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This paper presents a fast numerical solution for the inverse kinematics of a serial manipulator.
The method is implemented on the C-Arm, a manipulator designed for use in robotic surgery.
The inverse kinematics solution provides all possible solutions for any six degree-of-freedom
serial manipulator, assuming the forward kinematics are known and that it is possible to
solve for the remaining joint angles if one joint angle’s value is known. With a fast numerical
method and the current levels of computing power, designing a manipulator with closed-form
inverse kinematics is no longer necessary. When designing the C-Arm, we therefore chose to
weigh other factors, such as actuator size and patient safety, more heavily than the ability to
find a closed-form inverse kinematics solution.
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1. Introduction

Since the mid-1980s, the use of robots in surgery has slowly gained popularity. With
systems present in hospitals around the world, the FDA-approved da Vinci R©, from
Intuitive Surgical, Inc. (Sunnyvale, CA), is arguably the most well-known surgical
robot (Guthart and Salisbury 2000). Some aspects of the da Vinci system could
be improved, however, including the size of the system. The da Vinci occupies a
large footprint on the operating floor, most of one side of the operating table, and
a large portion of the area above the patient. Several research groups are working
to develop smaller systems, including the BioRobotics Lab at the University of
Washington, Seattle, WA, USA.

The BioRobotics Lab’s Raven surgical robot is designed for minimally invasive
surgery (MIS), and covers the surgical field while minimizing the amount of space
occupied over and around the patient. The advantages of a system like the Raven
are more fully described by Lum et al (2006). The BioRobotics Lab is also devel-
oping a second arm, currently referred to as the “C-Arm” (Figure 1) that positions
the Raven over the patient and can be used for automatic tool changes. The com-
bined Raven/C-Arm system occupies only a fraction of the space occupied by the
da Vinci system.
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The final C-Arm design was chosen because it best met the requirements dictated
by its use in surgery, but does not have a known closed-form inverse kinematics
solution. Until now, the lack of a closed-form solution would have eliminated this
design from consideration. Few groups over the last 20 years have chosen to continue
with such a design. Those that have continued generally used a numerical solution
that relied on the Newton-Raphson method (Chen et al 1999), the Newton-Gauss
method (Angeles 1985), or some other iterative method (Goldenberg et al 1985;
Buss and Kim 2005; Zhao et al 2005), along with some method of approximating
the inverse of the Jacobian, such as the Moore-Penrose generalized pseudoinverse.
Other solutions avoided use of the Jacobian, as its presence tended to result in
instability, but still relied on iterative, purely numerical methods (Goldenberg 1985;
Ahmad and Guez 1990; Wang and Chen 1991).

Figure 1. Two C-Arms, currently under development in the BioRobotics Lab, posed over a patient on an
operating table. Joint 1 slides along the linear rail attached to the operating table, as seen in the lower
right corner.

Two drawbacks are common to all of these methods. First, these methods only
find one solution when many are possible, and are not guaranteed to find the best
solution. Second, these methods solve the problem in a multi-dimensional space of
all of the manipulator DOFs (typically 6). Rather than using one of these methods,
we chose to develop a method that required iteration over only one DOF and found
all possible solutions. In addition, since Moore’s Law has held up for the past 20
years, then we can now perform calculations between 3 and 4 orders of magnitude
faster than we could 20 years ago. This substantial increase in our computing
abilities, coupled with our new method, eliminates most or all of the practical
objections to numerical solutions of inverse kinematics.

2. C-Arm Design

The C-Arm’s primary function is to support and move the 12kg Raven and stabilize
its base during robotic surgery while ensuring patient safety. The C-Arm must also
be able to reach across an insufflated patient to allow C-Arms mounted on either
side of an operating table to access MIS ports (or the operating site, in open
surgery) located on one side of the patient. Other design goals include providing a
high ratio of workspace to total volume and minimizing the size, weight, and power
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consumption of joint actuators. Finally, the workspace defined by the patient is
more cylindrical than spherical, and the chosen design should take advantage of
that fact to minimize actuator usage during surgery.

Regarding inverse kinematics, Craig (2005) states: “Only in special cases can
robots with six degrees of freedom be solved analytically.” For instance, a well
known result by Pieper and Roth (1969) is that a closed form inverse kinematics
solution exists for any manipulator with three consecutive intersecting rotary axes.
Another of Pieper’s results is that a solution exists for manipulators with three
rotary and three prismatic joints. It has been standard practice for many years
to design manipulator arms so that a closed form solution exists. In our design
process, however, we felt that medical needs outweighed the need for a closed form
solution.

For any system that will operate in close proximity to a human, safety is a
primary concern. To reduce the risk of injury to the patient, we endeavored to
minimize size and actuator strength of the entire C-Arm, especially in the vicinity
of the patient. As we were constrained by the need to span a large workspace while
supporting a 12kg payload, we searched for a design that would allow us to use
the smallest actuators possible. Exchanging the order of the last two joints from
the design that was ultimately chosen would provide us with a design containing
three consecutive intersecting rotary axes, thereby allowing us to find a closed-
form inverse kinematics solution. However, analysis showed that exchanging the
order of the last two joints would increase the torques exerted on those joints and
require the use of larger actuators. Using larger actuators on the most distal joints
would increase the payload supported by more proximal joints, and would require
those actuators to be enlarged as well. Other designs considered resulted in similar
enlargements.

Increasing the size of both the actuators and the manipulator itself increases the
risk to patient safety. Larger manipulators increase the risk of patient-manipulator
collisions, and larger actuators increase the amount of damage that a patient could
suffer in the case of catastrophic failure. In comparing potential designs, we deter-
mined that a slight increase in computing time due to choosing a design with no
known closed-form inverse kinematic solution was worth the corresponding increase
in patient safety, as long as our method was guaranteed to find the appropriate
solution.

2.1. C-Arm Joints

Each C-Arm is a 6-DOF system with one linear joint and five rotational joints.
The joints are numbered 1 through 6, with Joint 1 being the joint most proximal
to the rigid base (consisting of a linear rail mounted to either the operating table
or the ceiling) and Joint 6 being the most distal. Joint axes are defined by the
lines labelled Ji in Figure 2, with the arrowhead indicating either the direction
of positive linear motion (for Joint 1) or the direction of positive rotation using
a right-handed coordinate system (for Joints 2-6). Figure 2 also indicates relevant
lengths (Li) and the directions of the X- and Z-axes for each link frame (Xi, Zi)
as defined using the Denavit-Hartenberg (D-H) notation convention presented by
Craig (2005). The D-H parameters defined in Table 1 take the pose in Figure 2 as
the zero pose. Figure 3 shows a highly simplified sketch of the C-Arm, with Z-axes
indicated to further clarify the arm’s geometry.

In addition to the D-H parameters, joint limits are an important component of
our system analysis. As Joint 1 is linear, its limits depend on the length of rail
to which it is attached. In our current lab setup, the linear rail attached to an
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Figure 2. CAD rendering of the C-Arm showing joint axes, lengths, and coordinate systems used to
determine the DH parameters. XB and ZB indicate the Base Frame {B}, attached to the linear rail.
Coordinate Frames {1} through {6} are attached to Links 1 through 6, where Link i is defined as the
portion of the C-Arm that falls between Joints i and i+ 1. The Tool Frame {T} (unmarked) is coincident
with Frame {6}.

Table 1. D-H Parameters of the C-Arm. For

our system, L1 = 350mm and L2 = 402mm.

i ai−1 αi−1 di θi

1 0 0 d1(t) 0
2 0 π

2
0 θ2(t)

3 0 −π
2

0 -π
2

+ θ3(t)
4 L1 0 0 θ4(t)
5 0 −π

2
L2 θ5(t)

6 0 π
2

0 θ6(t)

operating table allows for 2000mm of travel. The zero point is defined as the end
of the rail nearest the patient’s feet with the positive direction of travel pointing
toward the head.

Joints 2, 5, and 6 can theoretically perform one full revolution, with joint limits
defined at −180◦ and 180◦. The ranges of motion for Joints 3 and 4 are constrained
by self-collisions of the manipulator. As a result of the C-Arm’s design, limits
defined by self-collisions will vary based on manipulator pose. For this analysis, we
will use joint limits of −84◦ ≤ θ3 ≤ +116◦ and −178◦ ≤ θ4 ≤ +66◦. (See Friedman
(2008) for the reasoning behind this decision.)
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Figure 3. Sketch of the C-Arm, with Z-axis directions indicated.

For Joints 2-6, these limits will likely be reduced somewhat as construction of
the C-Arms nears completion, due to lengths of wires, the addition of safety stops,
and other considerations. Safe limits will also vary in a clinical setting based on the
relative positions of the patient, medical personnel, and other medical equipment
to the C-Arms. These limits will affect Joints 3 and 4 most significantly. Before the
C-Arms can be used in a clinical setting, further work will need to be completed to
fully map regions where self-collision is a concern and to include obstacle avoidance
in the control software.

2.2. C-Arm Forward Kinematics

The D-H parameters can be used to develop a transformation matrix B
WT that

relates the Base Frame {B} to the Wrist Frame {W} (Craig 2005). The transfor-
mation matrix is presented here as the product of two matrices for clarity.

B
WT =B

2 T
2
WT (1a)

B
2 T =


C2 −S2 0 0
0 0 −1 0
S2 C2 0 d1

0 0 0 1

 (1b)

2
WT =


S34C5C6 + C34S6 C34C6 − S34C5S6 S34S5 S3L1 + C34L2

−S5C6 S5S6 C5 0
C34C5C6 − S34S6 −S34C6 − C34C5S6 C34S5 C3L1 − S34L2

0 0 0 1

 (1c)

Note that C2 is shorthand for cos(θ2), S34 is shorthand for sin(θ3 + θ4), and so on.

3. Inverse Kinematics Method

While the chosen design for the C-Arm was well suited to our needs, it does not
have a closed-form inverse kinematics solution. We chose to develop a method
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that required iteration over only one DOF and found all possible solutions. Our
numerical solution is accomplished as follows:

(1) Try to find a closed form solution for the inverse kinematics. If a closed
form does not exist, instead solve the inverse kinematics in terms of any
one joint (θ∗). Note that θ∗ can be rotational or translational. Also note
that the value of θ∗ is unknown at this time.

(2) Choose a set of possible values for θ∗, evenly distributed over the joint range
of θ∗.

(3) Calculate the values of the remaining joints for each possible value of θ∗.
(4) Choose the values(s) that most closely match the desired posi-

tion/orientation to locate all possible solutions.
(5) For each possible solution, use an iterative method to choose new values

for θ∗ until a solution with the desired accuracy is obtained.

In a sense, our method could be considered a hybrid method, as it is partially an
analytical solution method and partially a numerical solution method.

This method is similar to the one presented by Manseur and Doty (1988). Their
method required the first joint to be rotational and iterated over that joint angle.
Since the C-Arm has a prismatic joint as its first joint, this method could not be
used for our manipulator. Our method also improves over Manseur and Doty’s
method in that it is not strictly necessary to iterate over the first joint. Any joint
is acceptable so long as solutions can be found for the remaining joints given a
value for the chosen joint.

Using the homogeneous transforms between frames, as determined from the D-H
parameters, we can generate a set of kinematic equations:

TD = B
WT (2)

where B
WT is the transformation matrix specific to the manipulator as defined in

Equation (1) and TD is the desired pose, defined as:

TD =


R11 R12 R13 Px
R21 R22 R23 Py
R31 R32 R33 Pz
0 0 0 1

 (3)

Multiplying out the matrices in Equation (2) results in twelve non-trivial equations.
In many cases, the equations can be simplified by pre-multiplying by some of the
frame transformation matrices. For example,(

B
2 T
)−1

TD = 2
WT (4)

where B
2 T and 2

WT are matrices such as those defined in Equation (1). If we assume
the value of one joint (θ∗) is known, the twelve non-trivial equations can be used
to solve for the remaining joint values.

4. C-Arm Implementation

When implementing our method on the C-Arm, we chose to iterate over the first
joint, d1. A solution could also have been found by iterating over another joint.

If we know d1, we can use a subset of the equations from Equation (4) to solve
for the other five joint angles (as is necessary for Step 3 of our solution). Using
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the {2, 4} term of Equation (4), we can solve for θ2 using the atan2 function. Two
solutions are obtained for each value of d1.

θ2a = atan2 (−Pz + d1,−Px) (5a)

θ2b = atan2 (Pz − d1, Px) (5b)

The remaining joint angles are found in a similar manner. The order of calculations
is detailed in Friedman (2008).

For any given desired pose and value of d1, four possible solutions are found for
the remaining five joint angles. The four solutions are not equally good, however.
It is likely that at least one of the possible solutions violates the C-Arm’s joint
limit restrictions and are therefore eliminated from consideration.

We then calculate the solution error for the remaining sets of joint angles (Step
4 of our solution). For each set of joint angles, we use the forward kinematics to
identify the resulting position (variables X, Y , and Z) and orientation (variables
α, β, and γ) of the C-Arm. The total solution error J consists of two components:
Jp, the position error (in mm); and Jo, the orientation error (in radians).

Jp =
√

(X −XD)2 + (Y − YD)2 + (Z − ZD)2 (6a)

Jo =
√

(α− αD)2 + (β − βD)2 + (γ − γD)2 (6b)

J =
√
J2
p + (100mmJo)

2 (6c)

The values α, β, and γ are orientation angles found using the ZY Z Euler angle
convention (Craig 2005). The total solution error J is calculated using a weighted
least squares approach to minimize the error in position and orientation. Error
in orientation (in radians) is weighted 100 times greater than error in position to
obtain error values of similar magnitude. A weight of 100mm makes physical sense
for this problem if you consider angles and lengths to be related by a radius of
100mm (an appropriate scale based on our link lengths).

After eliminating solutions that violate joint limit constraints, between zero and
four possible solutions remain. If no solutions remain, an error of J =∞ is returned.
If one solution remains, that solution and its corresponding error are returned. If
more than one solution remains, a subset of the solutions is returned.

For all but the last iteration of d1 values, the solution with the lowest total error
is reported. If multiple solutions have the same minimum error, any one of those
solutions may be reported. For the last iteration of d1 values, all solutions with an
error below some threshhold are reported. In practice, a threshhold of J < 10−5mm
was reasonable for our mechanism.

5. Numerical Solution for d1

The linear rails along which the C-Arms slide are 2000mm long with a positioning
accuracy of 0.01mm. Rather than checking 200,000 possible joint positions, we
opted to search along the entire rail with a 10mm accuracy (Step 2 of our solution),
then search around the best points with a 1mm accuracy (Step 5), and so on until
we obtain the best result with a 0.001mm accuracy (one-tenth the precision of our
linear rails).
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We have found that there exist at most four possible values of d1 that achieve
any desired position and orientation. Our method finds all solutions, and we choose
the most appropriate solution for the given situation. For trajectory generation,
for instance, this would be the solution with joint angles most similar to the joint
angles from the previous step. In practice, we found solutions for at most 521 points
(assuming four local minima are identified) instead of the initial 200,000.

In its current form, finding the inverse kinematic solution for one point takes
between 0.06 and 0.1 seconds, depending on other processor demands and the
number of final solutions. If necessary, calculation time can easily be decreased in
several ways, including using C-code to find a solution rather than Matlab code,
implementing a more efficient iterative method (such as Newton-Raphson) to find
each local minima after the initial sweep along the linear rail, and adapting the
code to run on several parallel processors simultaneously. Thus the speed of our
method, while important, is not seen to be as significant a contribution as is the
ability of the method to find all solutions.

6. Solution Verification

The C-Arm’s inverse kinematics solution was verified in two ways. First, a series
of points within the C-Arm’s workspace were chosen. For each point, the joint an-
gles were calculated as described, and the solution error was noted. The results of
interest were the maximum error and mean error, as well as the mean runtime for
the inverse kinematics solution. Next, we chose a trajectory in Cartesian coordi-
nates and calculated the inverse kinematics at points along the trajectory. As with
the verification points, we are interested in maximum and mean error and mean
runtime.

6.1. Verification Points

Verification points were chosen using joint coordinates, and then were converted
to wrist coordinates using the forward kinematics. Choosing the verification points
using joint coordinates ensured that the inverse kinematics solution was verified
over a large portion of the C-Arm’s motion range. It also provided a known desired
position against which to compare our results. Between 3 and 11 possible values
were chosen for each joint. The possible values are listed in Table 2. The inverse
kinematics solution was then calculated for all nonsingular combinations of the
possible joint values (singularities were analyzed in Friedman (2008)).

Table 2. Possible values for joints d1 through θ6 used to verify the inverse kine-

matics solution.

Joint Possible Values

d1 500mm, 1000mm, 1500mm
θ2 −150◦, −120◦, −90◦, −60◦, −30◦, 0◦, 30◦, 60◦, 90◦, 120◦, 150◦

θ3 −60◦, −30◦, 0◦, 30◦, 60◦

θ4 −60◦, −30◦, 0◦, 30◦

θ5 −120◦, −60◦, 0◦, 60◦, 120◦

θ6 −60◦, −30◦, 0◦, 30◦, 60◦

For each test point, the inverse kinematics solution was calculated. Between one
and four values of d1 were found for each test point, and some values of d1 had
multiple solutions for subsequent joints. To compute accuracy, we chose the solution
that most closely matched the original joint values. When following a trajectory,
the current location can be used to compute the accuracy of the next location.
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Figure 4 illustrates the multiplicity of solutions. All but θ2 was held constant
(d1 = 500mm, θ3 = 60◦, θ4 = −60◦, θ5 = 60◦, θ6 = 0◦) and θ2 was allowed to take
each of the 11 possible values listed in Table 2. The values of θ2 that correspond to
the desired solution are indicated by ◦’s. The value of θ2 for all possible solutions
are indicated by ×’s. If more than one solution for a verification point shared the
value of θ2, the number of solutions sharing that value is indicated by a number in
parentheses next to the ×. The desired solution was always found, as indicated by
an × inside a circle. Due to the geometry of the C-Arm, it is also very common to
have an alternate solution for θ2 that is 180◦ off from the desired solution.
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Verification Point Number

θ 
2 (
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g)

 

 

Initial Joint Angles
Calculated Solutions

(2)

(2)

(3)

Figure 4. θ2 solutions for a subset of the verification points. θ2 was allowed to take each of the 11 possible
values listed in Table 2 and the remaining joints were held constant. The desired value of θ2 is marked by
a ◦ for each verification point. The value of θ2 for each possible solution is marked by an ×. If multiple
solutions exist with the same θ2 value for any verification point, the multiplicity of that solution is indicated
in parentheses next to the point.

The maximum error and mean error are displayed in Table 3, along with the
threshhold value under which 99.6% of the error values fall. The errors shown
are likely due to rounding errors during calculations. When the inverse kinematics
equations are used to position the physical C-Arms, the error due to limitations
in joint angle precision will far outweigh the error shown here. On average, the
inverse kinematics calculations took 0.098 seconds per point in Matlab.

Table 3. Maximum error, mean error, and

99.6% error threshhold for 15,900 verifica-

tion points.

Error Measurement J (mm)

Jmax 3.49× 10−6

Jmean 9.51× 10−9

J99.6% 3.44× 10−9

6.2. Trajectory Verification

After testing the verification points, a rectangle within the C-Arm’s workspace was
defined. A trajectory was chosen that moved between corners of the rectangle and
ten points were calculated between subsequent corner points. The orientation was
kept constant and was chosen to be the same as the orientation when the C-Arm
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is in the zero pose. Figure 5 shows the rectangle (thin lines), the trajectory (thick
lines), and the calculated points along the trajectory (∗ marks).
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Figure 5. Verification trajectory, defined in wrist space and holding orientation constant. The thick lines
show the trajectory of the arm starting and ending at (350,−250, 1250). The ∗ marks show the points
calculated along the trajectory. The thin lines indicating the rectangle are included for reference.

The maximum error and mean error are displayed in Table 4, and again are likely
due to rounding errors during calculation. As before, when the inverse kinematics
equations are used to position the physical C-Arms, the error due to limitations in
joint angle precision will far outweigh the error shown here.

Table 4. Maximum and mean errors for the

wrist space verification trajectory.

Error Measurement J (mm)

Jmax 1.27× 10−13

Jmean 3.21× 10−14

7. Conclusion

This paper presents a numerical inverse kinematics solution that eliminates many
of the drawbacks of traditional numerical inverse kinematics methods. The inverse
kinematics solution differs from previous solutions in that it:

• Finds all possible combinations of joint angles that produce a desired pose, rather
than just one combination,

• Shrinks the search space from six dimensions to one, thereby allowing for faster
convergence, and

• Does not require iterations to be performed over the first joint, or require that
iterations be performed over a rotational joint.

Until now, having a closed-form solution for a mechanism’s inverse kinemat-
ics was considered so important that manipulators were rarely built that did not
have a closed-form solution. Without this constraint, many systems could likely



June 7, 2010 14:7 Applied Bionics and Biomechanics tBOB˙Paper

REFERENCES 11

have been built using a design that would better achieve their other objectives.
Previous numerical solutions, however, have generally been too slow to allow for
the elimination of this constraint. The numerical inverse kinematics method pre-
sented in this paper, coupled with the substantial increase in computing power
that we have experienced in the last 20 years, means that it is no longer necessary
to constrain serial mechanism designs to those with closed-form inverse kinematic
solutions.
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