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Abstract For a wearable robotic system which
includes the same redundancy as the human arm,
configuring the joint angles of the robotic arm in
accordance with those of the operators arm is one of
the crucial control mechanisms to minimize the energy
exchange between human and robot. Thus it is impor-
tant to understand the redundancy resolution mecha-
nism of the human arm such that the inverse kine-
matics solution of these two coupled systems becomes
identical. In this paper, the redundancy resolution of
the human arm based on the wrist position and ori-
entation is provided as a closed form solution for the
practical robot control algorithm, which enables the
robot to form the natural human arm configuration as
the operator changes the position and orientation of
the end effector. For this, the redundancy of the arm
is expressed mathematically by defining the swivel
angle. Then the swivel angle is expressed as a superpo-
sition of two components, which are reference swivel
angle and the swivel angle offset, respectively. The
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reference swivel angle based on the wrist position is
defined by the kinematic criterion that maximizes the
manipulability along the vector connecting the wrist
and the virtual target point on the head region as a
cluster of important sensory organs. Then the wrist
orientation change is mapped into a joint angle avail-
ablility function output and translated to the swivel
angle offset with respect to the reference swivel angle.
Based on the inverse kinematic formula the controller
can transform the position and orientation of the end-
effector into the joint torque which enables the robot
to follow up the operator’s current joint configuration.
The estimation performance was evaluated by utiliz-
ing a motion capture system and the results show that
there is a high correlation between the estimated and
calculated swivel angles.
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Swivel angle · Control · Human-robot interface

1 Introduction

Synergy between human arms and wearable robot sys-
tems (e.g. the exoskeletons) enables robots to support
and assist physical capabilities of the human in various
situations. In particular, the advent of high degree of
freedom assistive wearable robots [28, 33, 36] enabled
more objective and comprehensive rehabilitation pro-
grams for people who suffer from a variety of neuro-
muscular diseases [20, 33, 36, 44]. Healthy humans
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have flexible arm movement to manipulate objects and
to avoid obstacles while robotic manipulators can aug-
ment power and reduce the fatigue due to heavy loads.
By constructively combining the flexibility of natu-
ral human movements with the power of manipulation
of robots, we can maximally utilize the support from
the robot with minimum energy exchange between the
wearable robots and their human users. For this, the
motor control mechanism, which allows a particular
motor task with a large degree of flexibility, needs to
be formulated for the practical controller implementa-
tion in the assistive robots. In other words, the inverse
kinematics solution resolving the redundancy of these
two coupled systems must be identical in order to
guarantee a seamless integration [18, 36].

Earlier work to reveal the redundancy resolution of
the human arm focused on posture-based motion con-
trol strategies [6, 7] based on Donders’ law, which was
originally proposed for eye movements. Most of the
early work resolved the redundancy at the kinematic
level by focusing on the desired hand posture under
the kinematic constraint at a target location. Another
line of research focuses on dynamic constraints
such as the amount of work and energy [12, 27].
In this context, Soechting and his colleagues [38] pro-
posed that the final arm posture is made by minimizing
the amount of work required to move the hand from a
starting to an ending position. The minimum-torque-
change model is presented in [23, 41]. Tao et al. [12]
presented an inverse kinematic solution which defines
the natural elbow position by minimizing the total
work done by joint torques. For more intuitive and
feasible inverse kinematic solution for the human-
machine interface, the law for biomimetic trajectory
planning of humans was studied and applied to the
robot inverse kinematics [1, 34]. For this, dependen-
cies among joint angles are analyzed and modelled
by various system identification algorithms such as
neural networks, ARX(Auto-Regressive Exogenous)
and probabilistic models [10, 21]. Recently in our
preliminary work, by focusing on the functional dif-
ference between the robotic system and the human,
new kinematic constraints which utilize the head as a
hidden target position was proposed [14, 18]. In these
works, it is shown that natural hand posture for reach-
ing activities is mainly configured to bring the hand
efficiently back to the head region. However there

are many tasks in daily living which require more
sophisticated arm configurations such as rotating the
door nob and pouring water into a cup. The redun-
dancy resolution and control scheme mentioned above
has limitations in estimating sophisticated human arm
movement in various situations as a closed form solu-
tion. In order to overcome this limitation, it was
tried to directly translate the muscular signal to joint
torque information for the robot control based on sur-
face electromyography (sEMG) signal data analysis
[3, 39]. In this line of research, the Hill-type mus-
cle model [11] is adopted to predict the muscle force
using the EMG signal and its kinematic parameters.
Since the human-machine interface based on sEMG
signal is established at the neuromuscular level, the
control model enables estimating the effects of muscle
contractions even before these effects can be visu-
ally observed. This provides the basis for modeling
more sophisticated control algorithms. However, the
sEMG signal based control has fundamental limita-
tions to be adopted as a stable robot control algorithm
due to the non-causal EMG signal and the unstable
physical contact between the sEMG electrode and the
human skin. Thus in this paper, a more comprehensive
and robust exoskeleton control algorithm based on
the biologically inspired redundancy resolution model
is presented. The proposed control model provides
the reference swivel angle defined by the wrist posi-
tion and the kinematic criterion that maximizes the
manipulability along the vector connecting the wrist
and the virtual target point on the head region as a
cluster of important sensory organs. Then the wrist
orientation change is mapped into a joint angle avail-
ablility function output and translated to the swivel
angle offset with respect to the reference swivel angle.
Based on the inverse kinematic formula, the controller
can transform the position and orientation of the end-
effector into the joint torque which enables the robot to
follow up the operators’s current joint configuration.
The estimation performance was evaluated by utiliz-
ing a motion capture system and results show that
there is a high correlation between the estimated and
calculated swivel angles. The proposed work differs
from our previous work [13, 17, 18] in the follow-
ing aspects: 1) the orientation of the wrist is reflected
on the swivel angle estimation considering the unique
muscular and skeletal structure of the human arm
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which makes each arm segment move jointly with-
out relying on the force/torque sensor signal; 2) the
swivel angle estimation algorithm is tested on more
subjects; 3) the reduced energy exchange based on
the proposed control scheme is measured by apply-
ing it to the exoskeleton robot. This paper is organized
as follows. Section 2 presents the exoskeleton system
model and methods describing the forward and inverse
kinematics of the robot. Section 3 proposes the swivel
angle estimation algorithm based on the wrist posi-
tion and orientation. Section 4 shows the experimental
results to report the proposed swivel angle estimation
performance and energy exchange between human
and robot. Finally, Section 5 concludes the paper with
discussion.

2 System Model and Method

The synchronous movement between the exoskeleton
robot and human arm can be guaranteed only when
there exists a proper interface between the two. In the
following sections, the robotic system and the kine-
matics of the human arm model supporting natural
human arm movements will be introduced.

2.1 Exoskeleton Design Supporting Human Arm
Model

The kinematics and dynamics of the human arm
during activities of daily living (ADL) were previ-
ously studied to determine the design specifications
for the upper limb exoskeleton UL-EXO7 [35, 36].
Articulation of the UL-EXO7 is achieved by seven
single-axis revolute joints which support 99 % of
the range of motion required to perform daily activ-
ities [36]. Three revolute joints are responsible for
shoulder abduction-adduction, flexion-extension and
internal-external rotation. A single rotational joint
is employed at the elbow, creating elbow flexion-
extension. Finally, the lower arm and hand are con-
nected by a three-axis spherical joint resulting in wrist
pronation-supination, flexion-extension, and radial-
ulnar deviation. As a human-machine interface (HMI),
four six-axis force/torque sensors (ATI Industrial
Automation, model-Mini40) are attached to the upper
arm, the lower arm, the hand and the tip of the

exoskeleton [30]. The force/torque sensor at the tip
of the exoskeleton allows measurement of interactions
between the exoskeleton and the environment.

2.2 The Extra Degree of Freedom

Since the seven-DOF arm model is redundant, the
location and orientation of the hand does not fully
specify the configuration of the arm. By also specify-
ing the elbow position, the arm configuration is fully
defined. According to the frame definition in Fig. 1a,
the elbow position introduces three additional vari-
ables where only one additional variable is needed.
A single variable can parameterize the elbow. The
arm forms a triangle with a point at the shoulder
(Ps) one at the elbow (Pe) and the last at the wrist
(Pw). Both the shoulder and wrist joints are spheri-
cal, and allow rotation of point Pe around the vector
(Pw − Ps) [Fig. 1b]. A local coordinate system at the
center of the elbow circle (Pc), gives a reference to
measure the swivel angle (φ) of the elbow. A nor-
mal vector that points in the direction of (Pw − Ps) is
defined as:

n = Pw − Ps

||Pw − Ps | | . (1)

A normalized vector that is projected onto the plane
normal to n is given by:

u = a − (a · n)n
||a − (a · n)n|| (2)

where a can be selected as any vector. Badler and
Torlani [2] suggest a to be the −z vector. This selec-
tion has real physical meaning. When φ is equal to
zero, the elbow is at its lowest possible point. The last
vector of the coordinate system (v), is found by tak-
ing the cross product of n and u. Vectors n, u and v
form an orthonormal coordinate system. Where u and
v are in the plane of the elbow circle [Fig. 1c]. The
radius (R) and center (Pc) of the circle are easily found
through geometry:

R = U sin(Ω) (3)

Pc = Ps + U cos(Ω) · n (4)

cos(Ω) = U2 − L2 − ||Pw − Ps ||2
−2L2||Pw − Ps || , (5)
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Fig. 1 a The global reference frame FG defined on Ps and
joint angles [θ1, θ2, . . . θ7] for each joint in an initial position
of the right arm. b The extra degree of freedom is defined by a
rotation axis that goes from the shoulder to the wrist. c By cre-
ating a coordinate frame at the center of the elbow circle, the
swivel angle can be defined allowing the parameterizations of

the elbow position by a single variable. d Virtual destination for
the given wrist position at any time ti . VD (ti ) means the vir-
tual destination formed at any time ti depending on the wrist
position PW (ti ).The pictures were referenced from the original
work in [14, 15, 29]

where U and L are the lengths of the upper and lower
arm segments [Fig. 1b]. The position of the elbow can
now be expressed as a parametrization of φ [40]:

Pe(φ) = R [cos(φ)u + sin(φ)v] + Pc. (6)

Then the inverse kinematics for the 7-DOF
exoskeleton robot can be solved by the two following
equations:

T1T2T3T4T5T6T7gst = gd (7)

T1T2Peo = Pe(φ), (8)

where Ti and gst denote the 4×4 homogeneous trans-
formation matrix defining the rotation and translation
with respect to the ith joint axis and the transforma-
tion between the tool and the base frames at the initial
position of the arm (θ = 0) based on the exponen-
tial coordinates system formulation approach [4, 31].
Unlike the Denavit-Hartenberg parameter approach
representing the relative motions of each link with
respect to the previous link, gst in Eq. 7 translates the
end effector PT in the local tool frame to P ′

T in the
global base frame. Thus the homogeneous transforma-
tion matrix Ti performs the rotations and translations
around the ith joint axis represented in the global
base frame. There is not a simple one-to-one mapping
between the exponential coordinates system and the
Denavit-Hartenberg parameters approach [4, 31] but
both have the same form of final transformation matrix
gd in Eq. 7. Note that Peo is the initial position of the
elbow and Pe(φ) is from Eq. 6.

2.3 Inverse Kinematics for the Given Swivel Angle

We will decompose (7) and (8) into one of two sub-
problems whose solutions are readily available [29].

2.3.1 Subproblem 1

Given the transformation matrix T (θ), find θ such
that:

T (θ)P0 = Pd. (9)

This corresponds to rotating an initial point P0 about
a given axis until it is coincident with Pd , the desired
final position. The solution to this problem is:

θ = atan2
[
ωT (u × v), uT v

]
(10)

u = (P0 − Pr) − ωωT (P0 − Pr) (11)

v = (Pd − Pr) − ωωT (Pd − Pr), (12)

where ω points in the direction of the rotation axis and
Pr is a point the axis passes through. For the derivation
refer to [4, 31].

2.3.2 Subproblem 2

Given the transformation matrix Ti(θi)Tj (θj ) where
the rotation axis of Ti and Tj intersect, find θi and θj

such that:

Ti(θi)Tj (θj )P0 = Pd. (13)

This corresponds to rotating an initial point P0 about
the rotation axis of Tj by θj then about the rotation
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axis of Ti by θi , so that the final location of the point
coincides with Pd the desired final position. The solu-
tion to this problem is found by first finding Pg as
follows:

Pg = αωi + βωj ± √
γ (ωi × ωj ) + Pr (14)

α =
(
ωT

i ωj

)
ωT

j (P0 − Pr) − ωT
i (Pd − Pr)

(
ωT

i ωj

)2 − 1
(15)

β =
(
ωT

i ωj

)
ωT

i (Pd − Pr) − ωT
j (P0 − Pr)

(
ωT

i ωj

)2 − 1
(16)

γ = ||(P0 − Pr)||2 − α2 − β2 − 2αβωT
i ωj

||ωi × ωj ||2 , (17)

where ωi and ωj point in the direction of the rotation
axes of Ti and Tj and Pr is the point where the axes
intersect. There may be zero, one or two real solutions
for Pg depending on γ . If solutions exist, then θi and
θj can be found with subproblem one:

Ti(−θi)Pd = Pg (18)

Tj (θj )P0 = Pg. (19)

For the derivation of this solution refer to [31, 42].

2.3.3 Decomposition of the Forward Kinematics

θ4 can easily be solved by an application of the law of
cosine:

θ4 = π − L2 + U2 − ||w − s||2
2LU

. (20)

Equation 8 is already in the form of Eq. 13 with
P0 = Pe0 and Pd = Pe(φ), and an immediate solution
for θ1 and θ2 is available. Note that Eq. 13 has two
solutions. For a natural arm configuration the negative
sign in Eq. 14 should be chosen.

Next to solve for θ3, Eq. 7 is premultiplied by
(T1T2)

−1 and then postmultiplied by g−1
st Pw0 . Since

Pw0 is an eigenvector of T5, T6 and T7 with eigenvalue
one, T5T6T7Pw0 = Pw0 . Then we have

T3
(
T4Pwo

) = (T1T2)
−1gdg−1

st Pw0 . (21)

This is in the form of Eq. 9 when P0 = (T4Pw0) and
Pd = (T1T2)

−1gdg−1
st Pw0 .

To solve for θ5 and θ6, Eq. 7 is premultiplied by
(T1T2T3T4)

−1 and postmultiplied by g−1
st P7, where

P7 = [1, 0, −U − L]T which is an eigenvector of T7

with an eigenvalue of one. Then we have T7P7 = P7

and

T5T6P7 = (T1T2T3T4)
−1gdg−1

st P7. (22)

This is now in the form of Eq. 13 when P0 = P7 and
Pd = (T1T2T3T4)

−1gdg−1
st P7. Equation 13 has multi-

ple solutions and the negative sign in Eq. 14 should be
chosen.

Finally to solve for θ7, Eq. 7 is Premultiplied
by (T1T2T3T4T5T6)

−1Ps and then postmultiplied by
g−1

st Ps as follows:

T7Ps = (T1T2T3T4T5T6)
−1gdg−1

st Ps. (23)

Equation 23 is in the form of Eq. 9. Note that P0 = Ps

and Pd = (T1T2T3T4T5T6)
−1gdg−1

st Ps in Eq. 9.

3 Swivel Angle Estimation

Considering the high complexity of the human brain
network, it is hard to define the general redundancy
resolution (swivel angle estimation) mechanism of
the human arm and to apply this to the robot as a
real time control mechanism. However in our previ-
ous work [18], it was studied that the human arm
swivel angle could be effectively estimated by a sim-
ple closed form equation in a kinematic level when the
given tasks did not require wrist orientation changes
and fast hand movement without load. The estima-
tion performance became worse when there was an
excessive wrist orientation variation during the exper-
iment. Thus assuming that the hand movement speed
is not fast in an activity of daily life, we can infer
that the generalized swivel angle estimation model
could be established by compensating the deviated
swivel angle caused by the excessive wrist orienta-
tion changes. To make the estimation problem more
practical for real time application, it is hypothesized
that the swivel angle components from the wrist ori-
entation and position are mutually independent such
that the final form of swivel angle estimation can be
represented as follows:

φf in = φref (θ1, θ2, θ3, θ4) + Δφ(θ5, θ6, θ7), (24)

where φref and Δφ are based on the wrist position and
orientation respectively. The entire control scheme
based on Eq. 24 is also depicted in Fig. 2. This linear
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Fig. 2 Block diagram of
the control scheme: The
final swivel angle φf in is a
combination of position
based swivel angle φref and
orientation based swivel
angle δφ. φf in will be
converted to the joint torque
to configure the desired
swivel angle on the
exoskeleton. The original
figure can be found in [18]

combination model can be replaced with more sophis-
ticated non-linear system model or include the cross
term between wrist position and orientation as a future
work. Also note that throughout the paper the swivel
angle estimation is limited to the tasks that do not
require fast hand movement and load such that the
dynamics of the human arm could be neglected.

3.1 Swivel Angle Based on the Wrist Position

Given the role of the head as a cluster of sensing
organs and the importance of arm manipulation to
deliver food to the mouth, it is hypothesized that
the prime goal of the arm manipulation is to effi-
ciently retract the palm to the head region such that
the swivel angle for the natural and unconstrained arm
movement is chosen to meet the prime goal of the
human arm manipulation by the motor control sys-
tem. This hypothesis is supported by the intracortical
stimulation experiments to evoke coordinated fore-
limb movements in the awake primate [5, 8]. It has
been reported that each stimulation site produced a
stereotyped posture in which the arm moved to the
same final position regardless of its posture at the ini-
tial stimulation. In the most complex example, the
monkey formed a frozen pose with the hand in a grasp-
ing position in front of the open mouth. This implies
that during the arm movement toward an actual tar-
get, the virtual target point on the head can be set for
the potential retraction position of the palm as shown
in Fig. 1d and the movement toward that virtual target
point should be efficient. The proposed prime goal can
be utilized as an additional constraint reflecting the

biological aspect of the human arm movement and will
play a major role in reanimating the human arm move-
ment more naturally than the other purely engineering
constraints such as minimum energy and torque.

3.1.1 Manipulability Ellipsoid

To extract the equation that resolves the redundancy of
the human arm from the notion of efficient arm move-
ment toward the head, the concept of manipulability
ellipsoid is adopted. Let Pm denote the virtual target
position at the center of the head in Fig. 3a. When we
consider the combinations of joint velocities satisfying

the condition in which �n
i=1θ̇i

2 = 1, the hand velocity
as a function of the joint velocity is described by an
ellipsoid that defines the arm’s scaled Jacobian. The
largest among the major axes of the manipulability
ellipsoid defines the direction of the highest sensitivity
and efficiency where the end effector velocity varies in
response to the joint space velocity [Fig. 3b] [26]. The
property of the manipulability ellipsoid is described in
Lemma 1.

Lemma 1 Let the plan S be defined by three points
Pw, Pe and Ps . The longest axis of the manipulability
ellipsoid is aligned along plane S and its magnitude
σ1 is expressed as

σ1 = √
λ1 =

√((
L2

ws + L2
we

) + (
L2

ws + L2
we

)
c1

)
/2 (25)

c1 = √
1 − c2, c2 = 4L2

weL
2
ws sin(ϕ)2/

(
L2

ws + L2
we

)2
.

The proof can be found in [17] and the Appendix.
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Fig. 3 The new coordinate system composed of Pw , Pe,
Ps and Pm. a Each element Ji in the Jacobian matrix is
defined with respect to the newly defined frame on the shoul-
der where the x axis is defined as (Pw − Ps)/‖Pw − Ps‖
and the y axis sits on the plane S composed of Pw , Pe and
Ps . The new frame on the shoulder is defined for the con-
venience of the calculation. b Manipulability ellipsoid on the
wrist position. u1, u1 and u3 indicate the three major axes
of the ellipsoid with magnitude of σ1, σ2 and σ3. c The

highest manipulability direction vector u1 projected on the
(Pm − Pw)/‖Pm − Pw‖ is marked as the green arrow and its
magnitude can be represented as ‖u1‖ cos(α) cos(β). d This
figure shows the specific elbow position for the given wrist
position that maximizes the manipulability projected on the
virtual trajectory. When Pm, Ps , Pe and Pw are on the same
plane, the manipulability on the virtual trajectory is maxi-
mized. The pictures were referenced from the original work
in [14, 15, 29]

3.1.2 Optimum Swivel Angle

Assuming that the virtual hand movement follows the
shortest path connecting Pw to Pm, the swivel angle
for the efficient hand movement is chosen such that
the projection of the major axis u1 of the manipu-
lability ellipsoid onto (Pm − Pw) will be maximized
[Fig. 3c]. Then the optimum swivel angle can be found
by establishing (26). Since we have already shown the
detailed description of the optimum swivel angle esti-

mation algorithm in [18], here we only explain the
basic idea and the result. Let:

φ = arg max
α,β∈[0 π/2]

[
uT

1 (Pm − Pw)
]

(26)

= arg max
α,β∈[0 π/2]

[‖u1‖‖Pm − Pw‖ cos(α) cos(β)], (27)

where α and β are the angles between (Pm − Pw) and
plane S, and the angle between u1 and the projection
of (Pm − Pw) onto S [Fig. 3c] respectively. Note that
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the projected portion of u1 onto (Pm − Pw) is repre-
sented by ‖u1‖ cos(α) cos(β) and marked as an arrow
in Fig. 3c. Based on the geometry defined in Fig. 3c,
Eq. 44 is maximized when α = 0 regardless of the β

determined by the given wrist position. In this condi-
tion when α = 0, plane S is coplanar with the plane
composed by Pm, Ps and Pw as shown in Fig. 3d.
Then the swivel angle under this condition is calcu-
lated given the known positions Pm, Pw and Ps . In
order to do so, a new vector f = Pw − Pm is defined.
The vector f′ is the projection of f on the direction of
Pw − P ′

c in Fig. 3c. Based on the fact that f′ is parallel
to vector Pe(φ) − Pc when α = 0, the swivel angle is
estimated by

φref = arctan 2
(
n · (

f′ × u
)
, f′ · u

)
. (28)

The estimation algorithm is proper for the real time
inverse kinematic solution due to its simplicity. The
accuracy of the φest estimation was assessed based on
the experimental protocol described in the Section 4.

3.2 Swivel Angle Based on the Wrist orientation

Unlike conventional robots, the human arm has a
unique muscular and skeletal structure which makes
each arm segment move jointly. For instance, when
the wrist rotates to pour the water into the cup, one
or more of the wrist joints in the seven DOF arm
model [Fig. 1a] can approach the joint limit due to
the limited range of the motion and one unconsciously
starts to use other joints such that all the joints in
the human arm do not reach their joint limit. Human
motor control tends to choose the joint configuration
which avoids the joint limit of each joint. To quantify
how much all joints approach the joint limit in aggre-
gate, the joint angle availability function [24, 25, 32]
can be considered as follows:

C =
n∑

i=1

wi

(
θi − θiref

Δθi

)2

, (29)

where Δθi = (max θi − min θi)/2 is the range of each
joint, θiref = (max θi + min θi)/2 is the neutral posi-
tion of each joint and wi is the weighting coefficient
that reflects the effect on C. This function has the
following property. When θi approaches the joint lim-
its which are max θi or min θi in Eq. 29, C becomes∑n

i=1 wi . When θi approaches the θref in Eq. 29, C

becomes zero. Thus C ranges over
[
0

∑n
i=1 wi

]
. In

order to relate the wrist orientation to the swivel angle,

we can focus on the joint availability function output
on the wrist in Eq. 30, modified from Eq. 29, and relate
this to the swivel angle change.

C = w1

(
θ5 − θ5ref

Δθ5

)2

+ w2

(
θ6 − θ6ref

Δθ6

)2

+w3

(
θ7 − θ7ref

Δθ7

)2

. (30)

3.2.1 Joint Angle Availability Function and Swivel
Angle

The modified joint angle availability function in
Eq. 30 quantitatively defines how much the wrist
joints approach the joint limit in aggregate. Then it
is possible to map this specific function output to the
corresponding swivel angle as a function of wrist ori-
entation. For this, the following three conditions were
considered for the algorithm implementation between
the modified joint angle availability function output
and the swivel angle.

1. Once the availability function output reaches the
maximum

∑n
i=1 wi or minimum value 0, the devi-

ated swivel angle Δφ in Eq. 24 is saturated to its
maximum or minimum value.

2. The proper weighting coefficient wi for each wrist
joint should be estimated considering the different
effect of each wrist joint on the swivel angle.

3. Asymmetric muscular structure of the human arm
having different muscular tension needs to be con-
sidered: we defined two regions where φf in ≤
φref and φf in > φref . In each region, it is
assumed that there is a different mapping between
swivel angle Δφ and the joint availability function
as shown in Fig 5.

The simplest form of relation will be the linear
mapping of the ergodic function as shown in Fig. 4a.
The alternative choice can be a non linear sigmoid
function as shown in Fig. 4c. Since the sigmoid func-
tion has an advantage against the linear mapping
which comes from the fact that the output of the sig-
moid function approaches an asymptotic bound in a
closed form and there is no abrupt transition in the
function output, we adopted a sigmoid function in
our application. The basic form of sigmoid function
in Fig. 4b is modified to map the joint availability
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Fig. 4 Mapping between the ergodic function and the swivel
angle (a) linear mapping between the ergodic function and the
swivel angle and (b) basic form of sigmoid function (c) non-
linear mapping based on sigmoid function between the joint

availability function and swivel angle change. The modified sig-
moid function was scaled and shifted from the basic form of
sigmoid function in (b)

function output to the corresponding swivel angle as
shown in Fig. 4c.

Δφ = Δφmax

1 + exp
(
−12

(
C

Cmax
− 0.5

)) (31)

Δφmax =
{

φref − min (φf in) , φf in ≤ φref

max (φf in) − φref = −φref , φf in > φref
,

where φref ≤ 0 and min (φf in) ≤ 0 based on
our swivel angle definition in Fig. 1. Note that the
max (φf in) = 0 when the elbow is at its lowest
position. Then Eq. 30 can be combined with Eq. 31
for φf in ≤ φref and φf in > φref respectively as
follows:

C

Cmax

= − 1

12
log

(
Δφmax

Δφ
− 1

)
+ 0.5 (32)

= w1

Cmax

(
θ5 − θ5ref

Δθ5

)2

+ w2

Cmax

(
θ6 − θ6ref

Δθ6

)2

+ w3

Cmax

(
θ7 − θ7ref

Δθ7

)2

=⇒ C′ = w′
1θ

′
5 + w′

2θ
′
6 + w′

3θ
′
7, (33)

where C′ = C
Cmax

, w′
i = wi

Cmax
and θ ′

i =
(

θ7−θ7ref

Δθ7

)2
.

Note that Eq. 32 can be achieved by rearranging Eq. 31
and applying the log on both sides of the equation. To
estimate wi in Eq. 33, joint angle data can be collected
by the motion capture system for the specific tasks that
require wrist orientation changes. By using the joint
angle information, Eq. 33 can be extended as

C′(t0) = w′
1θ

′
5(t0) + w′

2θ
′
6(t0) + w′

3θ
′
7(t0)

C′(t1) = w′
1θ

′
5(t1) + w′

2θ
′
6(t1) + w′

3θ
′
7(t1)

...

C′(tN−1) = w′
1θ

′
5(tN−1)+w′

2θ
′
6(tN−1)+w′

3θ
′
7(tN−1). (34)

Fig. 5 Deviated swivel
angle Δφ(Δφu, �φd ) from
φref in two swivel angle
ranges: φf in ≤ φref and
φf in > φref
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Then the matrix representation of Eq. 34 is given by

C = E · W (35)

C =[C′(t0)C′(t1) . . . C′(tN−1)]T , W=[
w′

1w
′
2w

′
3

]T

E =

⎛
⎜⎜⎜⎝

θ ′
5(t0) θ ′

6(t0) θ ′
7(t0)

θ ′
5(t1) θ ′

6(t1) θ ′
7(t1)

...

θ ′
5(tN−1) θ ′

6(tN−1) θ ′
7(tN−1)

⎞
⎟⎟⎟⎠ .

Since
∑

i w2
i should be bounded by some constant, an

additional constraint is necessary in Eq. 35. Without
loss of generality

∑
i w2

i = 1 can be applied to Eq. 35
as a regulation factor. Then Eq. 35 is reformulated as:

C = E · W

→ Ŵ = min
[
‖C − E · W‖2 + λ‖w‖2

]
. (36)

The solution to Eq. 36 is well known in literature [9,
43] and the closed form solution is given by

Ŵ =
(

ET E + λ · I
)−1

ET · C, (37)

where λ is iteratively found to make ‖W‖2 = 1 based
on the Matlab simulation. Then the swivel angle esti-
mation model as a function of wrist orientation is fully
defined.

Once all the joint angles are collected from a spe-
cific subject, C and E in Eq. 32 as a function of swivel
angle and joint angles can be constructed to estimate
W based on Eq. 37. Once W is estimated, it can
be imported to the robot controller to compute C

Cmax

based on Eq. 35. Then by plugging C
Cmax

into Eq. 31,
Δφ can be achieved. Note that as mentioned above,
the whole estimation process was individually defined
for two cases where φf in ≤ φref and φf in > φref for
more precise estimation results.

4 Experiments

The proposed swivel angle estimation model requires
parameter estimation respectively for φref and Δφ.
In order to verify the proposed swivel angle estima-
tion model, the kinematic data of the human arm was
collected using the Phasespace motion capture sys-
tem (Phasespace, Inc.) including eight cameras with
sub-millimeter accuracy. Active LED makers were
attached to a subject’s body at key anatomical loca-
tions including shoulder(Ps), elbow(Pe), wrist(Pw)
and chest(Pch)[Figs. 6a and b]. The markers’ locations
were sampled at 240 Hz.

Since φref is defined by the wrist position, the
experimental setup for φref does not include the wrist
orientation changes. On the other hand for Δφ estima-
tion, wrist positions were fixed at the specific position
and subjects were requested to only change the wrist
orientation to minimize the wrist position effect. In the
following section, we first conducted two experiments
to estimate φref and Δφ. Then the application of the
proposed swivel angle estimation to the EXO-UL7
and energy exchange analysis will be introduced. The
result shows that the averaged absolute error between
measured and estimated swivel angle is on average
3.98 and 3.77 degree for φref and Δφ respectively. In
addition the exoskeleton with proposed swivel angle
estimation can reduce the energy exchange by up to
34 %.

4.1 Experiments for Swivel Angle Based on the Wrist
Position

In order to define φref for the unconstrained reaching
tasks, three types of reaching tasks were derived from
activities of daily living as shown in Figs. 7a and b.

Fig. 6 Experimental setup:
a and b show the LED
marker position to collect
the kinematic data based on
the motion capture system.
c Frames attached to the
chest LED marker position.
The original figure can be
found in [14]
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Fig. 7 Experimental setup: a Target locations and dimensions
of the experimental set up: distance from the table-top to the
top-of-shelf = 501.65 mm; height of the table-top from the
ground = 736.6 mm. b Three types of reaching tasks. In type
‘A’ and ‘B’, torso is facing the center and left target respectively

while in type ‘C’ the torso is turned 45 degrees counterclock-
wise off the Sagittal alignment and hand points to the rightmost
target in the abducted posture. The original figure can be found
in [13]

Ten right handed healthy subjects participated in the
experimental protocol. Of the ten subjects, seven were
males and three were females. The age of the subjects
ranges from 20 to 40. Each subject was tested in three
different sitting postures with his/her torso restrained
from torsional movements. The distance between the
subject and the table was adjusted based on the length
of the subject’s arm in order to a avoid a full stretch
of the arm (singular configuration). In body posture A
(Fig. 7b), the subject faced the table and his/her body
was positioned such that the table and the subject’s
body center lines were aligned. In body posture B, the
subject faced the table as previously, but the center line
was shifted to the left such that it was aligned with the
edge of the table. In body posture C, the body of the
subject alignment was the same as in (B) but the torso
was rotated by 45 degrees counterclockwise.

4.1.1 Targets and Objects

In this experiment, subjects used his/her index finger
to point to the designated targets. Each subject was
instructed to position the hand in an initial location
(‘o’) and then move the hand in a self paced fash-
ion between predefined locations as defined in the
following order for five cycles [Fig. 7b].
o → a → b → c → d → e → f → g → h(one cycle).

4.1.2 Optimum Pm Estimation

Given the anthropometric differences between the
subjects the optimal target location Pm for each

subject was calculated. The human body is consid-
ered to be symmetric and torsional movement of the
torso is ignored. The LED markers Pch on the chest as
well as Pm are therefore located on the Sagittal plane
[Fig. 6]. A reference frame Fch is attached to Pch. As
a result, the location of Pm is represented by a fixed
vector (time invariant) Po expressed in frame Fch (the
Sagittal plane) as follows:
[

Pm(t)

1

]
=

[
Pch(t)

1

]
+ T ch

sh (t)

[
Po

1

]
, (38)

where Po is a vector representing a constant time-
invariant translation offset from Pch expressed in
frame Pch and T ch

sh is the homogeneous transform
matrix between the frame attached to the shoulder
and the frame attached to the chest as depicted in
Fig. 6c. Then according to Eq. 28, the optimum off-
set Po is chosen to minimize the difference between
φ(t)est , estimated swivel angle based on Eq. 28, and
φ(t)act , calculated swivel angle given the measured
joint angels:

arg min
y,z∈Us

∫

y

∫

z

(∫ tx+T

tx

|φ(t)act − φ(t, Po(y, z))est |dt

)
dzdy,

(39)

where Us represents (y, z) coordinate pairs on the
Sagittal plane [Fig. 6c]. Since it is assumed that Pm

is located on the Sagittal plane, xopt is the same
as the x coordinate of Pch(t). Only a subset of the
data were used to calculate the optimal location of
Pm, as a result, T in Eq. 39 corresponds to 1/5 of
total data recording time. The estimated location of
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Table 1 Average absolute differences between measured and estimated swivel angles for the experiment in Sections 4.1 and 4.2

Subj φref (◦) Δφ(◦) Po(y, z)

A B C Pm1 Pm2 Pm3 Pd1 Pd2 Pd3 (cm)

1 2.3±1.5 2.7±1.9 3.8±3.0 5.1±8.0 7.1±7.0 2.9±5.8 2.1±8.6 9.2±8.2 6.2±9.0 (-16,28)

2 3.2±2.3 4.0±2.6 2.1±1.4 1.3±7.3 4.5±8.3 6.5±7.0 4.0±5.2 5.0±4.7 6.4±9.5 (-14,32)

3 5.4±2.7 6.3±3.0 7.1±3.4 2.1±5.4 3.1±1.09 1.6±8.4 1.8±4.4 4.0±3.8 6.2±8.0 (-16,39)

4 5.1±2.6 3.8±2.2 3.1±1.7 3.7±7.3 4.6±7.9 3.9±7.5 1.1±7.6 3.7±7.6 6.0±9.3 (-7,29)

5 8.1±4.3 4.6±2.8 3.4±2.1 3.0±3.3 2.8±9.9 2.9±1.2 1.5±8.9 2.5±5.4 2.9±8.1 (-16,17)

6 4.2±1.3 4.3±2.5 2.4±3.1 4.5±4.0 4.5±5.0 4.2±8.8 1.2±2.5 3.0±2.1 4.5±9.1 (-16,28)

7 5.2±2.3 2.9±2.1 2.2±1.2 3.3±5.5 2.3±4.1 5.5±6.0 2.3±7.3 2.2±4.1 5.1±6.5 (-14,132)

8 6.2±4.4 4.4±3.0 3.2±3.2 5.3±4.4 5.4±3.3 3.0±8.4 4.1±2.6 3.3±3.0 5.7±4.9 (-16,39)

9 4.1±2.2 3.8±3.5 3.0±2.6 2.6±4.4 3.3±5.4 3.1±7.5 3.7±4.2 1.8±2.1 4.4±5.5 (-7,29)

10 3.7±3.1 3.0±2.1 1.9±2.4 3.3±2.3 2.1±4.2 2.0±1.1 2.8±5.4 6.6±4.0 3.8±7.9 (-16,17)

(y, z) defining Po is summarized in the last column of
Table 1.

The computed swivel angle (φact ) based on the col-
lected kinematic data was compared with swivel angle
φref estimated by Eq. 28. Figure 8 shows the direct
comparison and the average estimation error for the
given wrist position is summarized in Table 1.

4.2 Experiments for Swivel Angle Based on the Wrist
Orientation

In order to define the effect of wrist orientation on
Δφ, subjects were requested to reach specific target
positions in Fig. 9 and then change the orientation of
the wrist. To precisely locate the subject’s hand on the
desired position and help subjects finding the target
location in space, a 6-DOF industrial robot (DENSO)
was programmed to project laser on the target loca-
tion as shown in Fig. 9. Thus subjects visually know
where to put their wrist in space by looking at the laser
mark projected on their wrist. In this setup subjects
were requested to pose in two different body postures
and in each posture they were requested to place their
arm in three different target locations. Considering the
most frequent activities of daily life such as rotating a
door nob and pouring water, the subjects were asked
to rotate their wrists inward and outward five times as
if they would rotate a door nob. Using this data, Eq. 37
will be solved to estimate W.

Note that the proposed experimental setup is sim-
plified for the practical reason considering the fact that
most of the tasks which require wrist orientation occur

within 45 degree between body and arm [Fig. 9b]. To
reveal a more general relationship between the wrist
orientation and the swivel angle, more sophisticated
experiments should be designed to estimate W.

Similarly from φref , the computed swivel angle
change (φact − φref ) based on the collected kinematic
data was compared with the estimated swivel angle
change Δφ estimated by Eq. 31. Figure 11 shows the
direct comparison result and the estimation error at
six different target points is summarized in Table 1.
In addition, the statistical analysis for the weighting
coefficients W were plotted as a box plot to see the
relative effect of each wrist joint on the swivel angle
for the given tasks in Fig. 12.

4.3 Application of Proposed Swivel Angle Estimation
to UL-EXO7

In order to verify the performance of the proposed
redundancy resolution mechanism, we applied the
proposed swivel angle estimation algorithm to the UL-
EXO7 controller and designed simple computer game
interface that can interact with the robot. The encoder
and F/T (Force/Torque) sensor readouts from the UL-
EXO7 are transmitted to the game PC through UDP
protocol based on the Matlab XPC/Host Target Inter-
face. There are three (6 axis) F/T sensors in each robot
arm and they are located at the upper arm, lower arm
and the hand [30]. Thus subjects who wear exoskele-
ton can see their arm moving in the display as shown
in Fig. 10. There are four different target configura-
tions in the given game and subjects are instructed to
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Fig. 8 Comparison between estimated swivel angle (dotted
line) and calculated swivel angle (solid line) from two different
subjects for Type one task. Each row of the figure shows the

comparison result for Type one (A), Type one (B) and Type one
(C) from the subjects. Figures a, c, and e are for subject 1 while
figures b, d, and f are results from subject 2
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Fig. 9 Experimental setup to estimate W. Subjects are
requested to face the front in two different postures where the
torso is not rotated (a) and rotated by 45 degree (b). For each
torsional configuration, they place the hands in three different

locations. For this, we used six axis Denso robot that has a laser
pointer at the tool frame. Denso places the laser pointer in par-
allel with the target point and projects laser to one of the target
location (Pm1, Pm2, Pm3, Pd1, Pd2, Pd3)

Fig. 10 Virtual reality game for performance estimation. a Set 1: targets on the horizontal line, b Set 2: targets on the horizontal line
rotated by 90 degrees, c Set 3: targets on the vertical lines and d Set 4: targets on V shaped lines targets
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Fig. 11 Swivel angle as a function of wrist orientation. The
first ((a), (c), (e)) and second ((b), (d), (f)) column show the
comparison result between the estimated and measured swivel
angle for subject 1 at Pm1 and Pd1 respectively. The first row’s
data corresponds to θ5(t), θ6(t) and θ7(t) on the wrist which

are the input to the swivel angle estimation algorithm. The sec-
ond row shows the comparison result between the estimated and
measured swivel angle at Pm1 and Pd1. The third row plots the
estimated swivel angle versus the measured swivel angle
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Fig. 12 Statistical analysis of weighting coefficients to define
the ergodic function. The mean and variance of the weighting
coefficients calculated for 6 different positions in Fig. 9a when

the rotation around joint five is negative (wrist rotation toward
body), b when the rotation around joint five is positive

Table 2 Weighting coefficient for wrist joints and regulation coefficient estimated for each subjects

φf in ≤ φref Subj1 Subj2 Subj3 Subj4 Subj5 Subj6 Subj7 Subj8 Subj9 Subj10

w1 0.52 0.83 0.51 0.88 0.87 0.91 0.64 0.67 0.77 0.61

w2 0.32 0.08 0.06 0.01 0.09 0.04 0.14 0.16 0.12 0.13

w3 0.15 0.08 0.40 0.10 0.03 0.05 0.20 0.15 0.10 0.24

λ 0.11 0.17 0.21 0.12 0.10 0.30 0.14 0.28 0.19 0.09

φf in > φref Subj1 Subj2 Subj3 Subj4 Subj5 Subj6 Subj7 Subj8 Subj9 Subj10

w1 0.76 0.68 0.65 0.48 0.64 0.56 0.67 0.57 0.82 0.75

w2 0.1 0.04 0.02 0.89 0.87 0.2 0.14 0.06 0.02 0.1

w3 0.15 0.26 0.37 0.89 0.87 0.23 0.19 0.36 0.14 0.11

λ 0.13 0.12 0.19 0.14 0.31 0.23 0.24 0.11 0.12 0.27

Table 3 Interaction
Energy between robot and
10 subjects for Set 1, 2, 3,
and 4 in Fig. 10

Set 1 Set 2 Set 3 Set 4 Overall

(J) (J) (J) (J) (J)

With swivel angle support

Mean 10.84 13.77 19.01 18.87 15.62

95 % confidence interval 1.10 1.31 1.12 1.16 1.17

Without swivel angle support

Mean 8.53 12.32 16.34 12.45 12.41

95 % confidence interval 1.12 1.28 1.27 1.02 1.17

% improvement 21.3 10.5 14.04 34 20.6
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reach the farthest small balls from the center ball fol-
lowing the straight line. Except for the swivel angle
support, the gravity and friction compensations are
running as common background controller in the UL-
EXO7 [15]. Then each subject repeats the game five
times with and without the proposed swivel angle
control scheme [Fig. 2] for the comparison of the
energy exchange between robot and subjects. For each
trial the energy exchange between the two systems
can be calculated by integrating the power which can
be achieved by multiplying the recorded force/torque
sensor data by its respective velocity. The veloci-
ties at each sensor are calculated by differentiating
the position of each sensor. Table 3 shows the aver-
aged interaction energy for each game set defined in
Fig. 10.

5 Conclusions and Discussion

The goal of this study was to propose a closed form
redundancy resolution mechanism of the human arm
as a viable control scheme for an exoskeleton robot.
The criteria for resolving the human arm redundancy
was experimentally verified and validated for a wear-
able robotic application. It is shown in Table 1 that
the average absolute error between measured and esti-
mated swivel angle is on average 3.98 and 3.77 degree
for φref and Δφ respectively. The direct comparison
result in Figs. 11 and 8 also shows not only the low
average error but also the high correlation between the
estimated and measured swivel angle. For the swivel
angle estimation based on the wrist orientation, the
joint availability function was employed and the result
in Fig. 12 shows that w′

1 has a dominant effect on
Δφ while w3 is the least dominant. Since w′

1 is for
the rotation around joint five at the wrist, it implies
that the muscular coupling between joint five and the
swivel angle is stronger than other joint couplings
for the given tasks in our experiment. Summarizing
all the result so far, we can conclude that most of
the unconstrained reaching and grasping tasks with
wrist orientation changes can be successfully repro-
duced based on our redundancy resolution algorithm.
In addition Table 3 also reveals that the exoskele-
ton with swivel angle support can reduce the energy
exchange by up to 34 %.

In comparison with our previous work [17], it was
shown that the energy exchange could be reduced by

20 % with swivel angle estimation and admittance
control in the peg-in-hole test of which the hand tra-
jectory is a combination of Set 1 and Set 4 in Fig. 10.
The proposed work in this paper could achieve a sim-
ilar energy reduction performance which is 21.3 %
in Set 1 but it could achieve 34 % energy reduction
performance in Set 4 which requires more sophis-
ticated swivel angle changes during the arm move-
ment. Unlike the proposed work in this paper, the
swivel angle estimation in our previous work only pre-
dicted the reference swivel angle and compensated an
excessive swivel angle with a passive admittance con-
trol. This can’t avoid the physical contact between
human and robot to determine the assistive joint
torque.

It implies that the transparency of the exoskeleton
to the user can be significantly improved by adopt-
ing more active swivel angle estimation proposed in
this paper to the controller. In a forward kinematic of
the robotic manipulator that has the same degree of
freedom such as EXO-UL7, the swivel angle is math-
ematically represented as a function of shoulder joints
which is connected to the heavier links and struc-
ture than those of other joints. In general, the wearer
should overcome the relatively high friction and iner-
tial dynamics without any compensation mechanism.
Since the weight of the robotic link on the wrist is
lighter than any other arm link, relating the wrist
position and orientation to the swivel angle can be
exploited as an intuitive and practical control scheme
to improve the transparency between wearer and the
exoskeleton robot. Figure 13 shows the controlled arm
configuration for the given wrist position with the
different wrist orientation changes. The inverse kine-
matics as a function of wrist joint angles provides a
stable and closed form solution that does not require
iterative operation. Furthermore the proposed algo-
rithm can be easily extended to a higher order control
system model such as gradient projection method to
achieve a more natural continuous movement. In the
gradient projection the choice of the objective func-
tion such as manipulability optimization, joint range,
obstacle avoidance, torque optimization and etc is crit-
ical to the joint angle estimation performance and
the proposed swivel angle estimation combined with
the joint range limit function can act as the objective
function of gradient projection method [19].

The proposed control system can be applied to
the exoskeleton robot designed for not only human
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Fig. 13 Swivel angle estimation applied to the EXO-UL7 a
Swivel angle φref for the given wrist position without wrist ori-
entation change b Swivel angle φref − Δφ for the given wrist

position with wrist orientation change c φref +Δφ for the given
wrist position with wrist orientation change

power augmentation but also rehabilitation programs
such as post-stroke rehabilitation. Especially for the
emerging bilateral rehabilitation program [15, 16]
in which the healthy arm provides assistive force
to the impaired arm based on master-slave control,
the robot can provide the healthy side of the arm
with the proposed synchronization control scheme to
significantly extend the rehabilitation session time.
Since most of the post-stroke patients have a weak
muscle strength even in the healthy arm, it is very
challenging for them to move the heavy exoskele-
ton without proper assistive force for a sufficient
amount of time. In some cases, intensive practice dur-
ing the therapy can put the patient at risk for another
injury.

In addition the proposed algorithm computes all
the important parameters for the controller off-line
and imports the pre-determined parameters to the con-
troller such that it is computationally efficient. Since
it is shown in our pilot study that the proposed work
could significantly improve the human-robot interac-
tion, more sophisticate and comprehensive experiment
needs to be setup to fully understand the human motor
control as a future work.

Appendix

Let the plan S be defined by three points Pw, Pe

and Ps . The longest axis of the manipulability ellip-

soid is aligned along plane S and its magnitude σ1 is
defined as

Lemma 2

σ1 = √
λ1

=
√((

L2
ws + L2

we

) + (
L2

ws + L2
we

)
c1

)
/2 (40)

c1 = √
1 − c2,

c2 = 4L2
weL

2
ws sin(ϕ)2/

(
L2

ws + L2
we

)2
,

where Lws = ‖Pw −Ps‖ and Lwe = ‖Pw −Pe‖. This
result is based on the following derivation and only
the right hand side of the human arm is considered for
analysis.

Proof A new coordinate frame is defined with an ori-
gin at Ps [Fig. 3a] for the computational purpose. In
this frame, the z axis is orthogonal to the plane S and
the x axis is aligned with the vector (Pw − Ps). Then
the relationship between the end-effector velocity Ṗ =
[ẋwẏwżw]T and the joint velocity θ̇1234 = [θ̇1θ̇2θ̇3θ̇4]T
is defined as follows:

Ṗ = Jθ̇1234 = [J1 J2 J3 J4]θ̇1234,

Ji =
{

ω′
i × (Pw − Ps), i = 1, 2, 3

ω′
i × (Pw − Pe), i = 4

, (41)

where ω′
i denotes the rotation axis of the ith joint. By

introducing a new variable ϕ [Fig. 3a] to represent J4
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and using the fact that ω′
1 = x, ω′

2 = y and ω′
3 = z in

Fig. 3a, we have

Ṗ =
⎛
⎝

0 0 −Lwe sin(ϕ)

0 Lws Lwecos(ϕ)

−Lws 0 0

⎞
⎠θ̇234 =J234θ̇234,(42)

where the full derivation for Eq. 42 can be found
in [18]. According to the singular value decompo-
sition, J234 can be represented as J234 = UDVT

where U = [u1 u2 u3], V = [v1 v2 v3] and D =
diag[σ1 σ2 σ3]. The ui in the left singular vector
U indicates one of the three axis constructing the
manipulability ellipsoid and singular value σi in D
indicates the magnitude of ui as shown in Fig. 3b.
Note that ui and σi are the eigenvectors and square
root of the non-zero eigenvalues of J234 · J∗

234. Solv-
ing det

(
J234 · J∗

234 − λI
) = 0 allows to obtain ui and

σi

(= √
λi

)
. Based on Sarrus’s rule [22] the following

expressions for the eigenvalues are obtained:

λ1,2 =
(
L2

ws + L2
we

) ± (
L2

ws + L2
we

)
c1

2
,

λ3 = L2
ws (λ1 > λ2) , c1 = √

1 − c2,

c2 = 4L2
weL

2
ws sin(ϕ)2/

(
L2

ws + L2
we

)2
.

One may note that 0 ≤ c2 ≤ 1 and 0 ≤ c1 ≤ 1
such that λ1,2 are non complex numbers. The relation-
ships between λ1, λ2 and λ3, is studied by using two
individual cases:

Case 1 (Lws ≥ Lwe)

λ1 − λ3=
(
L2

ws + L2
we

) + (
L2

ws + L2
we

)
c1

2
− L2

ws

≥
(
L2

we − L2
ws

) + (
L2

ws + L2
we

)
cmin1

2

=
(
L2

we − L2
ws

) + (
L2

ws + L2
we

) √
1 − cmax2

2

=
(
L2

we − L2
ws

) +
√(

L2
ws − L2

we

)2

2
= 0,(43)

where cmin1 and cmax2 are the minimum and maxi-
mum values of c1 and c2 respectively. The term cmax2

in Eq. 49 is defined as:

cmax2 = max
(

4L2
weL

2
ws sin(ϕ)2

)
/
(
L2

ws + L2
we

)2

= 4L2
weL

2
ws/

(
L2

ws + L2
we

)2
.

Case 2 (Lws < Lwe)

λ1 − λ3 =
(
L2

ws + L2
we

) + (
L2

ws + L2
we

)
c1

2
− L2

ws

≥ (1 + cmin1)
(
L2

ws + L2
we

)

2
−L2

ws

=
(
L2

we − L2
ws

)

2
≥0, (44)

where the first inequality in Eq. 44 is based on the
fact that cmin1 = min[c1] = 0. The second inequality
in Eq. 44 is valid since Lws < Lwe. Therefore we
conclude that λ1 ≥ λ3 for all possible values of Lws .
It implies that the magnitude of the longest axis in the
manipulability ellipsoid is

σ1 = √
λ1 =

√((
L2

ws + L2
we

) + (
L2

ws + L2
we

)
c1

)
/2.

(45)

Based on the fact that the direction of the major axis of
the manipulability ellipsoid corresponds to the eigen-
vector of the following (46), the eigenvector u1 is
obtained by applying the corresponding eigenvalue λ1

to λ in Eq. 46:
(
J234 · J∗

234

)
X = λX, X = [x y z]T . (46)

Then the direction of the eigenvector X in Eq. 46 is
defined as:

y = L2
we sin(ϕ)2 − λ1

L2
we sin(ϕ) cos(ϕ)

x, z = 0. (47)

Considering the joint limit of the exoskeleton
robot [37], it is assumed that 0 < ϕ ≤ π/2. Note that
when ϕ = 0, the arm is in a singular position. Then
the numerator in Eq. 47 can be rewritten as:

λ1 − L2
we sin(ϕ)2 (48)

=
(
L2

ws + L2
we

)
(1 + c1)

2
− L2

we sin(ϕ)2

=
(
L2

ws + L2
we

) (
1 +

√
1 − 4L2

weL
2
ws sin(ϕ)2

(L2
ws+L2

we)
2

)

2
− L2

we sin(ϕ)2

≥
(
L2

ws + L2
we

) + |L2
ws − L2

we| − 2L2
we sin(ϕ)2

2

=
(
L2

ws − L2
we

) + |L2
ws − L2

we| + 2L2
we cos(ϕ)2

2

= 2L2
we cos(ϕ)2

2
≥ L2

we cos(ϕ)2 ≥ 0. (49)
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By plugging Eq. 48 into Eq. 47, we can conclude
that the slope in Eq. 47 becomes negative. Figure 3c
depicts the direction of u1 on plane S.
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