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Abstract

Visual feedback and force feedback (haptics) are the two streams of information in a

robotic bilateral teleoperation where the operator manipulates a robot in a remote

location. Delivering the visual and the haptic information depends in part on the char-

acteristics of the communication network and results in a nonsynchronized delay. The

goal is to study the effect of constant nonsynchronized and synchronized time delay of

visual and haptic information on the human teleoperation performance. The experi-

mental setup included a virtual reality environment, which allows the operator to

manipulate the virtual objects in a simulated remote environment through a haptic de-

vice that renders the force feedback. The visual and the haptic information were

delayed independently in the range of 0–500 ms, creating 121 different scenarios of

synchronized and nonsynchronized delays. Selecting specific parameters of the remote

virtual environment guaranteed stable teleportation, given the time delays under study.

The experimental tasks included tracing predefined geometrical shapes and a pick-

and-place task, which simulates both structured and unstructured interactions under

the influence of guiding forces. Eight subjects (n ¼ 8) participated in the experiment

performing three repetitions of three different teleoperation tasks with 121 combina-

tions of visual and haptic time delays. The measured parameters that were used to

assess the human performance were the task completion time and the position errors

expressed as a function of the visual and the haptic time delay. Then, regression and

ANOVA analyses were performed. The results indicated that the human performance

is a function of the sum of the two delays. As the sum of the two delays increases, the

human performance degrades and is expressed with an increase in completion time

and position errors. The performance degradation is more pronounced in the pick-

and-place task compared to the tracing task. In scenarios where the visual and the hap-

tics information were out of synchronization, the human performance was better than

intentionally delaying one source of information in an attempt to synchronize and unify

the two delays. The results of this study may be applied to any teleoperation tasks over

a network with inherent time delays and more specifically to telesurgery in which

performance degradation due to time delay has a profound effect on the quality of

the healthcare delivered, patient safety, and ultimately the outcomes of the surgical

procedure itself.
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1 Introduction

Sensory information perceived by the human senses

is critical to successful human interaction with the external

environment. Once a teleoperating system is introduced

as a mediating layer between the human operator and a

remote environment, it may simultaneously enhance and

degrade different inputs and outputs generated by the

human operator and in that way affect the human per-

formance. From one perspective, the teleoperation system

may enhance human vision by allowing the operator to

watch the remote site using various wavelengths (infrared,

ultrasonic, etc.) that cannot be sensed by the human eye.

Moreover, the teleoperating system may scale down or up

human arm movements along with filtering hand tremor;

in that way it may provide better dexterous control and

manipulation of the object located at the remote site.

From another perspective, the teleoperation system may

also degrade the human performance by limiting the sen-

sory information in terms of type, bandwidth, and syn-

chronization due to inherent time delays in the communi-

cation system between the operator console and the

remote manipulator. For the purpose of studying, simu-

lating, and training, teleoperation systems, the remote

environment, along with the remote robotic system, may

be completely or partly replaced by a virtual environment

in a way that provides better control of the internal and

external tested variables such as nonsynchronized time

delays of various sensory input channels.

The delay of systems’ response to an input or pertur-

bation is a common and inherent phenomenon in physi-

cal, natural, and manmade systems. The systems’ delay in

the time domain may be translated to the frequency do-

main and expressed by a limited bandwidth of the sys-

tem’s response.

Dedicated communication lines are becoming cheaper

and affordable; nevertheless, the speed in which informa-

tion can travel in any line is bounded by the speed of

light. Even under the best case scenario of remote tele-

operation, in which the information is traveling at the

speed of light, time delay will always be an integral part

of the process and affect the operator’s performance.

Time delay in the communication network affects

human performance during a teleoperation task, espe-

cially when visual and haptic feedback is involved. The

human performance degradation as a function of visual

or force feedback was mainly studied individually. How-

ever, their combined effect with different combinations

of time delays was not studied extensively. Haptic and

visual feedback are subject to different technological bar-

riers. Haptic feedback time delay is dictated by the shear

bandwidth of the network; however, visual time delay

depends on computational and algorithmic power effect-

ing the time required to compress and decompress the

video signal. Given the stochastic nature of networks,

the network time delay is also a function of the commu-

nication traffic; therefore, it may be represented by a dis-

tribution and not necessarily by a fixed value (Sankara-

narayanan & Hannaford, 2008).

Pioneering research efforts studying the effect of visual

time delay using an experimental approach indicated that

the teleoperated task performance is degraded as a func-

tion of time delay (Sheridan & Ferrell, 1963; Ferrell,

1965). It was shown experimentally that the completion

time of a teleoperated task was reduced significantly when

visual predictors were used in telerepositioning tasks com-

pared to cases where visual predictors were not used

(Kelley, 1968; Hashimoto, Sheridan, & Noyes, 1986).

Based on early research efforts, it was recommended

that during teleoperation under time delays, force

should not be continuously fed back into the operator’s

hand while holding the controller in order to maintain

and guarantee the stability of the system (Ferrell, 1965).

Given visual feedback, the operator may ignore the dis-

turbance expressed as the delayed force feedback signal,

and avoid potential system instability by adopting a

move-and-wait strategy or by utilizing supervisory con-

trol. Several alternative approaches were proposed to

cope with the time-delayed force feedback including:

(1) bandwidth reduction (Vertut, Micaelli, Marchal, &

Guttet, 1981), (2) converting the force feedback into a

visual input, (3) providing force feedback to the opera-

tor’s other hand, and (4) predicting the force feedback

to compensate for the delay (Sheridan, 1992).

A recent research effort studied the effect of force

feedback (haptic) and visual feedback delays on the

human performance under three scenarios: (1) haptic

input delay, (2) visual input delay, and (3) haptic and vis-
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ual inputs that are equally and simultaneously delayed

(Jay and Hubbold, 2005). A reciprocal tapping task was

selected, and the subject performance was quantified by

three parameters: (1) target missing times, (2) intertap

interval (ms), and (3) mean difficulty rating. The study

concludes that time delays of both visual and haptic

inputs degrade human performance. Moreover, the time

delay of the haptic input has more significant effect in

terms of human performance degradation than the time

delay of the visual input. However, delaying both inputs

simultaneously led to the most significant degradation in

human performance. This study maps only three discreet

points in a limited range of 0–150 ms out of many oper-

ation points defined by a combination of time delays in

vision and haptics. In realistic teleoperation conditions,

the system operator will experience unequal time delays

and the larger spectrum in these two channels, given the

nature of the signals and preprocessing and postprocess-

ing algorithms that need to be applied.

This study was inspired by a series of field experiments

emulating realistic telesurgery scenarios, in which a sur-

gical robot (Raven; Sankaranarayanan et al., 2007) was

teleoperated using wired and wireless networks under a

wide spectrum of time delays (Lum, Friedman, King,

Donlin, Sankaranarayanan et al., 2007; Lum, Rosen

et al., 2007; Lum et al., 2008; Rosen, Brown, Chang,

Sinanan, & Hannaford, 2006; Rosen, Lum, Sinanan, &

Hannaford, 2011). The results of these preliminary stud-

ies indicated human performance degradation as the

time delays increased. However, given their nature as

field experiments, time delay was not a controlled vari-

able. The goal of this study is to provide quantitative

measures of the human performance degradation in

bilateral teleoperation tasks as a function of fixed visual

time delay and fixed haptic time delay, as two independ-

ent and controlled variables, while performing tracing

and object manipulation tasks.

2 Methodology

2.1 Time Delay in Bilateral

Teleoperation

2.1.1 Multi-Loop Multi-Delay System. Time

delay is inherent in any teleoperating system and is intro-

duced in several locations of the bilateral input-output

pathway scheme (Figure 1). The input command signal

is delayed in the input pathway while both the haptic

and the visual feedback signals are delayed in the feed-

back pathways. Figure 1 depicts the general scheme for a

bilateral teleoperator with input and output pathways

where DI is the input time delay, Df.h is the haptic feed-

back time delay, Df.v is the visual feedback time delay,

and PRP is the psychological refractory period. Three

control loops can be identified: the haptic loop (paths 0,

1, 2 and 4), the visual (paths 0, 1, 3 and 5), and the in-

ternal human control loop (paths 0 and 4). The PRP is

defined as a constant time delay of 300 ms (Salvandy,

1987), and is considered part of path 0.

Human operator performance during teleoperation is

affected by the time delays in all the pathway loops. The

closed loop visual time delay in the system is expressed as

DV ¼ DI þ Df.v, and the closed loop haptic delay is

expressed as DH ¼ DI þ Df.h. The domain of the time

delay defined by DV and DH can be divided into two dis-

tinct regions as shown in Figure 2. If the visual time

delay is greater than the haptic time delay, namely DV >

DH, then the operator first feels the haptic feedback and

sees the visual feedback later; hence, this region is

referred to as the feel-first-see-later region. If the haptic

time delay is greater than the visual time delay, namely

DH > DV, the operator sees the visual feedback first and

feels the haptic feedback later; consequently, this region

may be referred to as the see-first-feel-later region. Along

the diagonal line which defines the boundary between

Figure 1. General scheme for bilateral teleoperator depicting the vari-

ous pathways of information and the corresponding time delays along

each communication channel.
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these two regions, the visual and the haptic time delays

are equal, DH ¼ DV; as a result, the visual and the force

feedback information are perceived by the human opera-

tor at the same time. The human performance may be

measured along the vertical axis for every pair of time

delays (DH, DV) given the various performance indexes

to obtain a performance surface.

2.1.2 The Experiment Setup: Bilateral

Teleoperator Simulator. A simulated bilateral teleop-

eration with a real master device (PHANToM Omni,

SensAble, Inc.) and a virtual slave in haptic virtual envi-

ronment (VR) comprised the experimental setup. The

operator controls the simulated environment by manipu-

lating the master device, which is capable of rendering

haptic feedback while the remote environment is dis-

played on a screen. This experimental setup provides full

control over the haptic and the visual time delays; thus,

the setup allows the researcher to set the desired value

for each variable independently. The experimental setup

is illustrated in Figure 3(b).

The stability analysis of the experimental system is

done based on the two-port hybrid matrix model and

the forward flow network architecture (Hannaford,

1989). Figure 4(a) depicts a modified two-port network

and Figure 4(b) illustrates the forward flow architecture,

where F is the force, Z is the mechanical impedance, V is

Figure 2. The delay domain divided into two main regions: ‘‘see-first-

feel-later’’ (DH > DV), and ‘‘feel-first-see-later’’ (DH < DV). Along the

boundary between these two regions DH ¼ DV.

the velocity, DI is the input time delay, and Df.h is the

haptic feedback time delay.

The subscript m denotes master, s slave, h human, e

environment, and d desired. The two-port network and

the bilateral forward flow network shown in Figures 4(a)

and 4(b) are used to derive the hybrid matrix hðtÞ which

relates the output vector Fh Ve½ �T to the input vector

Vm Fe½ �T as

Fh

Ve

� �
¼ h11 h12

h21 h22

� �
Vm

Fe

� �
: ð1Þ

The individual elements of the hybrid matrix hðtÞ in

Equation 1 are defined by applying the superposition

principle to the network in Figure 4(b) and the result is

given by

h ¼
Fh

Vm

���
Fe¼0

Fh

Fe

���
Vm¼0

Ve

Vm

���
Fe¼0

Ve

Fe

���
Vm¼0

2
64

3
75: ð2Þ

Explicitly expressing the elements of matrix h and trans-

forming them to the frequency domain yields the matrix

H ðsÞ as

H ðsÞ ¼ Zm e�sDf :h

e�sDI 1
ZsþZe

� �
: ð3Þ

Assuming that all the initial conditions are zero (Hanna-

ford, 1989), and for an LTI network, Zm, Zs, and Ze are

defined in the frequency domain as

Zm ¼ M1:s þ b1 þ
k1

s
; ð4Þ

Zs þ Ze ¼ M2:s þ b2 þ
k2

s
; ð5Þ

where M1 is the operator’s arm inertia (the Omni manip-

ulator’s inertia was neglected because it is very small rela-

tive to the human arm’s inertia), k1 is the equivalent stiff-

ness of the arm, and b1 is the overall master side

damping. Note that Zs and Ze are merged into single

equivalent impedance; thus, M2 is the inertia of the slave

manipulator, k2 is the stiffness of the virtual walls, and b2

is the damping of the virtual environment. Using Equa-

tions 4 and 5, the matrix H ðsÞ > can be rewritten as

H ðsÞ ¼
M1:s þ b1 þ k1

s e�sDf :h

e�sDI 1

M2:sþb2þ
k2
s

" #
: ð6Þ
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A sufficient condition for stable operation is a passive

network. This can be tested using the scattering operator

S : Ln
2 ðRþÞ ! Ln

2 ðRþÞ that is defined by

F � V ¼ SðF þ V Þ; ð7Þ

which maps effort plus flow, into effort minus flow

(Magnusson et al., 1992). For LTI systems, the scatter-

ing operator S can be expressed in the frequency domain

as

SðsÞ ¼ 1 0
0 �1

� �
ðH ðsÞ � I ÞðH ðsÞ þ I Þ�1: ð8Þ

Substituting Equation 6 into Equation 8 results in

SðsÞ ¼
�1þZmð Þ 1þ 1

ZsþZeð Þ
e�sDIþ 1þZmð Þ 1þ 1

ZsþZeð Þ 0

0
1þZmð Þ �1þ 1

ZsþZeð Þ
e�sDf :hþ 1þZmð Þ 1þ 1

ZsþZeð Þ

2
64

3
75: ð9Þ

If S is a bounded operator, its norm is defined by

Sk k ¼ sup
x

SðjxÞk k ¼ sup
x

k
1=2ðSH ðjxÞSðjxÞÞ; ð10Þ

where l is the eigenvalue of the matrix SH(jo)*S(jo), the

asterisk ‘‘*’’ refers to matrix multiplications, and SH(jo)

is the Hermetian of S(jo). A system is passive if and only

if the norm of its scattering operator is less than or equal

to one. A proof can be found in Anderson and Spong

(1989). Evaluating sup
x

k
1=2½S�ðjxÞSðjxÞ� is straightfor-

ward from Equation 9.

Given the selected time delay range from 0 to 500 ms,

a value for the damping coefficient b1 was found such

that the norm of S is bounded by a value of one for the

impedances Ze, Zs, and Zm, so the system remains passive

within the tested range of time delays.

Figure 4. Two-port network. (a) Schematic block diagram, and (b)

bilateral forward flow network configuration.

Figure 3. A simulated bilateral teleoperation with a real master device (PHANToM Omni) and a virtual slave with a haptic VR. (a) a

typical VR setup with no time delay, and (b) a VR setup with simulated time delays in the visual (DV) and haptics (DH ) communication

channels of the human interface.
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The stiffness of the human shoulder was estimated in

the range of 45–90 Nm/rad (Flash & Gurevich, 1997)

while the equivalent stiffness at a hand located between

0.3 and 0.5 m away from the shoulder is in the range of

180–1000 N/m. The human arm mass varies between

0.3–3.5 kg during circular movements (Pfann, Corcos,

Moore, & Hasan, 2002). Table 1 summarizes the simu-

lator parameters used. M2 and b2 are set to zero. The

weight of real objects of the same size as the manipulated

virtual objects is very small compared to the human

arm’s inertia, so its effect can be neglected. Further, the

damping force can be neglected in the remote virtual

environment because it resembles friction force with

room air. Moreover, we wanted to focus on the time

delays’ effect and reduce the effect of the environment

physics as independent variable on the experiment. In

this context, the assumptions are logical, and the result-

ing haptic interface remains significant and is similar to

real haptic devices available commercially, including sur-

gical devices. For these parameters, the problem can now

be written as minimizing the norm of S given the follow-

ing conditions:

SðjxÞk k � 1;0 � M1� 3:5 kg;0 � k1 � 1000 N=m;

0 � k2 � 50;M2 ¼ 0; b2 ¼ 0; and 0 � DH � 500 ms:

ð11Þ

Using a brute force numerical solution and solving

Equation 11 for b1 results in b1 ¼ 5.5 N�s/m. This value

of damping coefficient may be varied as a function of the

time delay. However, in order to minimize the experi-

ment’s variables, a single value of damping was used for

the entire experimental protocol. The wave variable tech-

nique was also implemented and experimentally tested.

Preliminary results indicated that transparency cannot be

guaranteed to be similar across the entire range of the

time delay under study. With wave variables, the nature

of the reflected forces with high delays is affected; the

reflected stiffness has different values; further, damping

and inertial effects emerge as a function of time delay

(Niemeyer, 1996). One consequence of utilizing wave

variables was that uncontrolled variables were introduced

to the experiment; consequently, wave variables were

not used.

The master manipulator used in this experiment is a

6-degree-of-freedom PHANToM Omni (SensAble). The

PHANToM Omni rendered force in three directions, X,

Y, and Z. The virtual environment was developed in

Cþþ, run on a PC (Pentium IV, dual core 1.7 GHz proc-

essor with 1 GB RAM), and rendered graphically on a

21-in. monitor. The position and the force sampling rate

was 1 kHz, and the picture refresh rate was 60 Hz.

2.2 Experimental Design

2.2.1 Hypothesis. The experimental design is

based on two hypotheses (null hypothesis and alternative

hypothesis) that will be statistically tested using

ANOVA. The null hypothesis H0 states that the two

time delays (the visual time delay, DV; and the haptics

time delay, DH) do not create any significant change of

the human performance indexes. The alternative hypoth-

esis (H1) claims that the two time delays create signifi-

cant change in all the human performance indexes (p <

.004).

2.2.2 Experiment Tasks. The Society of Ameri-

can Gastrointestinal and Endoscopic Surgeons (SAGES),

one of the major professional surgical organizations, has

developed a curriculum for teaching minimally invasive

surgical skills termed the Fundamentals of Laparoscopic

Surgery (FLS) which includes both cognitive and psy-

chomotor skills. The skills assessment consists of five

tasks. The FLS skills tasks have been validated to show

significant correlation between score and postgraduate

year (Fried et al. 2004; Peters et al., 2004) and are con-

sidered by many to be the gold standard in minimally

invasive surgical skill assessment. The block transfer (pick

and place) task as well as cutting a piece of cloth along a

Table 1. Summary of the Systems’ Parameters

Parameter Value

M1 0.3–3.5 kg

k1 180–1000 N/m

M2 0

b2 0

k2 50 N/m

276 PRESENCE: VOLUME 22, NUMBER 4



circle are two of five tasks which define the FLS. As part

of a parallel research effort aimed at developing objec-

tive algorithms for surgical skill assessment, it was

shown that the majority of the surgical tasks can be

decomposed using three archetypes including tissue

manipulation (represented by the FLS block transfer),

tissue dissection (represented by the FLS circle cut-

ting), and suturing (represented by FLS suturing and

knot tying; Brown, Rosen, Chang, Sinanan, & Hanna-

ford, 2004; Harnett, Doarn, Rosen, Hannaford, &

Broderick, 2008; Rosen et al., 2002; Rosen et al.,

2003; Rosen et al., 2006). In addition, further decon-

struction of surgical manipulation archetypes may lead

to four independent unite actions (Oi) including:

grasp/release an object (O1), translate an object along

an arbitrary trajectory (O2), translate an object along a

prescribed trajectory (O3), and ordinate an object (O4)

(Slutski, 1998).

Using the FLS skill assessment tasks as the framework

for the study, the two selected tasks included in the ex-

perimental protocol were: (1) tracing 2D geometrical

shapes, and (2) a pick-and-place task. A square and a

circle were chosen to be the 2D geometrical shapes for

the tracing tasks, and a configuration of a 4 � 2 array of

virtual spheres, which had to be relocated from their ini-

tial positions to new designated positions, was selected

for the pick-and-place task. The selected tasks were per-

formed in a 2D plane (XY plane). The third dimension

(Z axis) was eliminated to avoid a depth illusion effect.

These tasks represent a generalization of two of the FLS

skill assessment tasks. Using the previously defined ter-

minology, tracing 2D geometries is classified as an O3

task while the pick-and-place task is associated with the

combination of O1 and O2.

A quantitative estimation of the geometrical shape

complexity is defined by Equation 12 (Slutski, 1998).

The geometrical shape complexity (C) depends on the

number of curvilinear sections in the shape (V), the

number of changes of the curvature sign (U), and the

sum of absolute increment of the inclination angle (F),

and it is defined by

C ¼ U þ V þ U
p
: ð12Þ

2.2.3 Tracing Square and Circle of Elastic

Boundaries. Solid square and circle were presented to

the subjects on a screen, one at a time, along with a small

dot that represents the tip of the remote manipulator

(slave). The subjects were asked to trace the boundaries

of the presented shapes using the master manipulator as

quickly and accurately as possible. A force field was ren-

dered for the two shapes that was linearly proportional

(Hook’s law) to the penetrating distance into the shape

boundaries as illustrated in Figure 5. The force gener-

ated by the field was set to be proportional to the pene-

tration distance (d) into the shape’s boundaries and zero

outside the boundaries. Based on Equation 12, the con-

figuration complexity for the square form is equal to

Figure 5. The force field generated by the system as a feedback dur-

ing the tracing tasks. (a) The square shape with Cartesian force field.

(b) The circle shape with force field in a radial coordinate system. (c) A

typical result of the square tracing experiment under visual and haptic

time delay.
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(C ¼ 0þ 0þ 2p=p ¼ 2) and for the circle is equal to

(C ¼ 1þ 0þ 2p=p ¼ 3).

The tracing error is expressed by Equation 13, and a

typical example is depicted in Figure 5. The force is set

to be proportional to the penetration into the shape and

zero elsewhere. The error is defined as the absolute area

between the user’s trajectory R and the nominal shape

R0 (Salvendy, 1987; Stanney, 2002).

E ¼
I

f ðR �R0Þj jdR: ð13Þ

The nominal shape (dashed line) as well as the actual

trajectory (solid line) generated by the subject are

depicted in Figure 5(c); the tracing error as defined by

Equation 13 is the shaded area between the two trajecto-

ries.

2.2.4 Pick-and-Place Task. The task consisted of

moving eight spheres, arranged in a 4 � 2 array, one

sphere at a time, from one location on the left to another

designated location on the right as shown in Figure 6.

The subject grasped the sphere by pressing a button

located on the master manipulator, and released the

sphere by releasing the button. Each sphere was num-

bered and must be relocated to match the target num-

ber. A margin (r) was defined around each target loca-

tion. Releasing the sphere within the margins resulted in

a successful transfer. If the sphere was released outside of

the margin, the sphere was automatically moved back to

its original location and the subject had to repeat the

transfer. Each target had a linear force field with stiffness

constant equal to k2, which attracted the user to the cen-

ter of the target.

The error ei defining the accuracy error for the transfer

of each sphere is defined as the distance between the tar-

get and the actual releasing location. The sum of the

eight spheres’ accuracy error was calculated to represent

the trial error (E) as

E ¼
X8

i¼1

ei : ð14Þ

The difficulty index of the task is defined based on the

task bandwidth (Salvendy, 1987; Sheridan, 1992) as

Id ¼ log2

2�D

W

� �
; ð15Þ

where Id is the difficulty index, D is the movement am-

plitude, and W is the target width as shown in Figure 6.

Given the geometry used in this experiment, in which

D ¼ 280 mm and W ¼ 30 mm, the difficulty index was

calculated to be Id ¼ 4.2.

2.2.5 Human Performance Indexes. The

human operator’s performance was defined using two

criteria, the completion time and the tracing accuracy

(Slutski, 1998). The accuracy error was defined inde-

pendently for each task, as discussed in Sections 2.2.2

and 2.2.3. According to Slutski, there are two standard

equations to compute these performance indexes

I1 ¼ f ðtcÞ � gðEÞ; ð16Þ

I2 ¼ f ðtcÞ þ gðEÞ; ð17Þ

where Ii is the performance index, tc is the completion

time, E is the accuracy error, and f and g are functions of

the completion time and the accuracy error, respectively.

The functions f and g are defined in Section 2.4.

2.3 Experimental Procedure

Eight healthy subjects (three females and five

males) 18–45 years old participated in the experimental

protocol. Prior to the experiment, the three tasks were

demonstrated to each subject followed by 20 min of

practice with various task scenarios of time delays. Eleven

discreet time delays with increments of 50 ms in the

Figure 6. The configuration of the pick-and-place task.
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range of 0–500 ms were selected for delaying the visual

picture and the force feedback independently. This

resulted in 121 (11 � 11) different pairs of constant hap-

tic and visual time delay values (DH, DV) defining the

plane in Figure 2. The 121 pairs of time delay were

introduced to each subject in a randomized sequence in

order to eliminate adaptation and learning effects. Each

subject completed 363 experiments (3 tasks � 121 ex-

perimental conditions). Each subject had two breaks of

40 min. The subjects were instructed to perform the

tasks as accurately and as quickly as possible without

compromising completion time over accuracy, and vice

versa. Figure 7 illustrates the experimental setup.

2.4 Data Processing and

Analysis-Performance Indexes

The end effector position was sampled at a rate of

1 kHz. The completion time along with the accuracy

error were computed and recorded. The completion

time and the error functions were defined by

f ðtcÞ ¼ tn; ð18Þ

tn ¼ tc=tcðDH¼DV¼0Þ; ð19Þ

gðEÞ ¼ En; ð20Þ

En ¼ E=EðDH¼DV¼0Þ: ð21Þ

The completion time and the accuracy error were then

normalized with respect to their values obtained under

the experimental conditions where no time delays were

introduced (DH ¼ DV ¼ 0) and are all summarized in

Table 2. Thus, the performance indexes are defined by

I1 ¼ tn � En; ð22Þ

I2 ¼ tn þ En: ð23Þ

where tn and En are the normalized completion time and

accuracy error.

3 Results

3.1 Tracing Tasks Results

The results indicate that the human performance

across all the indexes degrades as time delays increase.

Figures 8(a) and 9(a) depict the trajectory variations

from the nominal tracing shape [square 8(a) and circle

9(a)] for various time delays (DH and DV). Figures 8(b)

and 9(b) depict condensed versions of the operator’s

performance as 3D surfaces that are functions of haptic

and visual time delays (DH and DV). Each of the graphs

in Figures 8(a) and 9(a) is represented by a point in Fig-

ures 8(b) and 9(b), respectively.

This data reduction allows the trends in data to be

visualized across the entire database. The surface gradi-

ent with respect to the visual delay is greater than the

surface gradient with respect to the haptic delay
@tc

@DV
> @tc

@DH
and @E

@DV
> @E

@DH
>.

Table 3 summarizes numerical values for the gradients

calculated by a linear model obtained from the regres-

Table 2. Average Completion Time and Accuracy Error for

the Three Experimental Tasks Under No Time Delay

(DH ¼ DV ¼ 0)

Tasks

Average

completion time,
tcðDH¼DV¼0Þ (s)

Average

accuracy error,
EðDH¼DV¼0Þ

Square tracing 8.3 16.90 cm2

Circle tracing 5.7 12.92 cm2

Pick and place 20.5 24 mm

Figure 7. Experimental setup.

Abuhamdia and Rosen 279



Figure 8. Square tracing: (a) Typical square trajectories traced by various subjects with dif-

ferent experimental conditions of time delays (DH and DV) along with the normalized comple-

tion time (tn) and tracking errors (En). Top left: DH ¼ 100 ms, DV ¼ 100 ms, tn ¼ 0.96,

En ¼ 1.33. Top right: DH ¼ 400 ms, DV ¼ 150 ms, tn ¼ 1.3, En ¼ 1.42. Bottom left:

DH ¼ 500 ms, DV ¼ 400 ms, tn ¼ 1.25, En ¼ 2.06. Bottom right: DH ¼ 400 ms, DV ¼ 500

ms, tn ¼ 1.4, En ¼ 1.97. (b) Average of subjects’ performance normalized indexes.
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Figure 9. Circle tracing: (a) Typical circle trajectories traced by various subjects under different

conditions of time delays (DH and DV) along with the normalized completion time (tn) and track-

ing errors (En). Top left: DH ¼ 400 ms, DV ¼ 150 ms, tn ¼ 1.5, En ¼ 1.88. Top right: DH ¼ 0

ms, DV ¼ 350 ms, tn ¼ 1.1, En ¼ 2.01. Bottom left: DH ¼ 500 ms, DV ¼ 400 ms, tn ¼ 1.18,

En ¼ 3.01. Bottom right: DH ¼ 400 ms, DV ¼ 500 ms, tn ¼ 1.87, En ¼ 2.93. (b) Average of

subjects’ performance normalized indexes.
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sion analysis for the subjects’ averages. The average error

indexes (I1, I2) defined by Equations 22 and 23 are

shown in Figures 8(b) and 9(b). The results indicate that

the gradient of the second performance index (I2) is

smaller than the gradient of the first index (I1) which

gives smoother surfaces.

3.2 Pick-and-Place Task Results

The pick-and-place task provides the clearest

trend and the largest gradients. The results indicate that

the completion time varies within 20 s, and the placing

error varies within 25 mm. Figure 10 shows both

variations.

Table 3. Human Performance Gradients Using a Linear Model

Performances measure Parameters Square tracing Circle tracing

Completion time
@tc

@DV
4.418 � 10�3 4.4724 � 10�3

@tc

@DH
2.161 � 10�3 2.6318 � 10�3

Accuracy error
@E

@DV
3.175 2.841

@E

@DH
9.971 � 10�1 1.615

Figure 10. Pick-and-place task—Average of the subjects’ normalized performance indexes.
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The completion time highly depends on the visual

feedback delay and is less affected by the haptic feedback

delay while the accuracy error case is reversed. The visual

delay has insignificant effect on the error, but the error

increases significantly as the haptic delay increases.

3.3 Analysis of Variance (ANOVA)

The results of a two-way analysis of variance

(ANOVA) indicate for all tasks under study—with only

one exception—that the null hypothesis (H0) should be

rejected and the alternative hypothesis (H1) should be

accepted, indicating that there is a significant difference

between the performance indexes for various time delays

(p < .004; see Table 4). The only exception is the insig-

nificant effect of the visual time delay on the accuracy

error of the pick-and-place task (p ¼ .347). Appendix A

contains the complete ANOVA results.

3.4 Surface Regression

A surface fit analysis is performed to express the

completion time, the accuracy errors, and the error

indexes as functions of the haptic and the visual time

delays. Four regression models given by Equations 24–27

were tested where ci >s are the model’s coefficients.

Y ¼ c1 �DV þ c2 �DH þ c3; ð24Þ

Y ¼ c3 � ec1:DVþc2:DH ; ð25Þ

Y ¼ c1 �D2
V þ c2 �D2

H þ c3 �DV �DH

þ c4 �DV þ c5 �DH þ c6; ð26Þ

Y ¼ ec1�D2
Vþc2�D2

Hþc3�DV �DHþc4:DVþc5:DHþc6 : ð27Þ

The goodness of fit was measured by the coefficient of

determination r2 (Soong, 2004). Equation 28 is pro-

posed for calculating the modified goodness of fit (r2
a >)

which compensates for the fact that high order models

tend to provide better estimation (Soong).

r2
a ¼ 1� n � 1

n � k � 1
ð1� r2Þ; ð28Þ

where r2 is the goodness of fit, n is the number of read-

ings, which equals 121, and k is the number of terms in

the model. Table 5 lists the values of r2
a > for the differ-

ent models. The results summarized in Table 5 indicate

that the best model under study that fits the data was a

second order exponential model as in Equation 27. This

model tends to better fit the data collected in the pick-

and-place task compared to the tracing tasks. The

models’ coefficients will be referred to by the models’

parameters and are listed, for each equation, in Table 6.

4 Conclusions and Discussion

In general, the results indicate that human per-

formance in teleoperation degrades as the visual and hap-

tic feedback information is delayed. The two-way

ANOVA analysis shows a significant difference in per-

formance degradation across the two types of time

delays. In the tracing tasks (square and circle), the effect

of the visual time delay is greater than the effect of the

haptic time delay on the performance degradation.

The trajectories of the square tracing task indicate that

the largest error occurs at the corners when a rapid

Table 4. Statistical Significance Summary p(>|F|); Plus Sign Indicates Significant Difference; Numerical Value of

Actual Probability Is Denoted

Square tracing Circle tracing Pick and place

Performance

Haptic

time delay

Visual

time delay

Haptic

time delay

Visual

time delay

Haptic

time delay

Visual

time delay

Completion time þ 2.3 � 10-5 þ 8.6e-12 þ 3.0 � 10-8 þ 0 þ 1.2 � 10-3 þ 0

Accuracy error þ 3.9 � 10-3 þ 0 þ 9.3 � 10-9 þ 0 þ 0 – 0.3473

I1 þ 1.2 � 10-3 þ 0 þ 6.3 � 10-11 þ 0 þ 0 þ 0

I2 þ 4.5 � 10-4 þ 0 þ 5.8 � 10-13 þ 0 þ 0 þ 0
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change in the trajectory line takes place as shown in

Figure 8(a). As the subject traces the square edge, the

magnitude of the haptic feedback is distorted due to time

delay; however, around the corners, both the magnitude

and the direction change rapidly, and lead to relatively

larger overall tracing error. On the other hand, in tracing

the circle, both the direction and the magnitude of the

haptic feedback change constantly as shown in Figure

9(a); this may explain the larger tracing errors and longer

completion time as the two time delays increased.

In the pick-and-place task, the completion time is

mainly affected by the visual time delay, whereas the ac-

curacy error is affected by the haptic time delay. Since

moving the objects takes the majority of the time, any

visual time delay slows the overall performance. In that

respect, the subjects relied completely on the visual feed-

back in order to complete this portion of the task. The

haptic feedback was used by the subjects as a guiding

mechanism to position the objects accurately in their

final destination; therefore, the haptic delay directly

affected the accuracy performance. Consequently, we

may conclude that in tracing tasks, the haptic and the vis-

ual feedback are both utilized simultaneously to opti-

mize the performance; however, in tasks similar to the

pick and place, each of the visual feedback and the force

feedback is used for a different segment of the task. The

results support the notion that the shape and the magni-

tude of the effect that the visual and the haptic time

delays have on performance are related to the geometry

and the segments of action involved in the task.

The following postprocessing analysis was done in

order to study the effects of the hybrid performance

indexes I1 and I2, as defined by Equations 22 and 23, on

the reported data. Assuming that the completion time

and accuracy are ranked on a scale from 1 to 10 such that

a value of 1 represents the best performance (short com-

pletion time—high speed; and small tracking error—

accuracy) and 10 represents the worst performance

(long completion time—slow speed; and high tracking

error—inaccuracy). The two scales are in the range of

1–10 and will be mapped into a range from 1 to 100 by

performance index I1 and from 2 to 20 by performance

index I2. In order to explore the nature of the two per-

formance indexes several cases are presented and sum-

marized in Table 7. In general, performance index I1

rewards subjects that tend to excel in only one per-

formance parameter (Subject 1, 9%; or Subject 2, 9%),

more than those that make the trade-off between speed

and accuracy (Subject 3, 25%), so midrange perform-

ance is not rewarded. However index I2 gives equal

evaluation to subjects who excel in one performance

parameter (Subject 1, 50%; or Subject 2, 50%) as well

as to subjects with midrange performance (Subject 3,

50%). Indexes I1 and I2 give a close score for subjects

Table 5. Modified Coefficient of Determination (r2
a) for Various Models

Criterion Task Equation 24 Equation 25 Equation 26 Equation 27

Completion time Square tracing 0.470051 0.467487 0.495789 0.488737

Circle tracing 0.614564 0.61641 0.615579 0.625053

Pick and place 0.760205 0.791692 0.794421 0.813263

Accuracy error Square tracing 0.582667 0.611897 0.628947 0.633263

Circle tracing 0.637949 0.66359 0.667579 0.673158

Pick and place 0.664513 0.663077 0.707789 0.723158

I1 Square tracing 0.647385 0.692821 0.711579 0.720316

Circle tracing 0.725333 0.774051 0.756842 0.783368

Pick and place 0.744103 0.783487 0.837579 0.846421

I2 Square tracing 0.670974 0.689641 0.718947 0.720316

Circle tracing 0.761128 0.777744 0.777474 0.787263

Pick and place 0.77559 0.787282 0.841263 0.842316
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who have weak results on both performance measures

(Subject 5 performed slowly and inaccurately, had an

81% score on I1 and 90% on I2). Using the scales differ-

ently (for example, 10 means the best while 1 means

the worst) gives a different meaning for the indexes

evaluations. This note is important when trying to

understand the overall performance of a subject using

the defined indexes.

Since the experimental protocol was defined in the

context of a surgical procedure, it is possible to expand the

discussion regarding the effect of completion time versus

accuracy in that context. The ultimate performance mea-

sure in surgery is the clinical outcome. The outcome is

affected by many factors, including but not limited to the

motor skills of the surgeons and the surgical telerobotic

system performance. Major aspects such as the quality and

the timing of the decision-making process, as well as the

proficiency of the anesthesiologists and nurses, may

directly affect the clinical outcome. However, as far as

speed and accuracy are concerned, they should both be

maximized to guarantee the expected clinical outcome.

Moreover, speed and accuracy are commonly used in sur-

gery and other teleoperation studies due to the fact that

they are qualitative parameters that are relatively easy to

measure. Describing the process associated with surgery

that is based on task decomposition provided deeper

understanding and better skill assessment parameters to

objectively assess the manual skills (Rosen et al., 2002,

2003, 2006).

Examining the various regression models (Equations

24–27) indicated that the best fit was given by the sec-

ond-order exponential function (Equation 27) accord-

ing to the modified coefficient of determination r2
a with

values between 0.62 and 0.84 (excluding the completion

time criteria of the square tracking); see Table 5. Given

the same exclusion, a linear regression provided values of

r2
a between 0.61 and 0.77 (Equation 24) and therefore

may offer a simpler predictive model. Using a linear

regression model, isoperformance contours can be

depicted as straight lines, as shown in Figure 11.

In practice, the visual time delay is larger than the

haptic time delay, since the amount of information that

is transmitted across the network is larger for a video sig-

nal compared to the haptic signal. Moreover, the time

that is needed to compress the video in the remote site

and to decompress it locally is added to the time delay of

the network. Consequently, realistic teleoperation con-

ditions mostly occupy the feel-first-see-later region

(Figure 2) of the time delay domain where DH > DV

Table 7. Analysis of Performance Indexes I1 and I2

Subject number Speed Accuracy Index I1 (1–100) Index I2 (2–20)

1 1 9 9 9% 10 50%

2 9 1 9 9% 10 50%

3 5 5 25 25% 10 50%

4 1 1 1 1% 2 10%

5 9 9 81 81% 18 90%

Figure 11. Isoperformance lines of the circle tracing completion time.

The dotted lines are the originals and the solid lines are the estimated

contours from regression.
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(point B in Figure 11). Given these circumstances, one

of the questions that may be raised is whether synchro-

nizing the two delays by deliberately increasing the haptic

time delay may improve human performance. Synchroniz-

ing the visual and haptic time delays will move the opera-

tion point B in Figure 11 to its new location at point A

along the diagonal line of the delay space on which the

two time delays are equal. At point A, the user sees and

feels the teleoperated object in the remote location at the

same moment. The results indicate that human perform-

ance is worse at point A than at point B. Consequently,

synchronizing the two delays may degrade the perform-

ance, and keeping the two time delays nonsynchronized

leads to better human performance. This result agrees in

part with previously published results (Jay & Hubbold,

2005) indicating that the human performance under a

combination of equal visual and haptic time delays is

worse than the human performance that results when ei-

ther the visual or the haptic information is delayed.

The underplaying assumption of this study is that the

time delays are constant and fixed in time. In real teleoper-

ation conditions, the time delay (visual and haptic) has a

specific distribution that may change in time (mean and

variance) if the user does not have control over the traffic

of the network. This scenario presents even more challeng-

ing operational conditions since that operator needs to

change the teleportation strategy as he or she tries to adapt

to the changing characteristics of the network. Under the

assumptions made in this study, the results suggest that

increasing any one of the two time delays given an opera-

tional point of a specific combination of two time delays

will lead to a further degradation of human performance.
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Appendix A: ANOVA Results

Table A2. ANOVA Results for Average Tracking Error of the Tasks*

Task Source SS DOF MS F Pr(>|F|)

Square tracing Columns (visual delay) 3.4299 � 107 10 3.4299 � 106 19.8365 0

Rows (kinesthetic delay) 4.8941 � 106 10 4.8941 � 105 2.8304 0.0039

Error 1.7291 � 107 100 1.7291 � 105 — —

Total 5.6484 � 107 120 — — —

Circle tracing Columns (visual delay) 2.7115 � 107 10 2.7115 � 106 20.7348 0

Rows (kinesthetic delay) 9.7523 � 106 10 9.7523 � 105 7.4574 9.3371 � 10-9

Error 1.3077 � 107 100 1.3077 � 105 — —

Total 4.9945 � 107 120 — — —

Pick and place Columns (visual delay) 119.2623 10 11.9262 1.1306 0.3473

Rows (kinesthetic delay) 3.1496 � 103 10 314.9603 29.8590 0

Error 1.0548 � 103 100 10.5483 — —

Total 4.3237 � 103 120 — — —

*Note: DOF: degree of freedom, SS: sum of squares, MS: SS/df.

Table A1. ANOVA Results for Average Completion Time of the Tasks*

Task Source SS DOF MS F Pr(>|F|)

Square tracing Columns (visual delay) 62.8128 10 6.2813 10.3431 8.6623 � 10-12

Rows (kinesthetic delay) 27.8307 10 2.7831 4.5827 2.3682 � 10-5

Error 60.7292 100 0.6073 — —

Total 151.3727 120 — — —

Circle tracing Columns (visual delay) 62.0232 10 6.2023 15.4017 2.2204 � 10-16

Rows (kinesthetic delay) 28.2124 10 2.8212 7.0058 3.0167 � 10-8

Error 40.2703 100 0.4027 — —

Total 130.5060 120 — — —

Pick and place Columns (visual delay) 7.1258 � 103 10 712.5772 38.5494 0

Rows (kinesthetic delay) 596.1224 10 59.6122 3.2249 0.0012

Error 1.8485 � 103 100 18.4848 — —

Total 9.5704 � 103 120 — — —

*Note: DOF: degree of freedom, SS: sum of squares, MS: SS/df.
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Table A4. ANOVA Results for the Second Error Index I2*

Task Source SS DOF MS F Pr(>|F|)

Square tracing Columns (visual delay) 3.8432 10 0.3843 24.9226 0

Rows (kinesthetic delay) 0.5501 10 0.0550 3.5671 4.5204 � 10-4

Error 1.5421 100 0.0154 — —

Total 5.9353 120 — — —

Circle tracing Columns (visual delay) 5.6984 10 0.5698 32.7954 0

Rows (kinesthetic delay) 2.0083 10 0.2008 11.5580 5.8431 � 10-13

Error 1.7376 100 0.0174 — —

Total 9.4442 120 — — —

Pick and place Columns (visual delay) 3.7566 10 0.3757 29.3759 0

Rows (kinesthetic delay) 3.1267 10 0.3127 24.4506 0

Error 1.2788 100 0.0128 — —

Total 8.1621 120 — — —

*Note: DOF: degree of freedom, SS: sum of squares, MS: SS/df.

Table A3. ANOVA Results for the First Error Index I1*

Task Source SS DOF MS F Pr(>|F|)

Square tracing Columns (visual delay) 32.1868 10 3.2187 23.5178 0

Rows (kinesthetic delay) 4.4260 10 0.4426 3.2339 0.0012

Error 13.6861 100 0.1369 — —

Total 50.2989 120 — — —

Circle tracing Columns (visual delay) 68.7358 10 6.8736 29.1303 0

Rows (kinesthetic delay) 22.3691 10 2.2369 9.4800 6.3979 � 10-11

Error 23.5960 100 0.2360 — —

Total 114.7009 120 — — —

Pick and place Columns (visual delay) 35.6749 10 3.5675 23.1880 0

Rows (kinesthetic delay) 27.2490 10 2.7249 17.7113 0

Error 15.3851 100 0.1539 — —

Total 78.3090 120 — — —

*Note: DOF: degree of freedom, SS: sum of squares, MS: SS/df.
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