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Abstract—In this article, we present a novel stochastic algorithm
called simultaneous sensor calibration and deformation estimation
(SCADE) to address the problem of modeling deformation
behavior of a generic continuum manipulator (CM) in free and
obstructed environments. In SCADE, using a novel mathematical
formulation, we introduce a priori model-independent filtering
algorithm to fuse the continuous and inaccurate measurements of
an embedded sensor (e.g., magnetic or piezoelectric sensors) with
an intermittent but accurate data of an external imaging system
(e.g., optical trackers or cameras). The main motivation of this
article is the crucial need of obtaining an accurate shape/position
estimation of a CM utilized in a surgical intervention. In these
robotic procedures, the CM is typically equipped with an
embedded sensing unit (ESU) while an external imaging modality
(e.g., ultrasound or a fluoroscopy machine) is also available in the
surgical site. The results of two different set of prior experiments
in free and obstructed environments were used to evaluate the
efficacy of SCADE algorithm. The experiments were performed
with a CM specifically designed for orthopaedic interventions
equipped with an inaccurate Fiber Bragg Grating (FBG) ESU
and overhead camera. The results demonstrated the successful
performance of the SCADE algorithm in simultaneous estimation
of unknown deformation behavior of the utilized unmodeled CM
together with realizing the time-varying drift of the poor-calibrated
FBG sensing unit. Moreover, the results showed the phenomenal
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out-performance of the SCADE algorithm in estimation of the
CM’s tip position as compared to FBG-based position estimations.

Index Terms—Continuum manipulators (CMs), fiber Bragg
grating (FBG) sensor, medical robots and systems, sensor fusion.

I. INTRODUCTION

CONTINUUM manipulators (CMs) and robots utilizing
flexible instruments (FIs) (e.g., needles and catheters) have

recently garnered attention due to their superior dexterity and en-
hanced accessibility in performing minimally invasive surgeries.
Examples of these robotic systems include the use of an ablation
catheter for treatment of atrial fibrillation [1], needle inserting
robots for venipuncture [2], and brachytherapy [3]. Additionally,
continuum robots have been deployed in endonasal skull base
surgery [4], cardiac [5], and natural orifice transluminal endo-
scopic surgery [6]. Despite the advantages of using CMs/FIs,
real-time control of these systems in unstructured environments
is a challenging problem. In particular, these challenges include
the following:

1) an accurate and robust sensing system (external or embed-
ded), which can undergo and capture large deflections;

2) pertinent robust model-based or model-independent algo-
rithm to estimate their shape and tip position on the fly;

3) an adaptive model-based or model-independent control
paradigm to accurately control various type of CMs/FIs in
an unknown and obstructed environment [7].

Of note, the success of both shape/tip sensing and control
algorithms depends on the efficacy of the utilized deformation
model for CMs/FIs. Therefore, adaptive and versatile CM/FI
deformation estimation approaches need to be developed that
can be easily implemented using various types of external and
embedded sensing modalities.

A. Prior Work

Various methods have been proposed in the literature for
modeling and estimation of the deformation behavior of CMs
and FIs. First group of methods is model-based approaches. This
group typically utilizes analytical or computational methods
(e.g., finite element) to model the deformation behavior of
these flexible devices in free or obstructed environments. For
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instance, the literature reports various kinematics- or dynamics-
based modeling approaches for CM/FI shape/tip estimations
in free and obstructed environments (e.g., [3], [8]–[12]). The
performance of this model-based methodology, however, does
dramatically depend on the accuracy of the developed model
and the assumptions made during the modeling procedure [13].
Due to the uncertainties caused by hysteresis, friction, backlash,
and interaction with an unknown environment, a discrepancy
between the expected and the actual behavior is typically ob-
served in this group of modeling [9], [14], [15]. Moreover,
these model-based approaches are often system specific and
application specific, and are not easily extendable to the other
forms of CMs/FIs.

Second group of studies is related to sensor-based defor-
mation estimation using an external or embedded sensing unit
(ESU). Examples of deployed external sensing units are infrared
optical trackers, cameras, and medical imaging modalities such
as fluoroscopy, ultrasound, and magnetic resonance imaging
(MRI). Examples of embedded units include electromagnetic
trackers, piezoelectric polymers, and recently fiber Bragg grat-
ing (FBG) optical sensors [16]. Each of these sensing units suf-
fers from major shortcomings. For example, optical trackers and
cameras typically have line-of-sight and occlusion issues [17].
Imaging modalities such as X-ray suffer from a large amount
of radiation exposure, which limits their real-time use [18].
Magnetic trackers [19] and piezoelectric polymers [20] suffer
from the presence of metals and hysteresis, respectively. More
recently, FBG sensors have gained popularity due to their great
features such as biocompatibility, small size, flexibility, and
real-time feedback without requiring a direct line of sight. How-
ever, arduous and often manual sensor-assembly and fabrication
procedure together with offline static calibration procedure are
some of the shortcomings of this ESU [16]. These issues result
in an uncertain change and drift in the offline calibration param-
eters of FBG sensors, which are mainly due to the discrepancy
between the calibration procedure and the actual implementation
of FBG-equipped CM/FIs [21], [22]. While calibration is usually
performed in a free environment with no obstacle, the real-world
applications might involve interaction of CM/FIs with an ob-
structed environment. This may result in large uncalibrated de-
formation behaviors as well as dynamic bending motions, which
may lead to a poor shape/position estimation [16], [21], [23].

Online filtering using an embedded electromagnetic tracking
sensor has also been proposed for estimating the shape and
end-effector pose of CMs. Using this model-based Kalman filter
(KF) approach, Tully et al. [24] have shown that a single embed-
ded sensor is sufficient for estimating the shape of a particular
type of CM. However, the accuracy of the presented estimation
approach might be adversely affected if the robot is acting
upon a deformable or moving tissue. Recently, a data-driven
and machine-learning-based approach has also been deployed to
understand the deformation behavior of a CM/FI equipped with
embedded FBG sensors [25]. However, the proposed method
has only been trained and evaluated for a particular obstacle-free
environment. Moreover, performance of this method is dramati-
cally dependent on the training dataset, which is usually difficult
and time-consuming to collect.

Fig. 1. Conceptual illustration of the proposed robotic workstation for ortho-
pedic applications. It comprises a positioning robot, a CM (i.e., ortho-snake)
equipped with FBG optical sensing unit, and proper flexible cutting tools. The
shape and position of the CM inside the patient’s body can also be captured
using intermittent intraoperative fluoroscopy.

To address these issues, third group of studies has used
model-based sensor fusion techniques to fuse the data streamed
from two sensing units. For instance, to remedy the noisy
measurements of sensors, Sadjadi et al. [26] used a Kalman
filtering approach to fuse a kinematic needle deflection model
with the position measurements of two embedded sensors (i.e.,
electromagnetic trackers) located at the base and the tip of the
needle. The performance of this model-based technique was
evaluated using extensive simulations. Recently, Jiang et al. [27]
have extended this KF-based sensor fusion approach by using
measured data to estimate the tip position of a needle. They
deployed an external optical sensor at the base and an embedded
electromagnetic sensor in the middle of the semirigid needle.
Despite encouraging results, both methods require continuous
stream of data from both sensing units during the experiment
and rely on a priori kinematics model of the needle. Last but
not least, in a series of studies [28]–[30], combinations of a
custom-designed electromagnetic sensing module with inertial
measurement units (IMUs), an optical tracker with an electro-
magnetic system, and an optical tracker with an IMU for motion
tracking in surgical interventions, respectively, are deployed.
Similar to other studies, however, their formulations relied on a
priori model for the state evolution and a typical sensor fusion
technique.

B. Motivation and Contribution

With the goal of enhancing dexterity and accuracy in or-
thopedics, the focus of our group is on developing a surgical
robotic system for treatment of various orthopedics problems
(e.g., removing osteolytic lesions behind the hip acetabular
implant [31] and treatment of osteonecrosis of femoral head [32],
[33]) using a custom-designed continuum robot called “ortho-
snake” (see Fig. 1). While conventional CMs (e.g., [4] and [34])
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are commonly designed to interact with soft tissues, ortho-snake,
thanks to its structural stability, can robustly interact with hard
tissues and bear high external loads during bone milling [35]
and drilling [32], [33]. As shown in Fig. 1, in this surgical
system, ortho-snake and its actuation unit are integrated with
a positioning robotic arm and simultaneously controlled to per-
form the assigned control objective. To accurately estimate the
shape and tip of the ortho-snake in real time, this CM has been
equipped with two embedded shape sensors with three FBG
sensing nodes that pass through channels within the walls of
the CM [21]. Similar to various surgical interventions, the shape
and position of the CM inside the patient’s body can also be
captured using an external imaging modality (i.e., intraoperative
fluoroscopy of an on-site C-arm machine) [18]. Previous efforts
of our group for deformation estimation and shape sensing
of ortho-snake include developing models for estimating the
shape from cable-length measurements [36], the intermittent
use of fluoroscopic images for updating a CM model [18], and
static [21] and dynamic [23] shape sensing of ortho-snake using
FBG sensors in free and obstructed environments. Despite the
promising results of these studies, they suffer from aforemen-
tioned limitations, which may jeopardize patient’s safety in a
real clinical intervention.

To address the challenges associated with 1) the deformation
estimation and shape reconstruction of ortho-snake using FBG
sensors and 2) the safety concerns in the continuous use of
an intraoperative fluoroscopy machine, we propose a model-
independent sensor fusion approach called simultaneous sensor
calibration and deformation estimation (SCADE). In SCADE,
we implement a model-independent KF (mi-KF) to fuse real-
time stream of an ESU data (with higher frequency and lower
accuracy) with intermittent feedback from an external imaging
unit (EIU) (with lower frequency and higher accuracy). This
framework allows us to simultaneously estimate both CM/FI
deformation model and tune the calibration parameters of an
embedded sensor in real time.

With this article, our contributions are as follows.
1) We introduce a priori model-independent formulation for

stochastic dynamics modeling of a generic CM/FI.
2) Unlike the common KF sensor fusion approaches

(e.g., [37]) in which a linear or nonlinear model of the
system is required as a priori, we instead estimate this de-
formation matrix recursively and directly from the input–
output data in real time.

3) We simultaneously close our estimation loop using this
estimated model and dynamically recalibrate the inac-
curate embedded sensors (i.e., FBG sensors) using the
intermittent external images obtained from an external
imaging source (i.e., fluoroscopy data). Of note, this spe-
cific feature makes our approach independent than the
type of fabrication, offline calibration, and reconstruction
procedure of the embedded sensors (e.g., FBG sensing
units).

4) We evaluated the performance of the SCADE algo-
rithm in both free and obstructed environments using
a CM providing two-dimensional (2-D) planar bending
motion.

Fig. 2. Conceptual illustration of the SCADE algorithm for position estimation
of a CM/FI working in an obstructed environment. In the SCADE, using an
EIU providing intermittent external position feedback and an ESU (e.g., FBG or
magnetic sensors) with continuous feedback, a priori model-independent sensor
fusion algorithm is used to simultaneously recalibrate the ESU and estimate
the deformation behavior of the CM/FI. In this figure, ract, rESU, rEIU ∈ RM

represent the position of the CM/FI’s tip position with respect to a Cartesian
space {act}, embedded sensing unit {ESU}, and external imaging unit {EIU}
frames, respectively. Also, θ ∈ RN denotes the vector of actuation inputs of
the CM/FI.

Note that the results of this article, however, can be easily
extended to other robotics systems utilizing a generic CM/FI
with more DoF and using two different sensing units (with
different update rates), e.g., magnetic sensors and MRI [27].

The remainder of this article is organized as follows. In
Section II, we present the mathematical models needed for the
proposed SCADE algorithm. Experimental setup and results are
presented in Sections III and IV, respectively. In Section V, we
discuss the results. Finally Section VI concludes the article.

II. PROBLEM FORMULATION

A. Problem Statement

As shown in Fig. 2, similar to various surgical robotic inter-
ventions, we consider a robotic system comprising a CM/FI with
unknown deformation model equipped with two sensing units:
1) an ESU with high-frequency and low-accuracy measurements
and 2) an EIU with low-frequency and high-accuracy outputs.
The goal is to fuse the outputs of these sensing units for 1)
online estimation of the CM/FI deformation model and 2) an
accurate high-frequency estimation of CM/FI tip position. It is
worthwhile to emphasize that obtaining a prior CM/FI’s defor-
mation model is not feasible in real-world medical applications
due to its potential alteration during interaction with unknown
obstructed environments. With these objectives in mind, we
make the following assumptions/remarks.

Remark 1: In this article, we use FBG sensors as the ESU
and a camera as the EIU. However, other types of embedding
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sensing units (e.g., magnetic or piezoelectric sensor) and exter-
nal imaging modalities (e.g., MRI, X-ray, or ultrasound) are also
applicable.

Remark 2: In this article, in order to fuse the FBG and camera
data, we introduce an mi-KF approach. This method unlike the
common filtering approaches does not require a priori state tran-
sition matrix (i.e., description of nominal expected deformation
behavior of the CM/FI state variables). Instead, we estimate this
matrix in real time and use it for recalibration of the FBG sensors.

Remark 3: We assume the FBG sensors were calibrated of-
fline; however, this calibration can dynamically change during
bending motion of the CM/FI or interaction with an unknown en-
vironment. For CM/FI calibration and model-based shape recon-
struction, we use inaccurate shape reconstruction and 2-D–3-D
registration methods presented in [21] and [18], respectively.
Hence, considering Remark 2, the main focus of this article is
fusing these data in order to improve the accuracy of the FBG
sensor shape reconstruction with an intermittent/low frequency
use of an external imaging source.

Remark 4: The word “dynamics” used throughout the arti-
cle refers to the “time evolution of the system states in KF.”
We also used the term “deformation behavior” to indicate the
unknown and unmodeled dynamics of a CM, which we formu-
lated/linearized it using a “kinematic deformation Jacobian.”

B. CM/FI’s a Priori Model-Independent
Deformation Formulation

As shown in Fig. 2, consider ract(t) ∈ RM ,M ∈ {2, 3} rep-
resents the tip position of the CM/FI in Cartesian space, and
θ(t) ∈ RN denotes the vector of actuation inputs of the CM/FI

ract(t) =
[
r1(t) r2(t) . . . rM (t)

]ᵀ

θ(t) =
[
θ1(t) θ2(t) . . . θN (t)

]ᵀ
. (1)

Now, assume there is a smooth unknown nonlinear function
K(t) : RN �→ RM expressing the deformation behavior of the
CM/FI as a function of the actuation inputs in each time instant

ract(t) = K(θ(t)). (2)

Since K(t) is unknown, at each time instant i, we can estimate
it using the following first-order linear model:

K(θ) ≈ K(θi) + J(θi)(θ − θi) +O(||θ − θi||)

Jp,q(θi) =
∂Kp

∂(θq)
(θi) (3)

where p ∈ {1, . . .,M} and q ∈ {1, . . ., N}, and J ∈ RM×N is
the Jacobian of the CM/FI deformation behavior in each time
instant i and Jp,q(θi) is the value of its (p, q) element.

This linear model is locally valid around the vector of actua-
tion inputs at time instant i (i.e.,O(||θ − θi||) is negligible) and
therefore we can rewrite (2) as

Δract
i ≈ J(θi)Δθi (4)

where Δθi = θ − θi and Δract
i = K(θ)−K(θi).

Considering (4), we can formulate this problem as the follow-
ing linear stochastic difference equation:

ract
i+1 = JiΔθi + ract

i +wmod
i (5)

where wmod
i ∈ RM is an independent additive white noise with

zero mean and covariance of Wmod
i capturing the uncertainty in

the dynamics model, and Ji, for the ease of notation, represents
J(θi).

In (5), we are looking for a real-time a priori model-
independent method to estimate the deformation Jacobian J(θi)
given the change in the vector of actuation inputs Δθi and
displacements of the CM/IF tip position Δract

i = ract
i+1 − ract

i .

C. mi-KF for Estimation of the Deformation Jacobian Matrix

The common discrete KF addresses the general problem of
estimating a state vector s of a discrete-time controlled process
defined by the following linear stochastic difference equation:

si+1 = Φisi + Γiui +wi (6)

where si ∈ Rn is the state at time i, ui ∈ Rm is an input control
vector, wi ∈ Rn is additive process noise, Γi ∈ Rn×m is the
input transition matrix, and Φi ∈ Rn×n is the state transition
matrix.

In addition, the observation of the states or measurements
(i.e., zi ∈ Rt) is represented by the following linear equation:

zi = Hisi + νi (7)

where Hi ∈ Rt×n is the observation matrix and νi ∈ Rt is
additive measurement noise [37].

In these equations, the goal is to estimate the state vector si,
given known matrices of Φi, Γi, and Hi, inputs of ui, zi, and
statistics of wi, νi. In this formulation, the process noise wi

and measurement noise νi are random vectors assumed to be
uncorrelated, zero mean with normal probability distributions
and known covariance matrices Wi ∈ Rn×n and Vi ∈ Rt×t,
respectively. Also, the initial system state s0 is a random vector
that is uncorrelated with both the process and measurement
noise, and has a known mean and covariance matrix.

As we mentioned in Remark 2, unlike the common use of a KF
in estimation of a vector (i.e., state vector s), in this article, we
introduce a novel mathematical formulation to simultaneously
estimate a matrix (i.e., the state transition matrix Φ) along with
a vector (i.e., the state vector s) in real time. Of note, estimating
the state transition matrix in real time, which indeed defines the
CM/FI’s deformation behavior, is the main reason that enables
our framework to be generic and implemented on various types
of flexible robots/instruments. To this end, we first define the
following operators.

1) Stack Operator [38]: The stack operator maps a p× q
matrix into a pq × 1 vector. The stack of the p× q matrix A,
denoted by AS, is the vector formed by stacking the q columns
of A on top of each other to form a pq × 1 column vector. For
instance, if D is a p× q matrix comprising q column vectors
{d1;d2; . . .;dq}, where each dj (j ∈ {1, 2, . . ., q}) is a p× 1

Authorized licensed use limited to: UCLA Library. Downloaded on September 06,2020 at 01:10:13 UTC from IEEE Xplore.  Restrictions apply. 



226 IEEE TRANSACTIONS ON ROBOTICS, VOL. 36, NO. 1, FEBRUARY 2020

vector, i.e.,

D =
[
d1 d2 . . . dq

]
p×q

then

DS =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1

d2

.

.

.

dq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
pq×1

.

Remark 5: The stack operator maps a column vector to itself
(i.e., dS = d when d ∈ Rn×1), whereas it maps a row vector to
its transpose (i.e., dS = dT when d ∈ R1×n).

2) Kronecker Product [38]: The Kronecker product is a
binary matrix operator that maps two arbitrarily dimensioned
matrices into a larger matrix with special block structure. Given
A ∈ Rr×s andB ∈ Rp×q , the Kronecker product of these matri-
ces, denoted by A⊗B, is an rp× sq matrix with the following
block structure:

A⊗B =

⎡
⎢⎢⎢⎢⎢⎢⎣

a1,1B a1,2B . . . a1,sB

a2,1B a2,2B . . . a2,sB

...
...

. . .
...

ar,1B a2,2B . . . ar,sB

⎤
⎥⎥⎥⎥⎥⎥⎦
rp×sq

where ai,j is the ijth element of matrix A.
Considering the defined operators, it can be easily proved

that the stack of a matrix multiplication, given the dimensions
are appropriate for the product ABC to be well defined, is [38]

(ABC)S = (Cᵀ ⊗A)BS. (8)

Using (8) and Remark 5, for the following special case, when
dimensions are appropriate for a general matrix–vector multi-
plication Ax (A ∈ Rm×n and x ∈ Rn), we can write

Ax = ImAx = (xᵀ ⊗ Im)AS (9)

where Im is an m×m identity matrix.
Remark 6: From now on, we denote an identity matrix with

dimension Rα×α as Iα and a zero matrix with dimension Rα×β

as 0α×β .
Comparing (5) with (9) and applying the stack operator on

both sides of (5), we can express this time difference equation
at time instant i as

ract
i = ((Δθi−1)

ᵀ ⊗ IM )JSi−1 + ract
i−1 +wmod

i−1 . (10)

In (10), thanks to the implemented mathematical opera-
tions, unknown position vector ract

i and the stacked deformation
Jacobin vector JSi−1 are linearly dependent. This enables us to
stack these two vectors and simultaneously estimate them using
KF formulation. The following sections describe the mathemat-
ical details of this procedure.

D. Sensor Fusion for Simultaneous Sensor Calibration and
CM/FI Deformation Estimation (SCADE)

The goal here is to introduce a method for estimating unknown
position vector and the stacked deformation Jacobin vector
when continuous measurements from the ESU and intermittent
feedback from the EIU are available.

As mentioned in Remark 4, we assume that the embedded
sensor was calibrated offline but this calibration may vary due
to the bending motion of the CM/FI or its interaction with the
environment. In this section, we derive the necessary equations
for fusing the streamed sensing data of both ESU and EIU in
the SCADE framework. The main idea here is that the data
from a high speed but low-accuracy ESU (e.g., FBG or magnetic
tracker) are used as a backbone providing real-time inaccurate
position estimation of the CM/FI end-effector/tip. Whenever the
low speed/intermittent but high-accuracy EIU (e.g., camera or X-
ray) provides an accurate position update, the difference between
the position estimated from the two sources is used to improve
the robot’s deformation model as well as the position estimation.

1) ESU Signal Modeling: As mentioned in Remark 4, the
ESU calibration is not accurate and is vulnerable to alteration
during interaction of the CM/FI with the environment [16]. To
capture this unknown time-varying alteration/bias, we model the
position estimation signal provided by the ESU, resu

i ∈ RM×1,
at each time instant i using the following stochastic difference
equation:

resu
i = ract

i + besu
i +wesu

i (11)

where besu
i ∈ RM×1 is the unknown and time-varying bias in

the calibrated ESU representing the alteration between the cal-
ibration results resu

i and the real position vector ract
i . The wesu

i

denotes the ESU noise vector assumed to be additive white noise
with zero mean and covariance of Wesu

i and independent from
resu
0 [i.e., wesu

i ∼ N(0,Wesu
i )].

Considering (11), we model the slowly changing dynamics
of the ESU bias as a random walk process [37] with Gaussian
steps

besu
i = besu

i−1 +wbias
i−1 (12)

where wbias
i−1 is assumed to be an additive white noise with zero

mean and covariance of Wbias
i−1 [i.e., wbias

i−1 ∼ N(0,Wbias
i−1)].

Likewise, the slowly changing deformation Jacobian of the
CM/FI can be modeled by the following stochastic difference
equation:

JSi = JSi−1 + ηjac
i−1 +wjac

i−1 (13)

where JSi and JSi−1 denote the stacked deformation Jacobian at
time i and i− 1, respectively. Also, ηjac

i−1 is a general unknown
and time-varying evolution term describing the dynamic change
of the CM/FI Jacobian. wjac

i−1 is assumed to be additive white

noise with zero mean and covariance of Wjac
i−1 [i.e., wjac

i−1 ∼
N(0,Wjac

i−1)].
We also assume that the slowly changing dynamics of the

CM/FI Jacobian ηjac follows a Gaussian random process

ηjac
i = ηjac

i−1 +weta
i−1 (14)
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where weta
i−1 assumed to be additive white noise with zero mean

and covariance of Weta
i−1 [i.e., weta

i−1 ∼ N(0,Weta
i−1)].

2) EIU Signal Modeling: We assume that the EIU measure-
ments of the CM/FI position have adequate accuracy and can be
obtained by proper image processing and registration methods.
Considering this assumption, the deployed model to represent
the EIU signal is as follows:

reiu
j = ract

j + veiu
j (15)

where reiu
j is the position estimations from the EIU at time instant

j deteriorated by vector veiu
j denoting the EIU noise vector. This

noise vector is assumed to be additive white noise with a priori
statistics of zero mean and covariance of Veiu

j and independent
from reiu

0 [i.e., veiu
j ∼ N(0,Veiu

j )].
Note that time indices in (11) and (15) are denoted differently

(i.e., i versus j), emphasizing different sampling frequency for
the ESU and EIU.

3) Derivation of Dynamics Model: We formulate the time
difference dynamic equation by calculating the difference be-
tween the predicted position in (10) at time instant i and the
ESU measurement (11) in time instant i− 1 to obtain

δri = (Δθi−1
ᵀ ⊗ IM )JSi−1 − besu

i−1 −wesu
i−1 +wmod

i−1 (16)

where δri = ract
i − resu

i−1 is the CM/FI displacement obtained
from the ESU position measurement at time i− 1 to the actual
position at time i.

This formulation allows us to provide a modified dynam-
ics equation with the coupled position error, the ESU bias,
the stacked deformation Jacobian, and the evolution term in
Jacobian as our new augmented states vector x

x =
[
δrᵀ bbiasᵀ JS

ᵀ
ηjacᵀ

]ᵀ
(17)

where x ∈ R2M(N+1)×1.
Now, considering (14)–(17), the dynamics equation describ-

ing the evolution of the augmented states can be formulated as

xi = Φi−1xi−1 + Γi−1wi−1 (18)

where Φi−1 ∈ R2M(N+1)×2M(N+1), Γi−1 ∈ R2M(N+1)×M

(2N + 3), and wi−1 ∈ RM(2N+3)×1 are defined as follows:

Φi−1 =

⎡
⎢⎢⎢⎢⎢⎣

0M×M −IM Δθi−1
ᵀ ⊗ IM 0M×MN

0M×M IM 0M×MN 0M×MN

0MN×M 0MN×M IMN IMN

0MN×M 0MN×M 0MN×MN IMN

⎤
⎥⎥⎥⎥⎥⎦

Γi−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

IM 0M×M 0MN×M 0MN×M

−IM 0M×M 0MN×M 0MN×M

0M×M IM 0MN×M 0MN×M

0M×MN 0M×MN IMN 0MN×MN

0M×MN 0M×MN 0MN×MN IMN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

wi−1 =
[
wmod

i−1
ᵀ

wesu
i−1

ᵀ wbias
i−1

ᵀ
wjac

i−1

ᵀ
weta

i−1
ᵀ
]ᵀ
. (19)

The measurement noise of the ESU (wesu
i ), the process noise

in the dynamics model (wmod
i−1), the random walk process noise

(wbias
i−1), the noise signal in the estimated Jacobian deformation

(wjac
i−1), and the noise signal in the CM/FI Jacobian evolution

term (weta
i−1) are all assumed to be uncorrelated discrete-time

white noise signals. Hence, the vector wi−1 is an additive white
noise with zero mean and covariance of Wi−1 [i.e., wi−1 ∼
N(0,Wi−1)]

Wi−1 = Diag(Wmod
i−1 ,W

esu
i−1,W

bias
i−1,W

jac
i−1,W

eta
i−1) (20)

where Diag(·) denotes a block diagonal matrix.
4) Derivation of Measurement Model: Considering the de-

fined displacement state δrj and to construct a proper mea-
surement model for the SCADE algorithm, we constitute a
measurement model by subtracting the position data obtained
by EIU at time j from the position information obtained from
ESU at time j − 1

zj = δrj + vj (21)

wherezj = reiu
j − resu

j−1 is directly obtained from the information
of the two sensing units. The noise vector vj is assumed to be
an additive white noise with zero mean and covariance of Vj

[i.e., vj ∼ N(0,Vj)]. Note that we assume the returned data by
the EIU (i.e., reiu

j ) is reasonably accurate and comparable to the
true value of the CM/FI position (i.e., ract

j ). Hence, considering
(7), the state-space model of the measurement can be obtained
from the following equation:

zj = Hjxj + vj (22)

where Hj ∈ RM×2M(N+1) and vj ∈ RM×1 are defined as
follows:

Hj =
[
IM 0M×M 0M×MN 0M×MN

]
.

5) SCADE Algorithm: Equations (18) and (22) provide the
state-space dynamics and measurement models of our system.
Considering the different measurement frequencies of the ESU
and EIU, we perform the estimation in two separate phases: 1)
when only the ESU data are available (i.e., Phase I), and 2) when
both ESU and EIU data are available (i.e., Phase II). Note that
at a given time, the system is either in Phase I or Phase II. The
following describes the iterative mi-KF estimation of states and
error covariances in each phase.

In Phase I, when only the ESU data are available, the
best estimate of state x and a priori covariance matrix M ∈
R2M(N+1)×2M(N+1) is propagated based on the following dif-
ference equations:

xi = Φi−1xi−1

Mi = Φi−1Mi−1Φi−1
ᵀ + Γi−1Wi−1Γi−1

ᵀ (23)

where Φi−1, Γi−1, and Wi−1 are obtained from (19) and (20).
In Phase II, when both ESU and EIU data are available,

the best estimate of state x̂ and a posteriori covariance ma-
trix P ∈ R2M(N+1)×2M(N+1) is obtained from the following
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relations:

xi = Φi−1xi−1

Mi = Φi−1Mi−1Φi−1
ᵀ + Γi−1Wi−1Γi−1

ᵀ

Pj = (Mi
−1 +Hj

ᵀVj
−1Hj)

−1

Kj = PjHj
ᵀVj

−1

x̂j = xi +Kj(zj −Hjxi) (24)

where Kj ∈ R2M(N+1)×M is called the Kalman gain and i− 1
denotes the most recent increment in Phase I (i.e., Φi−1, xi−1,
Mi−1,Wi−1, andΓi−1 are all the most recent updates calculated
in Phase I).

For the next time step of the dynamics, when the system is
again in Phase I (i.e., only the ESU data is available), the best
estimate of statex and a priori covariance matrixM is calculated
as follows:

xi = Φi−1x̂j

Mi = Φi−1PjΦi−1
ᵀ + Γi−1Wi−1Γi−1

ᵀ. (25)

From this time onward, (23) is used to propagate the state
and covariance matrix until the system returns to Phase II and
this iterative loop continues. Algorithm 1 summarizes the men-
tioned SCADE algorithm. Note that in this algorithm, we have
dropped the time indices for the quantities that are time invariant.
Moreover, M0, as the initial a priori error covariance matrix,
is selected based on the combination of empirical estimations
and preliminary experiments performed on the system [37]. The

Fig. 3. Experimental setup including the ortho-snake with lateral notches
providing planar bend for the CM and equipped with embedded FBG shape
sensors (as the ESU), the ortho-snake’s actuation unit, FBG interrogator, and an
overhead camera (as the EIU) [23].

uncertainty variables are selected to minimize the uncertainty in
the tip estimations using the SCADE algorithm.

III. EXPERIMENTAL SETUP

The experimental setup used for the evaluation of SCADE
was also previously reported in [23]. As shown in Fig. 3, the
experimental setup consists of a CM equipped with two embed-
ded FBG shape sensors (as the ESU), the CM’s actuation unit, an
FBG interrogator, an overhead camera (as the EIU) and a custom
C++ software to control the CM and collect data from the shape
sensors and the camera. The following briefly describes each
module and its preparation before each experiment.

A. Ortho-Snake and Its Actuation Unit

The CM used for performing the experiments is a cable-driven
CM, called “ortho-snake,” which has been specifically designed
for orthopedic applications [36]. This CM has an outer diameter
of 6 mm and a tool channel of 4 mm, and is fabricated from
two nested pieces of superelastic Nitinol tubes. Postmachining
using a wire electrical discharge machining (EDM) creates
the peripheral notches of the ortho-snake with 35 mm length
enabling it to bend large curvatures up to 166.7 m−1 [39]. As
shown in Fig. 3, there are four small channels with 0.6 mm
diameter in the walls of ortho-snake; two of them are used for
passing cables for bending control of this CM in a plane (i.e.,
Δθ ∈ R2). These cables are actuated antagonistically with an
actuation unit consisting of two dc motors (RE10, Maxon Motor,
Inc., Switzerland) with spindle drives (GP 10 A, Maxon Motor,
Inc., Switzerland). A commercial controller is used to power
and connect individual Maxon controllers (EPOS 2, Maxon
Motor, Inc., Switzerland) on a controller area network (CAN
bus). Using libraries provided by Maxon, a custom C++ interface
communicates over a single universal serial bus (USB) cable and
performs position control of the motors.
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B. FBG Sensing Unit

To obtain the shape of ortho-snake during its actuation, two
FBG shape sensing units embedded in ortho-snake’s wall chan-
nels, was used as shown in Fig. 3. Each unit includes a fiber
array (100μm diameter) with three FBG sensing areas (Technica
Optical Components, China) distributed 10 mm apart, which
has been UV-glued (Henkel, Germany) to two 125 μm Nitinol
wires (NDC Technologies, USA). The detailed design and fab-
rication of this sensor assembly and its fabrication procedure
can be found in [17] and [21]. To estimate and reconstruct the
shape of ortho-snake using the FBG sensing unit, a two-step
process was utilized [21]: 1) an offline curvature calibration for
ortho-snake’s C-shaped bending motions, and 2) a model-based
shape-reconstruction procedure developed based on a linear
curvature assumption between each sensing node of the sensing
assembly.

For an FBG optical sensor, the equation relating the wave-
length shift Δλ of each sensing areas to their corresponding
strain ε can be calculated as

Δλ

λ
= cεε+ cTΔT (26)

where ΔT is the temperature change, cε is the strain coefficient,
and cT is the temperature coefficient.

Considering (26) and assuming negligible temperature varia-
tion (ΔT ≈ 0), we used a dynamic optical sensing interrogator
(Micron Optics sm130, Micron Optics, Inc., USA) and per-
formed an offline calibration procedure to map wavelength shift
to the curvatureκ of the ortho-snake during its C-shaped bending
motions

κ = ψ(Δλ)

where ψ : R3 �→ R3 relates the wavelength shift at the three
sensing areas of each FBG sensor to the corresponding curva-
ture values at these three points. The details of the calibration
procedure can be found in [17].

To reconstruct the shape of ortho-snake using the calibration
mapping function ψ for each shape sensor, we first assumed
a linear relationship between the calibrated discrete curvatures
and arc length L of each sensor and divided the sensor length to
n sufficiently small segments. Using the interpolated curvature
at each segment (κl for l = 1, . . ., n), the curvature angle of each
segment Δφl was calculated as follows:

Δφl = κlΔL.

The 2-D shape of each sensor can be then reconstructed
sequentially using the following formulations:

xl+1 = xl +
1

κl
sin(Δφl)

yl+1 = yl +
1

κl
(1− cos(Δφl)).

The tip position of the ortho-snake along its center line is then
calculated by averaging the position values for the shape sensors,
which we refer to as resu

i ∈ R2 at each time instant i.
This model-based shape-reconstruction procedure often re-

sults in a poor and inaccurate position estimation in real-world

application, where the CM may undergo large deflections or
collide with the obstructed environment in a non-quasi-static
motion [21], [23]. This is mainly due to a manual fabrication
procedure, an offline static C-shaped calibration procedure based
on limited and discrete wavelength shift readings and the linear
interpolation assumption made during the shape reconstruction
procedure [39].

C. External Imaging System

In the experiments, we simulated an intermittent external
imaging system with an overhead PL-B741 camera (PixeLink,
USA) mounted above the ortho-snake. The camera was mounted
such that its focal plane was parallel with the bending plane of
the CM. A 2-D–3-D registration method [18] was used on the
taken intermittent images to compute the ortho-snake’s outline
and its shape curve in each image. In summary, using the
cameras intrinsic and extrinsic parameters, the 3-D model and
joint configuration of the CM, this registration algorithm fits a
cubic spline with five control points to estimate the shape of
the CM. This 2-D–3-D registration method approximates the
ortho-snakes tip position with an error less than 0.4 mm. We
refer to the output of this registration procedure as reiu

i ∈ R2 at
each time instant i.

D. Setup Preparation

Before conducting the experiments, a manual calibration was
performed to define the zero cable position for both cables
and avoid any slack in the ortho-snake’s actuation mechanism.
The camera was then calibrated using a standard square chess-
board and obtained the intrinsic parameters. In the performed
experiments, FBG data were streamed by an optical sensing
interrogator at 15 Hz, whereas the camera images were collected
at 0.5 Hz, obligated by the hardware and software limitations. It
is worth noting that due to the 2-D bending nature of the utilized
CM (i.e., M = 2) and using two cables for bending control
of the CM (i.e., N = 2), the developed generic relations in
Section II have the following reduced dimensions: x ∈ R12×1,
JS ∈ R4×1, Φ ∈ R12×12, Γ ∈ R12×14, w ∈ R14×1, H ∈
R2×12, v ∈ R2×1, M ∈ R12×12, P ∈ R12×12, and K ∈ R12×2.

IV. EXPERIMENTAL RESULTS

The data from two sets of previous experiments [23] was used
to evaluate the effectiveness of our model-independent SCADE
algorithm. The experiments included deformation and shape
estimation in 1) a free bending motion without the presence
of an obstacle in the environment and 2) a bending motion in
an obstructed environment. Of note, in both experiments, the
ortho-snake’s cables were antagonistically actuated at different
cable displacement rates. As reported in [16] and [23], due to an
offline static calibration of the FBG sensing units, a dynamic ac-
tuation and obstacle collision in an unknown environment might
change the calibration parameters resulting in an inaccurate tip
position estimation.

Additionally, as we discussed in Section I, the main clinical
motivation of the SCADE algorithm was to reduce the radi-
ation exposure of a fluoroscopy machine by taking minimum
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Fig. 4. (a) Snapshots of the ortho-snake’s bending motion in the free-environment experiments taken by the overhead camera. To ensure repeatability, each
experiment included various cycles of bending in one direction, short stay at the bending configuration, and subsequently a return to the initial straight position.
This scenario is also repeated in the opposite bending direction. (b) Snapshots of the ortho-snake’s bending motion in the obstructed environment experiments
taken by the overhead camera. To ensure repeatability, each experiment included various cycles of bending and colliding with the obstacle [23].

number of X-ray images in various interventional radiology
and orthopedics procedures (e.g., [36]). To this end, we fused
high-frequency data of the ESU with low-frequency EIU images
within the SCADE framework. This enables to 1) mitigate the
safety concerns of using fluoroscopy machines and 2) improve
the estimation of the CM/FI position as compared to using the
ESU data only. To study the effect of the EIU imaging frequency
on the performance of the SCADE algorithm, we performed an
experiment and analyzed the results.

A. Free Bending

As shown in Fig. 4(a), in this set of experiments, the ortho-
snake’s cables were antagonistically actuated with continuous
displacement rates of 0.5 and 1 mm/s in a free environment
with no obstacle. It is worth noting that these displacement
rates are clinically viable values, which are obtained experi-
mentally for minimally invasive treatment of hard lesions by
ortho-snake [32], [35]. To ensure repeatability, each experiment
included various cycles of free bends with the maximum cable
displacement of 3 mm, short stays at this bending configuration
to study the effect of calibration bias and hysteresis on the
position estimations, and subsequently returns to the initial
straight position. This scenario was also repeated in the opposite
bending direction.

Figs. 5 and 6 demonstrate the results of the experiments
performed with 0.5 and 1 mm/s cable displacement rates, respec-
tively. These figures demonstrate the ortho-snake’s estimated tip
position (i.e., the X and Y coordinates) using the following:

1) only the streamed FBG data and the model-based recon-
struction method described in Section III-B;

2) the instances of recorded and registered images by the
camera;

3) our proposed model-independent sensor fusion algorithm
(i.e., the SCADE algorithm).

To better represent the bending configurations of the ortho-
snake and repeatability of the SCADE’s results, various bending
cycles of the experiment are shown in these figures.

B. Bending in an Obstructed Environment

For these experiments, the ortho-snake’s cables were an-
tagonistically actuated with continuous displacement rates of
0.5 and 1 mm/s for a maximum cable displacement of 2 mm.
Fig. 4(b) demonstrates snapshots of this set of experiments, taken
by the overhead camera, when the ortho-snake collides with a
rigid circular obstacle with 25 mm diameter during its bending
motion. Similar to the previous free-bending experiments, to
ensure repeatability of the results, these experiments included
various cycles of bending motions in the presence of the obstacle
and returning to the straight configuration.

Figs. 7 and 8 demonstrate the results of these experiments per-
formed with continuous displacement rates of 0.5 and 1 mm/s,
respectively. Similar to the free-bending experiments, these fig-
ures represent the ortho-snake’s estimated tip positions (i.e., the
X and Y coordinates) using the following:

1) only the streamed FBG data and the online model-based
reconstruction method described in Section III-B;

Authorized licensed use limited to: UCLA Library. Downloaded on September 06,2020 at 01:10:13 UTC from IEEE Xplore.  Restrictions apply. 



ALAMBEIGI et al.: SCADE OF FBG-EQUIPPED UNMODELED CONTINUUM MANIPULATORS 231

Fig. 5. Ortho-snake’s estimated tip position (i.e., the X and Y coordinates) when its cables were antagonistically actuated with continuous displacement rates of
0.5 mm/s in the free environment and without the presence of obstacles using 1) only the streamed FBG data and the online model-based reconstruction method
described in Section III-B, 2) the instances of recorded and registered images by the camera with frequency of 0.5 Hz, and 3) the SCADE algorithm. The bending
configurations of the CM have been shown in each cycle. The tip position is considered at the distal end point of the center line of the robot.

2) the instances of recorded and registered images by the
camera at 0.5 Hz frequency;

3) our proposed model-independent sensor fusion SCADE
algorithm.

These figures also show different bending cycles of these
experiments to better represent the bending configurations of
the ortho-snake and repeatability of the SCADE’s estimation
results.

C. Effect of the EIU Imaging Frequency on the
SCADE Performance

In this experiment, we studied ten decreasing frequencies
from 0.5 (i.e., every 2 s) to 0.05 Hz (i.e., every 20 s) representing
a wide range of the rate of images obtained by the EIU during
the procedure. We performed our analysis when the ortho-snake
was bending in the obstructed environment with 1.0 mm/s dis-
placement rate and the FBG reading rate was identical to all

other experiments (i.e., 15 Hz). Fig. 8 and Table II summarize
the results of this experiment. Of note, only three representative
frequencies of 0.5, 0.125, and 0.05 Hz have been shown in Fig. 8
for brevity and better representation of data.

V. DISCUSSION

To evaluate the performance of the SCADE algorithm, we
used data of an FBG-equipped CM. As discussed throughout
the article, the overall performance of an FBG sensing unit
depends on four main attributes. First, the fabrication of the
FBG sensor assembly, which is very difficult due to the size
and delicacy of the FBG optical sensors, and highly depends on
the user’s expertise [22]. Second, the locations and numbers of
sensing nodes, which are application specific with no generic
standard to define these parameters [40], [41]. Although using
more sensing nodes can increase the estimation accuracy, it
in return increases the fabrication costs [16]. Third, the shape
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Fig. 6. Ortho-snake’s estimated tip position (i.e., the X and Y coordinates) when its cables were antagonistically actuated with continuous displacement rates
of 1 mm/s in the free environment and without the presence of obstacles using 1) only the streamed FBG data and the online model-based reconstruction method
described in Section III-B, 2) the instances of recorded and registered images by the camera with frequency of 0.5 Hz, and 3) the SCADE algorithm. The bending
configurations of the CM have been shown in each cycle. The tip position is considered at the distal end point of the center line of the robot.

reconstruction procedure, which is typically performed using
a model-based approach [16], [17]. For instance, assumptions
such as a linear relationship between the sensing nodes of a
sensing unit [21] that typically used in the shape reconstruction
procedure directly affect the results of shape/tip estimation [25].
Fourth, the CM’s contact with the environment, which might
result in a time-varying and hard-to-model bias [23]. Investiga-
tion of Figs. 5 and 6 clearly demonstrates the inferior results of
solely using the FBG sensing unit and a model-based approach
in estimation of the ortho-snake’s tip position (i.e., X and Y
coordinates) compared to the ground truth value obtained by
the EIU. As summarized in Table I, the obtained results for free-
bending experiments show mean tip position error (MTPE), i.e.,

the absolute error between the ground truth and the FBG-based
estimation of 1.0895± 0.780 and 3.421± 1.077 mm for the 0.5
and 1 mm/s cable displacement rates, respectively. For the ex-
periments performed in the obstructed environment and shown
in Figs. 7 and 8, an MTPE of 2.719± 0.839 and 0.961± 0.271
were calculated for the FBG-based estimations with 0.5 and
1 mm/s cable displacement rates, respectively. These analyses
clearly demonstrate the sensitivity of the FBG-based estimations
(i.e., calibration parameters of the ESU) to the change in the
experimental conditions (i.e., the displacement rates and bend-
ing cycles) even in an identical obstructed/free environment. As
described, the main attributes of this estimation error for both set
of experiments are the manual fabrication of the FBG sensing
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Fig. 7. Ortho-snake’s estimated tip position (i.e., the X and Y coordinates) when its cables were antagonistically actuated with continuous displacement rates of
0.5 mm/s in the obstructed environment using 1) only the streamed FBG data and the online model-based reconstruction method described in Section III-B, 2) the
instances of recorded and registered images by the camera with frequency of 0.5 Hz, and 3) the SCADE algorithm. The bending configurations of the CM have
been shown in each cycle. The tip position is considered at the distal end point of the center line of the robot.

unit, static calibration, as well as the hysteresis due to the friction
between the ESU and the CM channels [21], [39].

In contrast to the results obtained by merely using the FBG,
as observed in all four experiments, the proposed sensor fusion
algorithm could substantially improve the CM deformation and
subsequently tip position estimation without utilizing a pri-
ori deformation model of the ortho-snake. The fusion of the
streamed FBG data with the intermittent low-frequency EIU
not only may eliminate the tip position estimation errors by
using solely the ESU data but it can also capture the dynamic
offset between the ESU and EIU when the EIU data are not
available. As summarized in Table I, the MTPE of 0.016 ±
0.009 mm between the camera and the SCADE algorithm was

obtained in both free-bending experiments. For the experiments
performed in the obstructed environment, these errors were
0.017 ± 0.010 and 0.001 ± 0.001 mm for the 0.5 and 1 mm/s
cable displacement rates, respectively. This is mainly due to the
described two-phase sensor fusion algorithm, which simultane-
ously estimates the unknown deformation behavior of the CM
and calibrates the unknown bias of the FBG sensing unit on
the fly. Additionally, investigation of the initial iterations of all
four experiments clearly reveals the appropriate and punctual
performance of the SCADE algorithm. This is mainly because
the SCADE algorithm suddenly improves the tip position esti-
mation once EIU data are available and are fused with the FBG
data. Similarly, this sudden drop/overshoot in the estimation
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Fig. 8. Ortho-snake’s estimated tip position (i.e., the X and Y coordinates) when its cables were antagonistically actuated with continuous displacement rates of
1 mm/s in an obstructed environment using 1) only the streamed FBG data and the online model-based reconstruction method described in Section III-B, 2) the
instances of recorded and registered images by the camera, and 3) the SCADE algorithm performed with three different EIU imaging frequencies of 0.5, 0.125, and
0.05 Hz. The bending configurations of the CM have been shown in each cycle. The tip position is considered at the distal end point of the center line of the robot.

TABLE I
CALCULATED MTPE IN THE PERFORMED EXPERIMENTS WITH THE EIU IMAGING FREQUENCY OF 0.5 HZ

error is also observed through the experiments where a tran-
sition between Phases I [i.e., propagation based on (23)] and II
[i.e., a sensor fusion based on (24)] of the SCADE algorithm
occurs.

Analysis of Fig. 8 shows the effect of the EIU imaging
frequency on the SCADE performance. First, as can be ob-
served, the SCADE algorithm outperforms the FBG-based es-
timations for all considered EIU frequencies. As summarized
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TABLE II
EFFECTS OF THE EIU IMAGING FREQUENCY ON THE MTPE

These results have been calculated for a bending motion in an obstructed environment with continuous displacement rate
of 1 mm/s.

Fig. 9. Stacked FBG-based and SCADE-based absolute position estimation
errors during free-bending experiments with continuous displacement rate of
1 mm/s. The errors have been calculated at iterations when the ground truth
data are available from the EIU (with frequency of 0.5 Hz (i.e., Phase II of the
SCADE algorithm).

in Table II, the MTPE of the lowest imaging frequency (i.e.,
0.05 Hz) is 0.255 ± 0.247 mm, which is still approximately
four times better than the FBG-based estimation with MTPE
of 0.961 ± 0.271 mm. Second, as expected, by reducing the
imaging frequency to ten times slower rates, the estimation error
increases from 0.001 ± 0.001 mm for the 0.5 Hz (i.e., the high-
est frequency) to 0.255 ± 0.247 mm for the lowest considered
frequency. Of note, although this feature may compromise the
estimation accuracy, from the clinical aspect it can result in a safe
and low radiation exposure in fluoroscopic procedures. Third,
a similar pattern to the other experiments for the estimation tip
position and error is observed. This pattern is referred to the
transition from Phases I to II of the SCADE algorithm at the
beginning and through the experiments, which proves the robust
performance of the proposed algorithm.

Fig. 9 shows the stacked FBG-based and SCADE-based
position estimation errors during bending motion in free en-
vironment with 1 mm/s cable displacement rate. This error was
calculated at instances when the ground truth data were available
from the EIU with frequency of 0.5 Hz (i.e., Phase II of the
SCADE algorithm). As observed in this figure, the estimated
positions in both X and Y coordinates using only FBG sensing

Fig. 10. Comparison of absolute estimation errors performed by the FBG-
based and SCADE-based methods during bending in an obstructed environment
with continuous displacement rate of 1 mm/s. The SCADE-based estimations
have been performed in three different frequencies (i.e., 0.5, 0.125, and 0.05 Hz).
The absolute errors have been calculated at iterations when the ground truth data
are available from the EIU. The magnified region shows the instances when the
error has been calculated based on Phase I or Phase II of the SCADE algorithm
for the corresponding imaging frequency.

unit are much larger than the ones obtained from the SCADE
algorithm. The absolute estimation error in the X coordinate
is 3.310± 1.117 mm, which is one order of magnitude larger
than 0.620± 0.529 mm error associated with the Y coordinate.
The relative error of estimations along the X and Y coordinates
was calculated as 10.73% and 8.72% of the range of motion
along these axes, respectively. These errors might be due to
the poor manual fabrication procedure and/or heterogeneous
friction or hysteresis distribution along the FBG sensing unit and
the ortho-snake channels. However, as can be seen in Table I,
these adverse effects and errors have been eliminated by the
deployed model-independent sensor fusion algorithm.

Fig. 10 shows the corresponding FBG-based and SCADE-
based position estimation errors of the results presented in Fig. 8.
To calculate these errors, the obtained positions by the highest
frequency rate of the EIU (i.e., every 2 s) were considered as
the ground truth. We then calculated the corresponding absolute
estimation errors of the FBG and the SCADE algorithms at
various imaging frequencies and identical instances with respect
to this ground truth. It is worth noting that the stacked estimation
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errors demonstrated in Fig. 9 were only calculated at Phase II of
the SCADE algorithm. However, the presented errors in Fig. 10
show the error of estimations in both Phases I and II of the
SCADE algorithm and obtained based on different imaging
frequencies (i.e., 0.5, 0.125, and 0.05 Hz). To emphasize, Phase
I refers to the estimations solely obtained by the state transition
matrix, whereas Phase II refers to the estimations calculated
based on the state transition matrix and camera images. The mag-
nified region in Fig. 10 shows the instances when the MTPE error
has been calculated based on Phase I or Phase II of the SCADE
algorithm in each imaging frequency. As can be observed in this
figure and summarized in Table II, similar to the results shown
in Fig. 9, the estimated positions in both X and Y coordinates
using only FBG sensing unit are much larger than the ones
obtained from the SCADE algorithm with different frequencies.
Complementary to the results obtained from Fig. 10, analysis
of Table II and Fig. 10 conveys that the estimation accuracy of
the SCADE algorithm decreases with reducing the frequency of
imaging by the EIU. Quantitatively, according to Table II, the
MTPE of the estimated positions increases from 0.001± 0.001
to 0.255± 0.529247 mm by making the imaging frequency ten
times slower. Nevertheless, the MTPE of the SCADE at lowest
imaging frequency is still approximately four times less than
the FBG-based estimations. Further, Fig. 10 clearly shows the
significance and capability of the SCADE algorithm in reducing
the MTPE when the EIU and ESU data are fused. These instances
can be distinguished by different markers in Fig. 10, when the
MTPE of all frequencies suddenly drops due to the sensor fusion.

The presented experimental results also demonstrate the capa-
bility and performance of the SCADE algorithm in capturing the
deformation behavior of a CM without having a prior knowledge
about its deformation behavior. It is worth emphasizing that
other sensor fusion methods in the literature (e.g., [24], [26],
and [27]) require a known kinematics or dynamics model of the
CM/FI, which makes their usage very limited to a particular
type of robot. In addition, most of these models have been
derived or experimentally tuned for a specific experimental
condition and often are not generic. One of the main advantages
of the presented model-independent approach, however, is its
independence to the experimental condition together with its
expandability to different type of CMs/FIs. As presented in
Figs. 5–7, the SCADE can successfully estimate the deforma-
tion behavior of the ortho-snake both in the free-bending and
obstructed environments.

To address the mentioned limitations of the FBG-based
shape/position estimation of CMs/FIs and with the goal of in-
creasing the resolution of curvature estimation along the CM/FI
length, a group of researchers (e.g., [40]–[42]) has proposed
the use of more shape sensing units or sensing areas on each
shape sensing unit [16]. Although this approach may potentially
improve the estimation accuracy, it dramatically increases the
cost of fabrication of each sensing unit. Another advantage of
our proposed sensor fusion method, however, is its potential to
improve the estimation accuracy with minimum number of sens-
ing areas and subsequently lower fabrication costs when fused
with another external imaging modality. As described, there
exist various surgical interventions (e.g., breast and brain biopsy,
and orthopedic surgeries) that already using an external imaging

modality during a surgical procedure. Hence, these devices can
potentially be utilized as an EIU within the SCADE framework.

VI. CONCLUSION

In this article, we presented a model-independent sensor fu-
sion framework based on a novel mathematical formulation. This
framework enables us to estimate a linearized state transition
matrix, which represented the unknown deformation behavior
of a generic CM/FI. It also enables detection, estimation, and
compensation of the time-varying bias of a poorly calibrated
ESU. Unlike the typical KF-based estimation, which requires
a CM/FI’s dynamic model as a priori, the SCADE algorithm
solely relies on the known actuation input and measurement
output obtained by an embedded and external sensing units
to perform tip position estimation. Not only does the SCADE
framework address the estimation issues due to manual imper-
fect fabrication, offline calibration, and corrupted measurements
of various ESUs (e.g., FBG optical sensors) but also it can be
adapted for different types of CM/FIs in both free and obstructed
environments. The latter enables the use of SCADE without hav-
ing a comprehensive kinematics/dynamics deformation model
of a CM/FI including complex phenomenons such as friction
and hysteresis.

We evaluated the aforementioned features of the SCADE al-
gorithm using data from two different sets of experiments in free
and obstructed environments. The experiments were performed
with a CM, i.e., ortho-snake, with planar bending motion de-
veloped for orthopedic applications. Although the experiments
were based on 2-D bending motions of the ortho-snake, as de-
scribed in Section II and [23], the developed SCADE algorithm
can be easily extended to 3-D motions and CMs with more
degrees of freedom. In the reported experiments an intermittent
external imaging feedback using an overhead camera was used,
as the accurate and low-frequency measurement source. On the
other hand, a CM equipped with embedded FBG sensing units
was used as an inaccurate measurement source with 30 times
faster readings (i.e., 15 Hz FBG reading versus 0.5 Hz EIU
imaging frequency). Using the results of these experiments, we
successfully showed the estimation capability of the proposed
algorithm without using a priori deformation model of the
utilized CM and in the presence of a time-varying bias in the
FBG calibration parameters.

We also studied the effects of the EIU imaging frequency on
the accuracy of the SCADE estimations. Our results indicated
the out-performance of the SCADE versus FBG-based tip posi-
tion estimations even when the FBG readings are 300 times faster
than the imaging frequency (i.e., 15 Hz FBG reading versus 0.05
Hz EIU imaging frequency). This feature helped to mitigate
the radiation exposure concerns of using fluoroscopy machines
for interventional radiology (e.g., angiography) and orthopedics
procedures (e.g., internal fracture fixation and screw placement)
while providing tip estimations with proper accuracy.

Some limitations of this article are as follows. Despite the
presented generic mathematical formulation, we limited the
shape/position estimation of the used CM to only 2-D C-shape
configurations. The success of S-shape as well as the 3-D
shape/position estimation of a generic CM will need additional
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investigations. The SCADE algorithm was evaluated using an
overhead camera. As a more relevant medical application, future
studies will focus on implementing this sensor fusion algorithm
on the images acquired by a fluoroscopic machine. Further, we
will also perform ex-vivo cadaveric experiments to mimic more
realistic clinical settings.

Another potential extension of this article can be model-
independent real-time control of soft robots (e.g., [43]) or
CMs/FIs (e.g., [3]) using the SCADE algorithm in which we
initially estimate the deformation behavior of the robot; and
then, we use this estimation for position or shape control of the
CM/FI to accomplish a predefined control objective. SCADE
can also be used within the context of automating surgical
subtasks such as suturing [44] and tissue manipulation [45]–[47]
to simultaneously estimate the tissue deformation along with
the system states in real time. The study of osteolysis will also
require addressing the constrained combined control of CMs in
integration with robotic manipulators [31].
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