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Real-Time Myoprocessors for a Neural Controlled
Powered Exoskeleton Arm

Ettore E. Cavallaro*, Member, IEEE, Jacob Rosen, Member, IEEE, Joel C. Perry, and Stephen Burns

Abstract—Exoskeleton robots are promising assistive/rehabilita-
tive devices that can help people with force deficits or allow the
recovery of patients who have suffered from pathologies such as
stroke. The key component that allows the user to control the ex-
oskeleton is the human machine interface (HMI). Setting the HMI
at the neuro-muscular level may lead to seamless integration and
intuitive control of the exoskeleton arm as a natural extension of
the human body. At the core of the exoskeleton HMI there is a
model of the human muscle, the “myoprocessor,” running in real-
time and in parallel to the physiological muscle, that predicts joint
torques as a function of the joint kinematics and neural activation
levels. This paper presents the development of myoprocessors for
the upper limb based on the Hill phenomenological muscle model.
Genetic algorithms are used to optimize the internal parameters
of the myoprocessors utilizing an experimental database that pro-
vides inputs to the model and allows for performance assessment.
The results indicate high correlation between joint moment pre-
dictions of the model and the measured data. Consequently, the
myoprocessor seems an adequate model, sufficiently robust for fur-
ther integration into the exoskeleton control system.

Index Terms—Exoskeletons, genetic algorithms, muscle models.

I. INTRODUCTION

NTEGRATING human and robot into a single system of-

fers remarkable opportunities for creating a new generation
of assistive technologies for both healthy and disabled people.
Humans possess naturally developed algorithms for control of
movement, but they are limited by their muscle strength. In addi-
tion, muscle weakness is the primary cause of disability for most
people with neuromuscular diseases and injuries to the central
nervous system. In contrast, robotic manipulators can perform
tasks requiring large forces; however, their artificial control al-
gorithms do not provide the flexibility and quality of perfor-
mance that is naturally achievable by humans. It seems, there-
fore, that combining these two entities, the human and the robot,
into one integrated system under the control of the human, may
lead to a solution that will benefit from the advantages offered by
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each subsystem. In this scenario, the exoskeleton robot, serving
as an assistive device, is worn by the human (orthotic) and func-
tions as a human-amplifier. Its joints and links correspond to
those of the human body, and its actuators share a portion of the
external load with the operator.

Several generations of exoskeletons can be defined based on
the level of the human machine interface (HMI) between the
exoskeleton robot and the human operator: (I) kinematic [1],
[2]; (T) dynamic [3], [4]; (II]) neuromuscular, e.g., surface elec-
tromyography (sEMG) [5], [6]; (IV) brain, e.g., noninvasive
electroencephalogram (EEG) or invasive action potential signal
measured directly from the motor cortex [7].

The third generation utilizes the body’s own neural com-
mand signals as one of the primary command signals of the
exoskeleton. The main advantage of establishing the interface
at the neuromuscular level is the ability to estimate the effects
of muscle contractions even before these effects can be directly
measured using other means (e.g., kinematic and dynamic
interfaces). In fact, an electro-(chemical)-mechanical delay
(EMD), inherently exists in the musculoskeletal system. This
inherent time delay refers to the interval between the time
when the neural system activates the muscular system and the
time when the muscles and the associated soft tissues contract
mechanically and generate moments around the joints. EMD
values vary considerably depending on the muscle, the person,
and the experimental technique used for the measurements and
can be assumed to be in the range of 26-131 ms with values
for some upper limb muscles in the middle-lower part of this
interval [8]-[10]. If the EMD can be exploited in the control
algorithm of the exoskeleton, a noninvasive and seamless
integration between the human operator and the exoskeleton
can be achieved in such a way that the device becomes a natural
extension of the operator’s own body.

The primary component of the third-generation exoskeleton
that takes advantage of the EMD and sets the HMI at the neuro-
muscular level is the myoprocessor. A myoprocessor is a set of
computational representations (models) of a human muscle pre-
dicting joint torques in real-time. During the EMD, the system
gathers information regarding the physiological muscle’s neural
activation level based on processed EMG signals, the joint posi-
tion, and angular velocity. This information is fed into the my-
oprocessor which in turn predicts the moment that will be de-
veloped by the physiological muscle relative to the joint. The
predicted moment is fed into the exoskeleton system such that,
by the time the physiological muscle contracts, the exoskeleton
amplifies the joint moment by a preselected gain factor. Part
of the time gained by using these predicted muscle moments is
employed by the electromechanical subsystems of the powered
exoskeleton to compensate for their own inherent reaction time.

0018-9294/$20.00 © 2006 IEEE
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(a) (b)

Fig. 1. A 7 DOF Exoskeleton arm: (a) CAD rendering of a 7 DOF upper limb
powered exoskeleton — shoulder joint has 3 DOF, elbow joint has 1 DOF, wrist
joint has 3 DOF; (b) Picture of the actual exoskeleton.

Although muscle has been the object of intense interest and
study, and despite the enormous progress made in understanding
its structure and function during the past few decades, the for-
mulation of a completely satisfactory quantitative representa-
tion of contraction dynamics has been elusive. A great variety
of muscle models have evolved over the years, differing in in-
tended application, mathematical complexity, level of structure
considered and fidelity to the biological facts (for review see
[11]). According to this review, muscle models are classified
as: 1) microscopic models; 2) distributed moment models; 3)
macroscopic models; 4) fiber models. Hill-based models, vis-
coelestic models, and system models are subcategories of the
macroscopic models class.

Previous research effort focused on developing and com-
paring the performance of two macroscopic muscle models
including a Hill based muscle model and neural network model
as part of a HMI for a single degree-of-freedom (DOF) pow-
ered exoskeleton [5], [6]. The current research effort is focused
on developing a modular, myoprocessors-based, HMI for a
7-DOF upper limb powered exoskeleton (see Fig. 1). This HMI
integrates Hill-based muscle models, kinematic models of the
muscle lines of action, and the neural activity in the form of
processed SEMG signals.

More specifically, this paper describes: 1) the development
of real-time myoprocessors for the estimation of torques at
the joints of the upper limb in dynamic conditions; 2) the
development of a suitable strategy to adapt the parameters
of the myoprocessors to a specific user; 3) the evaluation
of the myoprocessors’ performance by using experimental
torque measurements during elbow and wrist flexion/extension
movements.

II. MATERIALS AND METHODS

The following sections define the fundamental elements of
the myoprocessor, a genetic algorithm (GA) for adjusting my-
oprocessors’ internal parameters and the experimental protocol
to assess overall system performance.

A. The Myoprocessor

Each myoprocessor, as shown in Fig. 2, is composed of four
modules: 1) a “neural activation module” which, by using SEMG
signals, estimates the degree of neural activation of the muscle
a(t); 2) a “kinematics module” which, by using the joint an-
gular positions and anatomical information, computes muscle
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Fig. 2. Myoprocessor block diagram.

length and moment arms; 3) a “Hill-based muscle model” which
computes the force exerted by a muscle given the neural acti-
vation level and the muscle length (and lengthening/shortening
velocity); 4) a “dynamics module” which evaluates muscle con-
tribution to the joint moment as the product of muscle force and
moment arm.

The Myoprocessor has been implemented in the Matlab/
Simulink environment (MathWorks Inc.) utilizing the Real-time
Workshop toolbox. Several routines have been written in C and
integrated into the Simulink blocks in order to achieve real-time
performance.

1) Neural Activation Module: By using the SEMG signal as
input, this module estimates the level of the neural activation
(NA) for each muscle under study. The NA is a normalized
signal a(t) € [0,1], where a« = 1 indicates a state of max-
imal voluntary activation and a = 0 represents no muscle ac-
tivation. Commonly, the NA level is estimated by using the en-
velope of the rectified and normalized sSEMG signal [12]-[15].
The module implemented in this study consists of a cascade of
causal digital filters and nonlinear transformations: a) high-pass
filter (cutoff frequency 20 Hz); b) notch filter (60 Hz); c) full
wave rectification; d) low-pass filter (cutoff frequency 5 Hz);
e) normalization with respect to the maximal isometric volun-
tary muscle activation levels; f) nonlinear scaling, defined by
(1), where A determines the degree of nonlinearity [13]

A —1
T A-1

All the filters are Butterworth 4th order.

2) Kinematics Module: The kinematics module computes
the length of the muscle and the moment arm for each DOF
spanned by the muscle. In order to obtain these outputs, the
angular positions of each joint spanned by the muscle, as well
as anatomical information about the arm, are used. The muscle
length and moment arms have a profound effect on the joint
torque estimation [16], [17]. Several estimations of length
and moment arms for the upper limb muscles are available
[16], [18]-[20]. However, data are available only for a selected
number of muscles and they are expressed as average values
or as polynomial interpolations with respect to individual joint
angles [17], [21]. Models accounting, to some extent, for the
complex path of muscle from origin to insertion points have
been developed [22]-[25]. These models allow the evaluation
of muscle lengths and moment arms across multiple joints, and

a(t) (D
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Fig. 3. The BSH length and moment arm as a function of angular position of
joints: (a) the BSH length as a function of the elbow joint and the forearm angles;
(b) the BSH moment arm as a function of the elbow joint and the forearm angles;
(c) a polar plot of the BSH muscle length as a function of the elbow angle for
a constant full supinated forearm; (d) a polar plot of the BSH muscle moment
arm as a function of the elbow angle for a constant full supinated forearm.

for this reason have been chosen to represent the muscle-joints
interaction in the present work.

In particular, in the work of Garner and Pandy [23]-[25], used
as reference, each muscle is modeled as an elastic band attached
to the origin and insertion points. The muscle can wrap around
virtual objects (obstacles) that simulate other anatomical struc-
tures such as muscles, soft tissues, or bones, and its path can
be constrained by fixed points (called via points). The obsta-
cles are modeled as spheres, cylinders, or combination of these
two basic primitives. The muscle path is then calculated as the
shortest path from origin to insertion points given the obstacle
constraints.

After calculating the muscle path, i.e., the muscle length,
since the muscle line of action is also available, in the present
work, the moment arms are evaluated by using the geometrical
definition (b; = (77 X F) - k;), where b; is the moment arm for
the joint 4, k; is the direction of the joint axis of rotation, Fis
the unitary vector along the force direction and 77 is the distance
vector from the rotation axis to the insertion point.

The present kinematic module included the following joints:
glenohumeral, humero-ulnar flexion-extension, radio-ulnar
pronation-supination, radio-carpal flexion-extension, and
radio-carpal radial-ulnar deviation. As an example, Fig. 3
depicts the Biceps Brachii (short head) length and moment
arm as a function of the elbow joint (flexion/extension) and
forearm (pronation/supination) angles. During the validation
phase, only the the humero-ulnar flexion-extension, and the
radio-carpal flexion-extension joints were considered active,
while the others were kept in fixed positions.

3) Hill-Based Muscle Model: This module predicts the force
developed by the physiological muscle as a function of the esti-
mated neural activity level, and of the calculated muscle’s length
and velocity. It is based on the phenomenological muscle model
first described by Hill [26] and refined and used by many re-
searchers in the last decades [14], [27]-[30].

The model includes three elements arranged on two branches.
On one branch there are the passive serial element (SE) and the
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active contractile element (CE); on the other, there is the passive
parallel element (PE), as shown in Fig. 2.

Given the mechanical arrangement of the PE, SE, and CE
components, the two parallel branches of the model share the
same displacement (2). In addition the two elements in series
on the same branch share the same force (3). Finally, the total
force generated by the muscle is the sum of the forces developed
by each branch (4)

Lpg =Lce + Lse (2)
Fsg = Fcr 3)
Fiot = Fcg + Fpg = Fsg + Fpe “4)

where F' is the force and L is the length of an element.

Given the passive nature of the PE and SE elements, the force
generated by these two elements as a function of the displace-
ment, is expressed by the same equation with different internal
parameters (5)

Fnlax
Fpgsg = [—65 — J [e((S/ALm“X)AL) - 1} Q)

where Fpg sk is the passive force generated by the PE or the
SE element, AL is the change in length of the element with
respect to the slack length, S is a shape parameter (related to
the stiffness of the element), F},,... is the maximal force exerted
by the element for the maximum change in length AL .

The force Fcg generated by the CE element is a function of
the neural activation a, of the normalized force-length function
fi1, of the normalized force-velocity function f,,, and of a fixed
parameter Fcg,  defining the maximal force the element can
generate [see (6)—(9)]

Fece=a- fi- fo FCE . (6)
%L(‘,E _ ¢m 2
fi=exp | =05 === 7 (7
0.1433
fo= ®)
0.1074 + exp (—1.3 sinh (2.8 Yer 1 1.64))
50
VCEO = 0.5((1 + 1)VCEn1ax' ©)]

f1 1s modeled as a Gaussian function (7) where A L¢g is the
length change for the CE element and L¢g, is the optimal fiber
length; ¢,,, and ¢, are parameters affecting the mean value and
variance of the Gaussian. The force-velocity equation is defined
by (8) where Vg is the CE velocity and Vg, is the maximal
CE velocity when Fcg = 0. Vg, , as shown in (9), can be ex-
pressed as a function of neural activation and V¢, , i.e., Vcg,
when the activation is maximum (¢ = 1). Moreover, the fol-
lowing relations hold for some of the parameters in the previous
equations [16], [30]

Vekn.. =2 Leg, + 8- Leg, - @ (10)
Frg,_. =0.05- Fcg,,. (11)
Apg,,.. = Lmax — (Lce, + Lt,) (12)
FSEnlax =1.3- FCEn]ax (13)
Asg,.. =0.03- L, (14)
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where « is the percentage of fast fibers in a muscle, Ly, is
the tendon slack length (other symbols have been previously
defined).

Fig. 4 shows an example of the force-length-velocity surface
described by the previous equations for a maximal neural acti-
vation ¢« = 1. As can be noted, there are infinite surfaces en-
capsulated underneath this surface for various activation levels.
Essentially any point on and under this surface is a potential op-
erational state for the muscle.

Given the length of the muscle (which is equal to the length
of the PE element, Lpg) and the neural activation a, there are
two main ways to compute the force generated by the muscle
by using (5)-(9).

Equation (8) can be inverted to find Vg as a function of
Fsg/afiFcr,,, ; then Vog can be integrated to obtain Leg. It
is clear that when a(t) approaches zero this method cannot be
used.

Alternatively, (8) can be transformed into a nonlinear finite
difference equation (15). This equation can be solved numeri-
cally and in real-time by using the bisection method

FSE(ALCE[’I’L])
_ 0.1433 - a - f; - (ALcg[n]) - Fcg

0.1074 + exp(—1.3sinh (2.8 2Leslilzalesln=tl 4 64))
15)

max

4) Dynamics Model: The net moment developed in each joint
is the sum of all the moments applied by agonist and antagonist
muscles (16). The moment developed by each muscle (T;) at a
certain joint is computed by

Tnet = § Ti

TL'ZF,L'-bi

(16)
a7)

where F; is the force generated by a single muscle and b; is the
moment arm of the muscle for that specific joint.

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 53, NO. 11, NOVEMBER 2006

B. Muscle Synergy — The Inverse Problem — Force/Torque
Estimation With No SEMG Inputs

In the present work, 12 muscle bundles have been modeled,
namely Brachialis (BRA), Biceps Brachii long head (BLH), Bi-
ceps Brachii short head (BSH), Brachioradialis (BRD), Triceps
Brachii long head (TLgH), Triceps Brachii medial head (TmH),
Triceps Brachii lateral head (TLtH), Flexor Carpi Radialis
(FCR), Extensor Carpi Radialis (ECR), Flexor Carpi radialis
(FCU), and Extensor Carpi Ulnaris (ECU).

However, the SEMG were recorded from 9 muscles only, due
to anatomical limitations in accessing some muscles using non-
invasive techniques. Several methods can be used to address this
issue. In the present work, the following two techniques have
been used.

* The neural activity of muscle bundles close together, mea-
sured by a single pair of electrodes, has been assumed to
be the same except for a scaling factor. This approach was
used to model the neural activation of the biceps BSHs and
BLHs;

* The criterion of “maximum endurance of musculoskeletal
function” introduced in [31] has been used for predicting
load sharing of synergistic muscle groups.

Based on this criterion, muscles with a larger cross sec-
tion will share higher force then muscles with small cross
sections depending also on their moment arms. The predic-
tions from this criterion are improved when the moment arms
are allowed to vary with joint angular position [32], as in the
present study.

The “maximum endurance of musculoskeletal function” cri-
terion has been used to model the force and torque exerted by the
Brachialis muscle. An equivalent two agonist model has been
defined between the BRA and the BSH, BLH, and BRD lumped
together. Then, the BRA force has been computed as follows:

b 1/2 / pmax \ 3/2
= () ()

18
bs Faax (1%
)>)
by = = 1
2= (19)
Fs = Fgrp + Iesu + FLu (20)
Ts; =TBRD + TBSH + TBLH 2n

where F' represent the force developed by a muscle, 7 is the
torque developed by a muscle for the humero-ulnar joint, b is the
moment arm of each muscle, which varies according to angular
position, and F™?* is the maximum force that a muscle can
exert.

C. Myoprocessor Parameters Optimization—Genetic
Algorithms (GAs)

As previously defined, each muscle model has several internal
parameters. To insure an optimal performance, these internal
parameters have to be adjusted for each user. Two main types of
variability can be identified: 1) variability due to the placement
of electrodes; 2) variability due to anatomical and physiological
differences between subjects.

The two sources of variability can be addressed by two dif-
ferent parameter optimization strategies. Type II variability (In-
tersubject) requires a global parameter optimization to be run
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only once (or each time a major change takes place), in order to
find the optimal set of parameters. Type I variability can be ad-
dressed with a faster optimization targeting only parameters of
the SEMG to neural activation module. This latter optimization
is used each time the user wears the exoskeleton. In this section
a strategy for the global parameter optimization (type II) using
a GA is described.

GAs are commonly used as optimization techniques because
they can deal with very large search spaces, minimizing the
risk of finding solutions that are only locally optimal [33], [34].
Their use for the optimization of Hill based muscle models has
also been recently suggested [13].

GAs find an optimal solution by using simulated evolution
processes. The optimal parameters search starts from an ini-
tial random population of “chromosomes,” each of them rep-
resenting a set of parameters of the various muscle models, and,
thus, a potential solution. The “survival of the fittest” criterion
and “genetic operators” are used to reach a final optimal popu-
lation [35]. The degree of fitness of a certain set of parameters is
evaluated by a problem-specific fitness function. In the present
work the best “chromosome” is the one which minimizes the
rms error between the torque estimated by the model and the
torque estimated by a reference method. The GA implementa-
tion follows a stepwise process.

1) Encode the parameters of the problem into a chromosome.
Choose an alphabet (such as binary or real numbers) for
the genes and choose selection, mutation, crossover, and
fitness functions (genetic operators).

2) Create the initial population of chromosomes and esti-
mate, using a fitness function, the fitness degree of every
chromosome.

3) Create an intermediate population, selecting elements from
the previous population, using the selection function (a
function that privileges individuals with a higher degree of
fitness).

4) Create new individuals using crossover and mutation and
insert them into the population which becomes the new
population (“children” substitute “parents” so that popu-
lation size is stable).

5) If there is an individual whose fitness function is above a
desired threshold or a maximum number of generations is
reached, terminate the evolution process, otherwise start
again from Step 3.

Many parameters in the model can be optimized. Analytical
estimation of the sensitivity of the model for the different param-
eters is not trivial, since the equations are nonlinear and, thus,
sensitivity changes with the working point. For isometric condi-
tions, some indications on the more significant parameters and
on the optimization strategy to be used (muscle specific or only
agonist/antagonist specific) are available [17], [36]. Given the
complexity of the problem, no definitive guidance is available
for the other loading conditions.

In this study, the chromosome has been designed with 121
“genes” (see Table I). Eleven parameters were selected for each
of the 11 myoprocessors out of the twelve modeled (the mod-
eling approach used for Brachialis does not require optimization
of parameters).

The following parameters were optimized in this study.
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TABLE I
GENES INSERTED IN THE CHROMOSOME FOR EACH MUSCLE. EACH GENE
CORRESPONDS TO A PARAMETER OF THE MYOPROCESSOR EXCEPT FOR GENES
MARKED WITH AN “*” WHERE THE GENE IS A SCALING FACTOR, LE.,
THE OPTIMIZED PARAMETER IS OBTAINED BY MULTIPLYING
THE GENE AND THE NOMINAL PARAMETER

Gene Boundaries
A [0.05, 1]

* Log, [0.8, 1.2]
* L, [0.8, 1.2]
* FCBma. | [0.5, 1.5]
el [0.25, 0.75]
*SpE [0.8, 1.2]
* Ssk [0.8, 1.2]
Oy [-5, 5] mm
Gy [0, 1.2]
bm [-0.1, 0.1]
o [0.09, 0.8]

* SEMG to neural activation model: nonlinear scaling factor
(A)—the boundaries used for this value allowed the scaling
to range from linearity to strong nonlinearity; there is no
clear physiological range for this parameter;

* kinematic model: moment arm gain factor (G ) and offset
(Op); these two values define the linear transformation of
the moment arm in (22), where b is the moment arm and b
is the average moment arm—the boundaries used for these
two parameters allowed the optimization of the moment
arms but they do not have physiological meaning

b= (b—0)Gy+b+ Oy (22)

* Hill model: optimal fiber length (Lcgo), maximum force

(Fc E max), and tendon slack length (L, )—the boundaries

chosen for these parameters allowed their variation in the

range +20%, +50%, and +£20%, respectively, with respect

to the nominal values (see Table II); the values presented

in the literature for these parameters show a significant dis-

persion due to the different measurement conditions (mea-

surements on cadaver, cryo-sections, male, female, old,

young, etc.); the boundaries chosen allow for optimization

still maintaining physiological significance; moreover, in

the optimization routine, a constraint has been introduced

in order to guarantee that Ly,x > Lcg, + Lr,; fraction

of fast fibers (a)—this parameter has been constrained to

vary between 25% and 75%; shape parameters (Spg, Ssg)

of the passive elements—these parameters can be adjusted

in a 20% interval around the nominal values of Table II;

anyway it is difficult to determine a physiological range

for them; ¢,,, and ¢, parameters of the force-length equa-

tion—these values are allowed to vary between the inter-

vals shown in Table I, so that the qualitative shape of the
force-length function is maintained.

Some of the nominal values of parameters for each myopro-

cessor are listed in Table II. The nominal values not listed in the

tablesare: A = 1,0, = 0,Gy = 1, ¢, = 0.05, and ¢, = 0.19.
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TABLE II
NOMINAL PARAMETERS FOR THE MYOPROCESSOR MODEL
BASED ON [24] AND [30]

Muscle| Lmaz | Lo, | L. FeEma. | @ Spe| Ssk
[em] | [em] | [em] | [N] [%o]

BSH 40.46 | 13.07 | 22.98 | 461.76 56 |9 2.8
BLH 4194 | 1536 | 22.93 | 39291 56 | 9 2.8
TLgH | 40.29 | 15.24 | 19.05 | 1000 66 | 10 2.3
TMH 18.95 | 4.90 12.19 | 1000 66 | 10 2.3
TLtH | 2822 | 6.17 19.64 | 1000 66 | 10 2.3
BRD 3535 | 27.03 | 6.04 | 101.58 7519 2.6
BRA 13.01 | 10.28 | 1.75 | 853.90 38 |9 3
FCR 3478 | 5.10 27.08 | 368.41 58 | 6 3
FCU 33.62 | 3.98 27.14 | 560.7 57 | 6 3
ECRB | 34.53 | 5.59 26.87 | 553.21 44 | 8 3
ECRL | 3833 | 8.96 26.80 | 2.6842 | 50 | 8 3
ECU 33.68 | 3.56 28.18 | 256.27 45 | 8 3

D. Experimental Protocol and Preliminary Data Processing

The experimental protocol designed to test the myoproces-
sors included the recording of movements for two joints of the
upper limb: elbow and wrist.

The flexion/extension movements of the elbow joint (0-145°
range) was performed using the “Arm Curl” VR2 Cybex exer-
cise machine (Cybex International, Inc) (Fig. 5). Each move-
ment was repeated three times with three different loads (4.54,
6.80, and 9.07 Kg) moving at three angular velocities (average
values of 1.8 +0.26, 1.4 £ 0.13, 0.7 £ 0.04 rad /s, that are fur-
ther referred to as fast, medium and slow). The joint angle was
measured by a potentiometer (Midori America Corp., Fullerton,
CA) located on the Cybex machine. sSEMG signals were col-
lected using Silver-Silver Chloride surface electrodes (In Vivo
Metric, Healdsburg, CA) from 28 individual right upper-limb,
chest, and back muscles (Fig. 5). Electrodes were placed by fol-
lowing the recommendations in [37], [38] in order to achieve
optimal signal detection. Maximal voluntary muscle activations
were recorded during isometric contractions. The SEMG signals
were amplified by using a custom system with eight Teledyne
A0401 modules (Teledyne Inc., CA). Each EMG channel had a
gain of 1 K, common mode rejection ratio 100 dB, a first-order
high-pass filter with a cutoff frequency 0.5 Hz and a sixth-order
anti-aliasing low-pass filter with a cutoff frequency of 500 Hz.
The time constant introduced by these filters can be neglected,
compared to the time constant introduced by software filter used
in the Neural activation module that is of the order of 80 ms. The
data were sampled at 1 KHz by a 14-bit analog-to-digital card
(United Electronic Industries, Canton, MA) using the Matlab
Real-time workshop toolbox (Mathworks Inc., Natick, MA).

The muscular torques at each joint have been estimated by
using a model of the Cybex machine and the human arm dy-
namics [39] described by (23)—(25), where R is the radius of
the pulley of the Cybex machine, m is the mass, 6 is the angular
position (# = 0 corresponds to the elbow fully extended), I is
the lumped inertia of the Cybex machine and the human arm.
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(b)

Fig. 5. (a) Surface electrodes attached to the subject measuring EMG signals
from 28 muscles simultaneously; (b) flexing and extending the elbow joint under
different loads using CYBEX exercise machine while recording the joint posi-
tion and muscle EMG signals.

Ty is the torque computed for flexion movements and 7., is the
torque for extension movements

=R [mg+m(9R+2Ré+éR)} v (23)

Tex = — R [mg -m (9}'% +2R0 + éR)} I (24)
R =R(0). (25)

This mechanical modeling of the Cybex machine provides a
reference joint torque to which the myoprocessor output is com-
pared during parameter optimization and testing. There are pos-
sible sources of uncertainty (such as approximation of geom-
etry, inertia, etc.) that cause an estimated uncertainty for joint
torques in the range of 3 to 4 Nm (about 6%-8% of the maximal
peak-to-peak measured torque).

The wrist exercises involved the use of free weights (four dif-
ferent loads: 0.45, 1.04, 1.41, and 2.06). Each movement was
repeated three times. Wrist flexion movements were performed
with the elbow flexed at 110 deg and the forearm fully supinated.
Wrist extension movements were performed in the same condi-
tion but with the forearm fully pronated. The wrist position was
measured by an electrogoniometer fixed to the forearm and the
hand. The torques were estimated by using (26)—(27) where m is
the free weight plus the hand weight, R is the distance from the
joint axis to the center of mass of the hand and weight system,
6 is the joint angle (positive values for flexion and negative for
extension), and I is the inertia

751 = Rmg cos(0) + I6
Tew = — Rmg cos() + I0.

(26)
27

An error analysis similar to the one performed for the elbow
joint indicated that the uncertainty in the wrist reference torques
is in the range of 0.05 to 0.1 Nm (about 3.5%—7% of the maximal
peak-to-peak measured torque).

E. Performance Metrics

The model predictions were assessed with respect to the refer-
ence joint torques by using three criteria: maximum error (28),
root mean squared error (29), and correlation coefficient (30).
The root mean squared error was also used as a fitness function
for the GA
(28)

Emax = m?'X |T[7’] - 7:[7’”
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Fig. 6. Typical datasets recorded as part of the experimental protocol for var-
ious loading conditions during flexion/extension of the elbow joint.

1 N
Epms = ~ ;(T[i] — 7[i])2 (29)
C‘r?
p= (30)
007

where T represents the reference torque, 7 is the torque com-
puted by the model, and NV is the number of sample points,
C.= is the covariance coefficient, o, and oz are the standard
deviations.

An additional parameter used to asses the performance of the
myoprocessors is the percentage of time (7,) the absolute error
is below a specific threshold value (namely, s = 4, 6 N for the
elbow and s = 0.4,0.6 Nm for the wrist)

Mk
_

k=1

s = (V[ |r[k]] < s). 31

III. RESULTS

During the first phase of the experimental recordings, flexion
and extension movements of the elbow were performed; in a
second phase, recordings were done during flexion and exten-
sion movements of the wrist. An example of kinematics (joint
angles), dynamics [joint torques, estimated by using (23)—(27)],
and of the neural activation levels of some muscles as a function
of time are depicted in Fig. 6.

The angular joint positions and the neural activation levels of
the muscles were used as inputs to the myoprocessors. Some
of the joint torques have been used as a reference to optimize
the model parameters; the remaining torque estimations have
been used to assess the myoprocessor predictions. More specif-
ically, the myoprocessor parameters of the FCU, FCR, ECRB,
ECRL, and ECU muscles have been optimized by using repeti-
tion #2, 1.04-Kg load, flexion, and repetition #2, 1.04-Kg load,
extension movements (thus, 2 recordings have been used during
optimization and 22 during testing). The myoprocessor param-
eters of the BRD, BLH, BSH, TmH, TLgH, and TLtH, muscles
have been optimized on repetition #2, medium velocity, medium
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Fig. 7. Representation of myoprocessors parameters after optimization (elbow
movements). Values are mapped in the range 0—1; see Table I for actual min and
max values.

weight, flexion movement, and repetition #2, medium velocity,
medium weight, extension movements (thus, 2 recordings have
been used during optimization and 52 during testing).

As an example, the chromosome obtained after optimization
on the elbow movements is shown in Fig. 7.

The performances of the myoprocessors during the test phase
are summarized in Table III. The values presented refer to the
metrics defined in (28)—(31). The results are averaged over the
entire test dataset (test data have not been used for the model
optimization).

Some typical joint torques predicted by the myoprocessors
after parameter optimization are plotted in Fig. 8. More in de-
tail, Fig. 8(a)-top represents a flexion movement of the elbow
(repetition #3, fast movement, 6.8 Kg); Fig. 8(a)-bottom repre-
sents an extension movement (repetition #3, medium velocity,
6.8 Kg). Each plot includes three torques: 1) the myoprocessor
predictions with nominal model parameters (nonoptimized); 2)
the reference torque as computed by using (23)—(27); 3) the my-
oprocessor predictions with optimized parameters. Examples
for flexion movement and an extension movement of the wrist
are presented in Fig. 8(b). Top plot is a flexion movement—rep-
etition #3, 1.04 Kg; bottom plot is an extension movement—rep-
etition #3, 1.04 Kg. Also in this case each plot includes three
torques: 1) the myoprocessor predictions with nominal model
parameters (nonoptimized); 2) the reference torque as computed
by using (23)—(27); 3) the myoprocessor predictions with opti-
mized parameters.

One important characteristic of the myoprocessors described
in the present work is their ability to work in real-time. Given
a specific computational power, there is a delicate balance be-
tween the complexity and number of the myoprocessors and
the capability of the hardware system to perform in real-time.
The task execution time (TET) of the myoprocessors system as
a function of the number of muscles modeled is presented in
Fig. 9. The TET was estimated simulating a flexion movement
of the elbow, with angular position described by a saw-tooth
spanning the 0°—145° range of motion; other joints are held in
a neutral position; neural input was held constant at an activa-
tion level of 0.5 (50% of the maximal voluntary activation level).
The saw-tooth had a period of 1 second. Max, min, and averages
values are measured in 30-s time slots. The hardware platform
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AVERAGED RESULTS FOR THE TEST DATA SETS (MEAN AND STANDARD DEVIATION) BEFORE AND AFTER OPTIMIZATION
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TABLE III

FOR ELBOW FLEXION AND EXTENSION (EF, EE) AND WRIST FLEXION AND EXTENSION (WF, WE)

| | Evms Nm] | Emae INm] | p n 6
ef 8122 153 + 3.9 0.8 + 0.1 02+ 02 0.4+ 0.2
o ee 9.1+£23 159 + 4.9 0.84 + 0.10 0.24 + 0.16 0.40 £+ 0.18
Non optimized
wf 0.40 £ 0.1 0.85 £ 0.15 0.86 £ 0.03 0.64 £+ 0.28 0.85 £ 0.16
we 1.53 £ 0.52 2.85 £ 092 0.70 + 0.05 0.16 £+ 0.10 024 £+ 0.13
ef 42 £ 097 11.0 + 3.0 0.87 + 0.05 0.67 £ 0.11 0.85 £+ 0.09
. ee 34413 9.6 £+ 4.1 0.89 £ 0.08 0.79 £ 0.15 091 £ 0.09
Optimized
wf 0.26 £ 0.17 0.64 £+ 0.24 0.80 £ 0.05 0.83 £ 0.26 092 £+ 0.14
we 0.39 + 0.16 0.75 £ 0.25 0.42 £ 046 0.63 £+ 0.28 0.82 £ 0.21
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Fig. 8. Example of torques at the elbow during flexion (top — a) and extension
(bottom — a). Torques at the wrist during flexion (top —b) and extension (bottom
-b).

was a PC104 with an Intel Pentium4@2.4 GHz processor and
512 Mb RAM. Nonlinearity of the TET as a function of muscle
number can be observed, as a results of the different complexity
of myoprocessors modeling different muscle.

IV. DISCUSSION

The main objective of this paper is to present the develop-
ment, optimization, and integration of real-time myoprocessors
as a HMI for an upper limb powered exoskeleton. As a key el-
ement of a neural controlled exoskeleton, the myoprocessors

6 8 10 12
number of muscles in the model

Fig. 9. Task Execution Time as a function of the number of myoprocessors
(i.e., muscles that have been modelled).

should be robust, providing accurate joint torque predictions
over a broad range of loading and motion conditions.

Both black-box and white-box approaches were previously
used for muscle modeling [6], [13], [15]. This study adopted
an approach in which most of the internal parameters of the
myoprocessor are directly related to physiological muscle
parameters. More specifically, the core of the myoprocessor is
a Hill-based muscle model together with a three-dimensional
anatomical representation of the upper limb based on [23]-[25]
and a nonlinear SEMG-to-Activation signal processor. At the
same time, GAs are used to optimize the myoprocessor’s
internal parameters, for each specific subject wearing the
exoskeleton, without the need for a priori exact knowledge
of each muscle parameter. The optimization is constrained
(as described in Section II-C) in order to prevent parameters
from exceeding physiological ranges. In the authors’ opinion,
the resulting model has more characteristics in common with
white-box models than with black-box models (e.g., neural
networks), even if the adherence to physiology of the model
can be improved at several levels: some elements, such as
muscle pennation, can be included in the model structure; the
optimization boundaries for each parameter can be different
for each muscle in order to exploit all the knowledge available
for the different muscles; the Hill model and the kinematic
(skeletal) model can be optimized in an intertwined way (so
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that, for example, a change in the origin or insertion point of a
muscle, will be reflected in a corresponding change of tendon
slack length and optimal fiber length).

As detailed in Section III, the parameter optimization has
been carried out by using only a small dataset (4 recordings
out of a total of 78 recordings). As indicated by the results,
the ability of the myoprocessors to accurately predict the joint
moment increased significantly with an optimized set of in-
ternal parameters. While optimization on a large set of data can
yield better results during testing, it is also evident that, in gen-
eral, it is not feasible to optimize the model on all the possible
upper limb movements. Therefore, one of the goals of the cur-
rent study was to verify that even with a relatively small data-
base used for the optimization process, acceptable overall per-
formances were achievable. This kind of robust performance is
the main advantage of physiologically-based models over the
black-box approach. In fact, if the physiologically based model
captures the important features of the biological system, even
using a small optimization database will yield a model that will
then perform reasonably well in a broad range of conditions,
although a specifically optimized model could outperform it in
particular situations.

The myoprocessors’ performance has been studied experi-
mentally. For elbow movements, the results (see Table III) indi-
cate that the integration of myoprocessors into a single neuro-
muscular model of the arm is capable of predicting the joint’s
torque with an average E\,s of about 8.6 Nm when parame-
ters are not optimized. After optimization this prediction is im-
proved to an average s of 3.8 Nm. Moreover, after optimiza-
tion, the percentage of time the absolute error stays below 4 Nm
(n4) is increased from an average 22% to an average 73%. Also
for the wrist movements the E.,,5 is more than halved after op-
timization and 74 shows an increase from 40% to 73%.

The predictions for the elbow joint movements showed better
correlation (p) with the reference torques compared to the wrist
joint. In particular wrist extension movements presented on av-
erage a lower p after the optimization, even when all the other
error measures consistently improved. An explanation for this
phenomenon can be provided by considering that finger flexors
and extensors significantly contribute to the wrist flexion-exten-
sion torque [40], [41] but these muscles were not included in the
model. In the case of the elbow joint, all the relevant muscles for
the flexion-extension movement were included, which may ex-
plain the better p.

Given the synergistic behavior of the physiological muscles
and the fact that some muscle were not accessible using nonin-
vasive technique, the “maximum endurance of musculoskeletal
function” criterion [31] has been used for predicting the con-
tribution of the BRA muscle. One may note that this technique
could be extended beyond its current use and could allow fur-
ther reduction in the number of SEMG electrodes required for a
satisfactory torque prediction.

In this study, particular attention has been devoted to the real
time performances of the myoprocessors, so they can be inte-
grated into the control system of the upper limb exoskeleton
under development. Although all the myoprocessors share the
same basic structure, they model muscles that are attached to the
skeleton in different ways. Modeling more complicated cases in
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which the muscle wraps around several anatomical structures
(multiple obstacles) requires more computational power than
simpler conditions (single obstacle). By accounting for these
constraints, myoprocessor complexity has been shaped to match
the state of the art computational power. The resulting design al-
lowed the 12 myoprocessors implemented to run simultaneously
in real time with a maximum TET below 400 us (Fig. 9). It is
anticipated that the system in its final configuration will include
about 20 myoprocessors modeling muscles of wrist, elbow, and
shoulder joints and it will be able to meet the real-time require-
ment of the exoskeleton main control loop (computational in-
terval of 1000 us).

In conclusion the myoprocessor described in the paper
provides a good balance between complexity and performance.
Along with GAs for the optimization of the internal parameters
for a specific user, an ensemble of myoprocessors can be used to
build an HMI that is sufficiently simple to operate in real-time
conditions. Moreover, based on the results previously obtained
by one of the authors [5], [6] with a simpler myoprocessor, this
new HMI seems to offer a level of performance adequate for
its integration into the control loop of an upper limb, 7 DOF,
powered exoskeleton. The integration of the HMI into the
exoskeleton system represents the necessary and preliminary
step towards the evaluation of a HMI of this type for future use
in conjunction with rehabilitation devices.
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