = {}_{1}^{0}T_{2}^{1}T_{3}^{2}T_{4}^{3}T_{5}^{4}T_{6}^{5}T = \begin{bmatrix} r_{11} & r_{12} & r_{13} & P_{x} \\ r_{21} & r_{22} & r_{23} & P_{y} \\ r_{31} & r_{32} & r_{33} & P_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$	

- 6 DOFs for positioning and orienting → Inverse Kinematics
- 1 DOF for the opening and closing of the grasper \rightarrow Redundancy
- Joint Limit Range

θ_i	range	sin	cos
θ_1	$[0^{\circ}, 90^{\circ}]$	+	+
θ_2	$[20^{\circ}, 140^{\circ}]$	+	+/-
θ_3	$[-86^{\circ}, 86^{\circ}]$	+/-	+
d_4	[-250, -0] mm	N/A	N/A
θ_5	$[-86^{\circ}, 86^{\circ}]$	+/-	+
θ_6	$[-86^{\circ}, 86^{\circ}]$	+/-	+

Inverse Kinematics:

Homogeneous Transformation Matrix and Its Inverse

• Homogenous Transform Matrix → Inverse

$${}^{0}_{6}T = {}^{0}_{1}T^{1}_{2}T^{2}_{3}T^{3}_{4}T^{4}_{5}T^{5}_{6}T = \begin{bmatrix} r_{11} & r_{12} & r_{13} & P_{x} \\ r_{21} & r_{22} & r_{23} & P_{y} \\ r_{31} & r_{32} & r_{33} & P_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \Longrightarrow \qquad {}^{6}_{0}T = [{}^{0}_{1}T^{1}_{2}T^{2}_{3}T^{3}_{4}T^{4}_{5}T^{5}_{6}T]^{-1} = \begin{bmatrix} r'_{11} & r'_{12} & r'_{13} & P_{xinv} \\ r'_{21} & r'_{22} & r'_{23} & P_{yinv} \\ r'_{31} & r'_{32} & r'_{33} & P_{zinv} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• For the left robot,

Define

•

 $P_{xinv} = (-d_4c_5 + a_5)c_6$ $P_{yinv} = s_5d_4$ $P_{zinv} = (-d_4c_5 + a_5)s_6$

$$P_{inv}^{2} = P_{xinv}^{2} + P_{yinv}^{2} + P_{zinv}^{2}$$

= $(a_{5} - d_{4}c_{5})^{2}c_{6}^{2} + (a_{5} - d_{4}c_{5})s_{6}^{2} + s_{5}^{2}d_{4}^{2}$
 \Rightarrow
 $P_{inv}^{2} = (a_{5} - d_{4}c_{5})^{2} + s_{5}^{2}d_{4}^{2} = a_{5}^{2} - 2a_{5}d_{4}c_{5} + d_{4}^{2}c_{5}^{2} + d_{4}^{2}s_{5}^{2}$
 \Rightarrow
 $P_{inv}^{2} = a_{5}^{2} - 2a_{5}d_{4}c_{5} + d_{4}^{2}$

• For the right robot,

 $P_{xinv} = (d_4c_5 - a_5)c_6$ $P_{yinv} = s_5d_4$ P_{zinv} $= -(d_4c_5 - a_5)s_6$ • Which gives

$$c_5^2 = (\frac{a_5^2 + d_4^2 - P_{inv}^2}{2a_5d_4})^2$$

Inverse Kinematics

• For the left robot,

٠

Inverse Kinematics

• Four Possible Solutions of d_4

Inverse Kinematics

• With resolved
$$d_4$$
, θ_5 and θ_6
 ${}_{3}^{0}T = {}_{1}^{0}T_2^{1}T_3^{2}T = {}_{0}^{6}T[{}_{4}^{3}T_5^{4}T_6^{5}T]^{-1} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_x \\ a_{21} & a_{22} & a_{23} & a_y \\ a_{31} & a_{32} & a_{33} & a_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$

• Where

•

Check a_{13} to select between the two solution of θ_3

For the left robot, $a_{13} = -s_2 s_\alpha s_3 + c_2 s_\alpha c_3 c_\beta + s_\alpha c_3 s_\beta$

For the right robot, $a_{13} = s_2 s_\alpha s_3 - c_2 s_\alpha c_3 c_\beta - s_\alpha c_3 s_\beta$

• With resolved θ_5 , θ_5 , d_4 , $\frac{\theta_3}{2A \tan(\frac{1+\theta_2}{a+a_2})}$

$${}_{1}^{0}T = {}_{0}^{6}T [{}_{4}^{3}T {}_{5}^{4}T {}_{6}^{5}T]^{-1} [{}_{2}^{1}T {}_{3}^{2}T]^{-1} = \begin{bmatrix} b_{11} & b_{12} & b_{13} & b_{x} \\ b_{21} & b_{22} & b_{23} & b_{y} \\ b_{31} & b_{32} & b_{33} & b_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Where For the left robot,

 $s_1 = b_{11}, c_1 = b_{21}$

 \Rightarrow

 $\theta_1 = A \tan 2 \left(s_1, c_1 \right)$

For the right robot, $s_1 = b_{11}, c_1 = -b_{21}$

BIONICS **3**

- The mechanism isotropy is determined by the eigen-values of Jacobian matrix, which can be derived by velocity propagation
- General equations for velocity propagation: $\dot{X} = J\Theta$

For the angular velocity,	${}^{i+1}\omega_{i+1} = {}^{i+1}_{i}R^{i}\omega_{i} + {}^{\bullet}_{i+2}\hat{Z}_{i+1}$	
For the linear velocity,	${}^{i+1}v_{i+1} = {}^{i+1}_{i}R({}^{i}\omega_{i} \times P_{i+1} + {}^{i}v_{i}) + {}^{i}d_{i+2}Z_{i+1}$	
For the revolute joint,	$\dot{\theta}_{i+2} = 0$	
For the prismatic joint,	$\dot{d}_{i+2} = 0$	

Initial Condition

Link 1 is rotating at $\dot{\theta}_1$ about z_0 : ${}^0\omega_0 = [0,0,\dot{\theta}_1]^T$ ${}^0v_0 = [0,0,0]^T$ Link 2 is rotating at $\dot{\theta}_2$ about z_1 Link 3 is frozen with ${}^{\dot{\theta}_3 = 0}$ Translation in homogeneous transformation matrix: ${}^0P_1 = {}^1P_2 = {}^2P_3 = [0,0,0]^T$ Link 4 is translating at \dot{d}_4 along z_3

• Rotation Matrices $i+1 \atop i R = i+1 \atop i R^T$, which leads to

For the left robot

$${}^{1}_{0}R = \begin{bmatrix} c_{1} & s_{1} & 0 \\ s_{1}c\alpha & -c_{1}c\alpha & s\alpha \\ s_{1}s\alpha & -c_{1}s\alpha & -c\alpha \end{bmatrix}$$
 ${}^{2}_{1}R = \begin{bmatrix} c_{2} & -s_{2} & 0 \\ s_{2}c\beta & c_{1}c\beta & -s\beta \\ s_{2}s\beta & c_{1}s\beta & c\beta \end{bmatrix}$
 ${}^{3}_{2}R = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

 For the right robot
 ${}^{1}_{0}R = \begin{bmatrix} -c_{1} & s_{1} & 0 \\ s_{1}c\alpha & c_{1}c\alpha & s\alpha \\ s_{1}s\alpha & c_{1}s\alpha & -c\alpha \end{bmatrix}$
 ${}^{2}_{1}R = \begin{bmatrix} c_{2} & s_{2} & 0 \\ -s_{2}c\beta & c_{1}c\beta & -s\beta \\ -s_{2}s\beta & c_{1}s\beta & c\beta \end{bmatrix}$
 ${}^{3}_{2}R = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

• Angular velocity propagation

$${}^{1}\omega_{1} = {}^{1}_{0}R^{0}\omega_{0} + \overset{\bullet}{\theta}_{2}\hat{Z}_{1}$$
$${}^{2}\omega_{2} = {}^{2}_{1}R^{1}\omega_{1}$$
$${}^{3}\omega_{3} = {}^{3}_{2}R^{2}\omega_{2}$$

• Linear velocity propagation

$${}^{1}v_{1} = {}^{1}_{0}R({}^{0}\omega_{0} \times P_{1} + {}^{0}v_{0})$$

$${}^{2}v_{2} = {}^{2}_{1}R({}^{1}\omega_{1} \times P_{2} + {}^{1}v_{1})$$
$${}^{3}v_{3} = {}^{3}_{2}R({}^{2}\omega_{2} \times P_{3} + {}^{2}v_{2}) + \overset{\bullet}{d}_{4}\hat{Z}_{3}$$

• Hence, the velocity of the end-point of Link 3 is with reference to Frame 3 is

Linear Velocity

For both the left robot and right robot

$${}^{3}_{3}v = \begin{bmatrix} 0 \\ 0 \\ \cdot \\ d_{4} \end{bmatrix}$$

• Hence, the Jacobian Matrix is

For the left robot

$$\begin{bmatrix} {}^{3}\omega_{x} \\ {}^{3}\omega_{y} \\ {}^{3}\omega_{z} \end{bmatrix} = {}^{3}J \begin{bmatrix} \dot{\theta}_{1} \\ \dot{\theta}_{2} \\ \dot{\theta}_{2} \\ \dot{\theta}_{4} \end{bmatrix} = \begin{bmatrix} c_{2}c\beta s\alpha + s\beta c\alpha & -s\beta & 0 \\ s_{2}s\alpha & 0 & 0 \\ c_{2}s\beta s\alpha - c\beta c\alpha & c\beta & 1 \end{bmatrix} \begin{bmatrix} \dot{\theta}_{1} \\ \dot{\theta}_{2} \\ \dot{\theta}_{2} \\ \dot{\theta}_{4} \end{bmatrix}$$

For the right robot

$$\begin{bmatrix} {}^{3}\omega_{\chi} \\ {}^{3}\omega_{y} \\ {}^{3}\omega_{y} \\ {}^{3}d_{z} \end{bmatrix} = {}^{3}J \begin{bmatrix} \dot{\theta}_{1} \\ \dot{\theta}_{2} \\ \dot{\theta}_{2} \\ \dot{d}_{4} \end{bmatrix} = \begin{bmatrix} -(c_{2}c\beta s\alpha + s\beta c\alpha) & -s\beta & 0 \\ s_{2}s\alpha & 0 & 0 \\ c_{2}s\beta s\alpha - c\beta c\alpha & c\beta & 1 \end{bmatrix} \begin{bmatrix} \dot{\theta}_{1} \\ \dot{\theta}_{2} \\ \dot{\theta}_{2} \\ \dot{d}_{4} \end{bmatrix}$$

• The mechanism isotropy only depends on the 2X2 sub-matrix to the left corner

$${}^{3}J_{s} = \begin{bmatrix} \pm (c_{2}c\beta s\alpha + s\beta c\alpha) & -s\beta \\ s_{2}s\alpha & 0 \end{bmatrix}$$

- **Mechanism isotropy -** the end-effector's ability of moving in all direction given a specific manipulator configuration.
- Definition

$$Iso = \frac{\lambda_{\min}}{\lambda_{\max}}$$

Range

 $0 \leq Iso \leq 1$

• The eigen-values of the Jacobian matrix can be found by solving

$$\det\left({}^{3}J_{s} \;\;^{3}J_{s}^{T}-\lambda I_{2\times 2}\right)=0$$

- Which gives $\det\left({}^{3}J_{s}{}^{3}J_{s}^{T} - \lambda I_{2\times 2}\right) = \lambda^{2} - \left[(c_{2}c\beta s\alpha + s\beta c\alpha)^{2} + (s\beta)^{2}\right]\lambda - (c_{2}c\beta s\alpha + s\beta c\alpha)^{2}(s_{2}s\alpha)^{2}$
- Define $B = (c_2 c\beta s\alpha + s\beta c\alpha)^2 + (s\beta)^2$ $C = -(c_2 c\beta s\alpha + s\beta c\alpha)^2 (s_2 s\alpha)^2$

$$Iso = \frac{\lambda_{\min}}{\lambda_{\max} = \frac{B - \sqrt{B^2 - 4C}}{B + \sqrt{B^2 - 4C}} = 1 - \frac{2\sqrt{B^2 - 4C}}{B + \sqrt{B^2 - 4C}}$$

Optimization of Raven IV – Problem & Parameters (7) Definitions

Cost Function

- Geometry Largest circular common workspace (Area Circumference Ratio)
- Manipulations Best Isotropy
 - Across the common workspace
 - Worst case value (min/max problem)
- Mechanics Stiff mechanism (Smallest Mechanism)

$$C = \max_{(\alpha,\beta,\varphi_x,\varphi_y,\varphi_z,b_x,b_y)} \left\{ \underbrace{\varsigma \cdot \sum Iso \cdot Iso_{\min}}_{\alpha^2 + \beta^2} \{ \} \right\}$$

- Method
 - Brute force search across all the free parameters

Common Workspace – Reference Plane

• Definition

 $\varsigma = \frac{Area}{Circumference}$

• According to the **Isoperimetric Inequality**, a circle has the largest possible area among all the figures with the length of boundary

$$\varsigma_c = \frac{\pi r^2}{2\pi r} = \frac{r}{2}$$

Effect of Limiting Minimum Isotropy Performance

Fig. 13. Four Raven Arms: Distribution of ς for different α and β , $Iso_{min} = 0.2$.

• Workspace propagation – Minimum Mechanism Isotropy = 0.2

Optimization of Raven IV surgical System Overall simulation result

• Parameter ranges, resolutions and optimal values

	Range	Optimal Value	Resolution
α	$[5^{\circ}, 90^{\circ}]$	85°	20°
β	$[5^{\circ}, 90^{\circ}]$	65°	20°
ϕ_x	$[-20^{\circ}, 20^{\circ}]$	20°	10°
ϕ_y	$[-20^{\circ}, 20^{\circ}]$	10°	10°
ϕ_z	$[-20^{\circ}, 20^{\circ}]$	-20°	10°
b_x	[50, 200] (mm)	100 (mm)	50 (mm)
b_y	[50, 200] (mm)	50 (mm)	50 (mm)
Isomin	[0.1, 0.9]	0.5	0.2
Result	$C_{max} = 526.3 \text{ for } Iso_{min} = 0.5$		

Optimization of Raven IV - Conclusion

