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ABSTRACT Objective: Evaluation of the laparoscopic surgical skills of surgical residents is usually
a subjective process carried out in the operating room by senior surgeons. The two hypotheses of the
current study were: (1) haptic information and tool/tissue interactions (types and transitions) per-
formed in laparoscopic surgery are skill-dependent, and (2) statistical models (Hidden Markov
Models—HMMs) incorporating these data are capable of objectively evaluating laparoscopic surgical
skills.

Materials and Methods: Eight subjects (six residents—two first-year (R1), two third-year
(R3), and two fifth-year (R5)—and two expert laparoscopic surgeons) performed laparoscopic cho-
lecystectomy on pigs using an instrumented grasper equipped with force/torque (F/T) sensors at the
hand/tool interface, and F/T data was synchronized with video of the operative maneuvers. Fourteen
types of tool/tissue (T/T) interactions, each associated with unique F/T signatures, were defined
from frame-by-frame video analysis. HMMs for each subject and step of the operation were com-
pared to evaluate the statistical distance between expert surgeons and residents with different skill
levels.

Results: The statistical distances between HMMs representing expert surgeons and resi-
dents were significantly different (� < 0.05). Major differences occurred in: (1) F/T magnitudes; (2)
type of T/T interactions and transitions between them; and (3) time intervals for each T/T inter-
action and overall completion time. The greatest difference in performance was between R1 (junior
trainee) and R3 (midlevel trainee). Smaller changes were seen as expertise increased beyond the R3 level.

Conclusion: HMMs incorporating haptic and visual information provide an objective tool for
evaluating surgical skills. Objective evidence for a “learning curve” suggests that surgical residents
acquire a major portion of their laparoscopic skill between year 1 and year 3 of training. Comp Aid
Surg 7:49–61 (2002). ©2002 Wiley-Liss, Inc.
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INTRODUCTION
The technical performance of surgery in general,
and minimally invasive surgery (MIS) in particular,
requires the application of forces and torques (F/T)
on and between tissues to achieve specific goals.
Parameters that determine the magnitude of the F/T
used include the nature of the tissue being manip-
ulated, the goal of the manipulation, the type of
instrument being used, and the skill of the sur-
geons. One of the more difficult tasks in MIS
education is to teach the optimal application of
instrument F/T necessary to conduct an operation.

Although the acquisition of laparoscopic
technical skill and the assessment of performance
are paramount for surgical resident training, the
current method of choice for evaluating surgical
skill is a subjective evaluation of performance in
the operating room or review of a videotape of the
surgery. In the last 5 years, use of surgical simula-
tion for training and evaluating surgical skills has
become a subject of ongoing active research.

Simulators for evaluating surgical skills and
testing of dexterity in MIS can be roughly divided
into three categories: (1) training boxes including
physical objects or latex organ packs; (2) virtual
reality (VR) simulators including graphical repre-
sentation of virtual objects or virtual anatomy; and
(3) VR simulators with a force-feedback device
(haptic display) for simulating forces and torques
generated as a result of interaction between the
virtual objects or organs and the surgical tools.

One of the most used surgical simulators is
the laparoscopic trainer box covered by an opaque
membrane through which different trocars are
placed at different working angles. The trainee is
required to complete several structured laparo-
scopic tasks that are scored for both precision and
speed of performance. Several studies1–5 have
found the laparoscopic training box to be a valuable
teaching tool for training and evaluation of basic
laparoscopic skills. Using the simulator as a basis
for evaluation, performance improved over the
course of residency training and correlated with
postgraduate year.

A VR simulator for laparoscopic surgery
models the movements needed to perform MIS and
can generate a score for various aspects of psy-
chomotor skill. A typical example of such a simu-
lator is the MIST-VR system. The MIST-VR uses
two laparoscopic instruments mounted on a frame
with position sensors that provide instrument
movement data that is translated into interactive
real-time graphics on a PC. Targets appear ran-

domly within the operating volume according to
the skill task, and can be grasped and manipulated
with the instruments. Accuracy and errors during
performance of the tasks and completion time are
logged. Studies performed using the MIST-VR
simulator6,7 concluded that it can objectively assess
a number of desirable qualities in laparoscopic sur-
gery, and can distinguish between experienced and
novice surgeons.

The use of VR models for teaching complex
surgical skills while simulating realistic human/tool
and tool/tissue interaction has been a long-term
goal of numerous investigators.8–12 Although hap-
tic devices that provide force feedback to the sur-
gical tool while interacting with the virtual tissue/
organ are commercially available (for review, see
ref. 13), simulating a realistic force feedback based
on biomechanical models of soft tissue is still the
subject of active research.14 The complexity of
these biomechanical models is due to the viscoelas-
ticity and nonlinear characteristics of soft tissues.
Moreover, the F/T data measured in vivo15–18 are
crucial for designing and evaluating haptic force-
feedback telerobotic systems19–22 and VR sim-
ulators.

The methodology developed in the current
study was based on Hidden Markov Models
(HMMs). HMMs were extensively developed in
the area of speech recognition.23–26 Based on the
theory developed for speech recognition, HMMs
have become useful statistical tools in the fields of
human operator modeling in general, and robotics
in particular. HMMs were applied for studying
teleoperation,27–29 human manipulation actions,30

human skills evaluation for the purpose of transfer-
ring human skill to robots,31–33 and manufacturing
applications.34,35 Gesture recognition with HMMs
has also received increasing attention from the re-
habilitation technology community (see ref. 36 for
review). The models are also being applied to the
recognition of facial expressions from video imag-
es.37 Moreover, HMMs may well prove useful in
many other emerging applications beyond human–
computer interfaces, such as DNA and protein
modeling,38 fault diagnosis in nuclear power
plants,39 and detection of pulsar signals.40 These
applications suggest that HMMs have high poten-
tial to provide better models of the human operator
in complex interactive tasks with machines.

The goal of this study was to define the learn-
ing curve of MIS based on new quantitative knowl-
edge of the F/T applied by surgeons on their in-
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struments, and the types of tool/tissue interactions
used during the course of MIS surgery. This goal
was pursued through several steps: (1) developing
instrumented endoscopic tools that contain embed-
ded sensors capable of measuring and recording
F/T information; (2) creating a database of F/T
signals acquired during actual operating conditions
on experimental animals; (3) performing a task
decomposition in terms of tool/tissue interactions
in MIS based on video analysis; and (4) developing
statistical models (HMMs) for evaluating an objec-
tive laparoscopic skill level.

MATERIALS AND METHODS

Subjects and Protocol
Eight subjects [six general surgery residents—two
first-year residents (R1), two third-year residents
(R3), and two fifth-year residents (R5)—and two
expert laparoscopic surgeons (ES)] each completed
the experimental protocol, which consisted of two
phases. During the first phase, subjects watched a
45-min video of the surgical procedure guided by a
senior surgeon, to demonstrate the technique of the
procedure. This study was not intended to test
knowledge of the procedure, but whether the sub-
jects could technically perform it. In the second
phase, each subject performed a laparoscopic cho-
lecystectomy on a pig using a standardized seven-
step procedure. All surgical procedures and animal
care were reviewed and approved by the Animal
Care Committee of the University of Washington
and the Animal Use Review Division of the US
Army Veterinary Corps.

Data from three steps of the laparoscopic
cholecystectomy (positioning of the gallbladder,
LC-1, exposure of the cystic duct, LC-2, and dis-
section of the gallbladder, LC-3) were recorded.
During these steps, the instrumented endoscopic
tool was used with an atraumatic grasper and a
curved dissector (Fig. 1c).

Experimental System Setup
During the laparoscopic procedures, data were ac-
quired from two sources: (1) force/torque (F/T)
data measured at the human/tool interface, and (2)
visual information of the tool tip interacting with
the tissues. The two sources of information were
synchronized in time and recorded simultaneously
for off-line analysis.

In MIS, the action/reaction forces and torques
being applied at the interface between the sur-
geon’s hand and the tool (tool/hand interface) are
the sum of forces and torques at three different

interfaces: (1) tool tip/tissue of internal organ, (2)
port/abdominal wall, and (3) port/tool shaft, in ad-
dition to the gravitational forces and inertial forces
and torque. Two sets of sensors measured the F/T at
the interface between the surgeon’s hand and the
endoscopic grasper handle (Fig. 1a). The first sen-
sor was a three-axis force/torque sensor (F/T Mini,
ATI, Gamer, NC) that was mounted in the outer
tube (proximal end) of a standard reusable 10-mm
endoscopic grasper (Storz). The sensor was capable
of simultaneously measuring the three components
of force (Fx, Fy, Fz) and three components of torque
(Tx, Ty, Tz) in a Cartesian frame (Fig. 1b) with a
frequency response spectrum of 250 Hz (3 dB).
Due to the location of the F/T sensor, it measured
the forces and torques applied at the hand/tool
interface, which were equal to the sum of all the
forces and torques applied at the various interfaces
mentioned previously. However, with the current
setup, it was impossible to measure the contribution
of each separate interface. The sensor orientation
was such that the X and Z axes formed a plane
parallel to the contact surfaces of the tool’s internal
jaws, and the Y and Z axes defined a plane perpen-
dicular to that surface (Fig. 1b). A second force
sensor (FR1010, Futek, Irvine, CA) was mounted
on the endoscopic grasper handle to permit the
measurement of grasping force (Fg) applied by the
surgeon’s fingers.

The grasper’s mechanism had a structural
feature, like most of the commercially available
endoscopic graspers, enabling the surgeon to
change the orientation of the tool tip relative to the
tissue position without changing the handle orien-
tation. This was achieved by rotating the entire
shaft of the grasper relative to the handle, including
the tool tip and its rod inside the shaft, using a knob
located at the proximal end of the shaft. The im-
portance of this setup from the engineering per-
spective was that the alignment of the tool-tip ori-
gin/coordinate system relative to the F/T sensor
origin/coordinate system attached to the outer tube
remained unchanged, because the outer tube and
the tool tip are linked mechanically.

The F/T data were integrated with the lapa-
roscopic camera view of instrument activity (Fig.
2). The seven channels of F/T data (Fx, Fy, Fz, Tx,
Ty, Tz, Fg) were sampled at 30 Hz using a laptop
computer with a PCMCIA 12-bit A/D card (DAQ-
Card 1200, National Instruments, Austin, TX) (Fig
2a). Preliminary measurements showed that 99% of
the force/torque signals’ energy (PSD) was in-
cluded in the 0–10-Hz frequency bandwidth. A
LabView (National Instruments) application was

Rosen et al.: Task Decomposition of Laparoscopic Surgery 51



developed with a graphical user interface for ac-
quiring and visualizing the F/T data in real time
during an actual operation. The video signal from
the endoscopic camera that monitored the grasper’s
tip interacting with the internal organs or tissues
was integrated with the F/T data using a video
mixer in a picture-in-picture mode (PIP), allowing
correlation of F/T data with instrument activ-
ity. The integrated interface was recorded during
the operation for off-line frame-by-frame analysis
(Fig. 2b).

Data Analysis
Two types of analysis were performed on the raw
data: (1) video analysis, encoding the tool-tip/tissue
interaction into states; and (2) Hidden Markov
Modeling, for modeling and comparing the perfor-
mance of surgeons at different levels of their train-
ing (i.e., R1, R3, R5, or ES).

Video Analysis
The video analysis was performed by two expert
surgeons encoding the video of each step of the

surgical procedure frame by frame (NTSC, 30
frames per second). The encoding process used a
codebook of 14 different discrete tool maneuvers in
which the endoscopic tool was interacting with the
tissue (Table 2). Each identified surgical tool/tissue
interaction had a unique F/T pattern. For example,
in the laparoscopic cholecystectomy, isolation of
the cystic duct and artery (LC-2) involves perform-
ing repeated pushing and spreading (PS-SP—see
Table 1) maneuvers, which in turn require pushing
forces, mainly along the Z axis (Fz), and spreading
forces (Fg) on the handle.

These 14 states can be grouped into three
broader types based on the number of movements
performed simultaneously. Fundamental maneu-
vers were defined as type I, and included the idle
state (moving the tool in space without touching
any structures within the insufflated abdomen). The
forces and torques used in the idle state mainly
represented the interaction of the port with the
abdominal wall, in addition to gravitational and
inertial forces. In the grasping and spreading states,
compression and tension were applied to the tissue

Fig. 1. The instrumented endoscopic grasper. (a) The grasper with the three-axis force/torque sensor implemented on the
outer tube and a force sensor located on the instrument handle. (b) The tool tip and XYZ frame aligned with the three-axis
force/torque sensor. (c) Tool tips used in the surgical procedure: (from left to right) atraumatic grasper, Babcock grasper, and
curved dissector. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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Fig. 2. Experimental setup. (a) Block diagram of the experimental setup integrating the force/torque data and the view from the
endoscopic camera. (b) Real-time user interface of force/torque information synchronized with the endoscopic view of the procedure
using picture-in-picture mode. (Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com)
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by closing/opening the grasper handle. In the push-
ing state, compression was applied to the tissue by
moving the tool along the Z axis. For sweeping, the
tool was placed in one position while rotating
around the X and Y axes (port frame). Type II and
type III states were defined as combinations of two
or three states defined by type I (Table 2).

Hidden Markov Model (HMM)
During the second step of the data analysis, Hidden
Markov Models (HMMs) and the methodology for
evaluating surgical skill in laparoscopic surgery
were developed. HMMs were selected for model-
ing the surgical procedure because their generic
architecture fitted very well with the nature of lapa-
roscopic surgical task assessment. Moreover, the
HMM mathematical formulation provided a very
compact form for statistically summarizing rela-
tively complex tasks, such as individual steps of a
laparoscopic surgery procedure.

The rationale for developing a methodology
for objective evaluation of surgical skills based on
HMMs and F/T measurements at the human/tool
interface came from our previous study41 showing
that F/T applied at that interface varied according
to skill levels and the tasks being performed. High
F/T magnitudes defined by the absolute value of the
force-torque vectors

�F� � � �Fx
2 � Fy

2 � Fz
2 (A)

�T� � � �Tx
2 � Ty

2 � Tz
2 (B)

were applied by novice surgeons (NS) compared to
expert surgeons (ES), while performing tissue ma-

nipulation. This might be a result of insufficient
dexterity on the part of the NS that might have
potential for tissue damage. However, low F/T
magnitudes were applied by the NS, compared to
the ES, during tissue dissection, which might also
indicate excessive caution in an effort to avoid
irreversible tissue damage. As a result, the NS had
to perform more repetitions of the dissection move-
ments to tear the tissue, substantially decreasing the
efficiency of the MIS procedure.

Each laparoscopic surgical step could be de-
composed into a series of finite states defined by
the way the surgeon interacts with the tissues (Ta-
ble 1). The surgeon could move from one state to
the other or remain in the same state for a certain
amount of time. Once the surgeon was interacting
with the tissue in a specific state, a certain F/T
signature was applied by the surgeon through the
surgical tool to the tissue. These F/T signatures,
each defined as an observation, were composed of
seven component vectors of data (Fx, Fy, Fz, Tx, Ty,
Tz, Fg). The F/Ts were continuous streams of data
distributed normally, each state being defined by
seven normal distributions functions chartered by a
mean and a standard deviation [Ni(�, �) i � 1
. . .7)]. Combining the seven-element vector into a
joint multivariable distribution function f(O) was
done using Equation (1):

f�O� �
1

��2��N���1/ 2e
��O����¥�1�O���/ 2 (1)

where O is the F/T observation vector, � is the

Table 1. Definition of Tool/Tissue Interactions and the Corresponding Directions of Forces and
Torques Applied During MIS

Type State Name
State
acronym

Force/Torque
Fx Fy Fz Tx Ty Tz Fg

I Idle ID * * * * * * *
Grasping GR �
Spreading SP �
Pushing PS �
Sweeping SW � � � �

II Grasping–Pulling GR-PL � �
Grasping–Pushing GR-PS � �
Grasping–Sweeping GR-SW � � � � �
Pushing–Spreading PS-SP � �
Pushing–Sweeping PS-SW � � � � �
Sweeping–Spreading SW-SP � � � � �

III Grasping–Pulling–Sweeping GR-PL-SW � � � � � �
Grasping–Pushing–Sweeping GR-PS-SW � � � � � �
Pushing–Sweeping–Spreading PS-SW-SP � � � � � �
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mean vector, � is the covariance matrix, and N is
the observation vector size.

The state diagram (Fig. 3) describes the de-
composed process of a typical laparoscopic surgi-
cal procedure step. Circles in this diagram repre-
sented states, and lines represented transitions
between states. The F/T data observation signals
were not included in Figure 3.

The HMM is termed “hidden” due to the fact
that tool/tissue interactions—the states—are hid-
den, and the only observed signals are the F/T data.
Although the state could be decomposed manually
using a frame-by-frame video analysis, this is time
consuming and unnecessary, because the data can
also be evaluated mathematically by the HMM
once its parameters are optimized.

From the mathematical perspective, four ele-
ments should be defined in order to specify an
HMM (�):23 (1) the number of states in the model
N; (2) the state transition probability distribution
matrix A; (3) the observation symbol probability
distribution matrix B; and (4) the initial state dis-
tribution vector �. The HMM is then defined by the
compact notation (2)

� � � A, B, �� (2)

Given the HMM architecture, there are three basic
problems of interest:23

1. The evaluation problem: computing the
probability (P) of the observation sequence,
given the model (�) and the observation
sequence (O).

Given: �� � �A,B,��
O � o1,o1, . . . ,oT

� (3)

Compute: 	P�O � ��.

2. Uncovering the hidden states: computing
the corresponding hidden state sequence
(Q), given the observation sequence (O) and
the model (l).

Given: �� � �A,B,��
O � o1,o2, . . . ,oT

� (4)

Compute: 	Q � q1, q2, . . . , qT

3. The training problem: adjusting the model
parameters (A, B, �) to maximize the prob-
ability (P) of the observation sequence (O).

Given: 	� � �A, B, ��

Adjust: 	A, B, �

Maximize: {P�O � �� (5)

Using the given HMM architecture (Fig. 3),
HMMs were developed for each surgeon perform-
ing each step of the surgical procedure (eight HMM
models, one for each surgeon performing one sur-
gical procedure step). The skill level of each sub-
ject (R1, R3, R5) was evaluated based on the sta-
tistical distance between his/her HMMs and those
of the the expert surgeons (ES). Given two HMMs
�1 and �2, the statistical distances between them,
D(�1, �2) and D(�2, �1), were defined by Equation
(6):

D��1,�2� �
1

TO2


log P�O2��1� � log P�O2��2��

(6)

D��2,�1� �
1

TO1


log P�O1��1� � log P�O1��2��

D(�1, �2) is a measure of how well model �1

matches observations generated by model �2 rela-
tive to how well model �2 matches observations
generated by itself, whereas TO1

and TO2
stand for

the time duration of the observation vectors O1 and
O2, respectively. Because D(�1, �2) and D(�2, �1)

Fig. 3. HMM architecture defined by a 14 fully connect-
ed-state diagram (arrowheads of all lines connecting two
states were omitted to simplify the drawing).
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are nonsymmetrical, the natural expression of the
symmetrical statistical distance version is defined
by Equation (7):

Ds��1,�2� �
D��1,�2� � D��2,�1�

2
(7)

To scale the statistical distance between each of the
two subjects defined by the index j � 1, 2, and
associated with three group levels defined by the
index i � 1, 3, 5 (R1, R3, R5) and the two subjects
of the expert surgeons defined by the index k � 1,
2 [ES(1), ES(2)], for each surgical procedure, the
statistical distance between a certain subject j in
group i and a certain subject k in the expert group
[DS(�Ri, �ESj)] was normalized with respect to the
distance between the two expert subjects [DS(�ES1,
�ES2)] [see Equation (8)].

For i � 1, 3, 5, j � 1, 2, and k � 1, 2,

D� S��Ri� j�,�ES�k�� �
D��Ri� j�, �ES�k��

DS��ES1,�ES2�
(8)

The practical meaning of the normalized sta-
tistical distance (D� s��Ri� j�, �ES�k��) is to define quan-
titatively how far each subject is from being an
expert surgeon. Because each group included two
subjects, calculating all the combinations of the
statistical distances between subjects of the ES
group and subjects of any of the Ri group provides
four values: n � 4 (D� S(�Ri(1), �ES(1)), D� S(�Ri(1),
�ES(2)), D� S(�Ri(2), �ES(1)), D� S(�Ri(2), �ES(2))). The
average and the standard deviation of these four
values were calculated to provide a single statistical
measurement between two skill-level groups. The
average of the normalized statistical distance be-
tween two groups was defined by Equation (9):

For i � 1, 3, 5, and n � 4,

D� S��Ri,�ES� �

�
j�1,k�1

j�2,k�2

D� S��Ri� j�, �ES�k��

n
(9)

RESULTS
Typical raw data of forces and torques were plotted
in a 3D space, showing the loads developed at the
sensor location while the gallbladder fossae were
dissected in 482 s by an expert surgeon during
laparoscopic cholecystectomy (Fig. 4). The forces
and torques measured by the F/T ATI sensor can be
described as vectors with an origin at the center of

the sensor and the coordinate system aligned with
the tool coordinate system (Fig. 1b). These vectors
are constantly changing both their magnitudes and
orientations as a result of the F/T applied by the
surgeon’s hand on the tool while interacting with
the tissues. The F/T vectors can be depicted as
arrows attached to the origin, changing their
lengths and orientations as a function of time. Fig-
ure 4 shows the trace of the tips of these vectors
(arrows) as they change during MIS. The forces
and torques are represented by a 3D plot in addition
to the three orthogonal planes. The ellipsoid defines
a region including 95% of the F/T samples.

The forces along the Z axis (in/out of the
port) were higher compared to the forces in the XY
plane. On the other hand, torques developed by
rotating the tool around the Z axis were extremely
low compared to the torques generated while rotat-
ing the tool along the X and Y axes and sweeping
the tissue or performing lateral retraction. Similar
trends in terms of the F/T magnitude ratios between
the X, Y, and Z axes were found in the data
measured in other steps of the MIS procedures.
These raw data demonstrated the complexity of the
surgical task. Deeper understanding of this task is
gained by decomposing it to its prime elements, as
demonstrated by the video analysis.

Frame-by-frame analysis of videotapes of the
surgical procedures incorporating the visual view
of the tool/tissue interaction and graphs of the F/T
at the tool/hand interface allowed definition of the
primary tool/tissue interactions in the MIS proce-
dure, and of the direction of forces and torques
associated with them (Table 1). Once these tool/
tissue interaction archetypes were defined, each
step of the surgical procedure could be manually
decomposed into a list of tool/tissue interactions.
This list was further transformed into a more com-
pact diagram (as shown in Fig. 5) defining a typical
tool/tissue transition for a surgical procedure. The
tool/tissue transition diagram (state diagram) de-
picted in Figure 5 represents the surgical step in
which the gallbladder fossa was dissected.

The idle state is the only state connected to all
the others in the state transition diagram (Fig. 5).
This state, in which no tool/tissue interaction was
performed, was mainly used by both expert and
novice surgeons to move from one operative state
to the other. However, the expert surgeons used the
idle state only as a transition state, while the nov-
ices spent significant amounts of time in this state
planning the next tool/tissue interaction. Another
major difference between surgeons from different
skill groups was related to the tool/tissue interac-
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Fig. 4. Forces (a) and torques (b) measured at the human/tool interface while dissecting the gallbladder fossa during
laparoscopic cholecystectomy. For the definitions of the X, Y, and Z directions, see Figure 1b. (Color figure can be viewed
in the online issue, which is available at www.interscience.wiley.com)



tion and tool/tissue transitions used by these two
groups. Surgeons took different paths to reach the
same goal (Fig. 5). Each group utilized states and
transitions not used by the other group. Figure 5,
for example, was essentially constructed from two
separate models representing the expert surgeon’s
model (ES) (solid line and dashed line) and the
novice surgeon’s model (R1) (solid line and dotted
line). For the purpose of evaluating surgical skills
using the HMM, the model representing different
groups must share the same architecture. This re-
quirement led to generalized model architecture, as
described previously in Figure 3.

The final and most profound analysis in-
cluded the HMM analysis. HMMs were developed
for each one of the eight subjects (R1, R3, R5, ES)
that performed the three steps of the laparoscopic
cholecystectomy (LC-1, LC-2, LC-3). The normal-
ized statistical distances [Ds—see Equation (8)]
between ES and R1, R3, and R5 (Fig. 6) were
plotted in Figure 7. The strength of this methodol-
ogy is that it brings together different aspects of the

surgical procedure into a single number that prac-
tically indicates how far the surgical performance
of the subject under study is from that of an expert
performing the same surgical task. In this way, Ds

provides an objective criterion for evaluating sur-
gical performance in MIS.

The objective laparoscopic surgical skill
learning curve showed significant differences be-
tween all skill levels (Fig. 7). The value of the
normalized statistical distance (Ds) between vari-
ous skill-level groups (R1, R3, and R5) and the ES
converged exponentially to a value of 1 as the level
of expertise increased. However, the highest gradi-
ent was between R1 and R3. This results indicate
that surgical residents acquire a major portion of
their laparoscopic surgical capabilities between the
first and third years of their residency training.
Calculating the Ds values for LC-1 (not plotted in
Fig. 7) showed no significant difference between
the groups. The practical meaning of this result is
that LC-1 does not include sufficient haptic infor-
mation to use this data for differentiating between
groups with different skill levels. On the other
hand, LC-2 and LC-3 do provide such information,
as shown in Figure 7.

Fig. 5. The state diagram based on a frame-by-frame
video analysis of the dissection of the gallbladder fossa
during laparoscopic cholecystectomy. Each circle represents
a different state characterized by a tool/tissue interaction,
and the arrows represent transitions between states. In some
cases, the surgeon stays within the same state: this is de-
picted by an arrow to the same state. (Dashed line: states
and transitions performed by ES; dotted line: states and
transitions performed by R1 representing a novice surgeon;
solid line: states and transitions performed both by R1
and ES).

Fig. 6. Schematic representation of the averaged statisti-
cal distance Ds defining the statistical similarities between
the expert group and various groups of residents associated
with different skill levels. Note that each group included
two subjects, so the statistical distance D� s between two
selected groups is the average of four distances.
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DISCUSSION
Minimally invasive surgery is a complex task that
requires a synthesis between visual and haptic in-
formation. Analyzing MIS in terms of these two
sources of information is a key step towards devel-
oping objective criteria for training surgeons and
evaluating the performance of VR simulators in-
corporating haptic technology and master/slave ro-
botic systems for telesurgery. In addition, using the
F/T information in real time during the course of
learning to provide feedback to the surgical resi-
dents may improve the learning curve, reduce soft-
tissue injury, and increase efficiency during endo-
scopic surgery.

The force/torque signatures and the HMMs
are objective criteria for evaluating skills and per-
formance in MIS. The results suggest that HMMs
of surgical procedures allow objective quantifica-
tion of skill based on the statistical distance be-
tween HMMs representing surgical residents at dif-
ferent levels of their training and HMMs
representing expert surgeons. Moreover, this meth-
odology can be used to determine if the perfor-
mance of a student matches his/her training level.

The advantage of using this method in terms of data
reduction is that it condenses enormous amounts of
multidimensional data into a single datum ex-
pressed as the normalized statistical distance from
an expert performance, or, in other words, the sta-
tistical similarity between the subject under study
and an expert performer. The strength of the meth-
odology using HMM for objective surgical skill
assessment is that it is not limited to the in vivo
condition as demonstrated in the current study. It
can be extended to other modalities, such as surgi-
cal simulators and robotic systems for telesurgery.
The proposed methodology derives its power from
decomposing the surgical task to its prime ele-
ments: tool/tissue interactions. These elements are
inherent in MIS no matter which modality is being
used.

Increasing the size of the database to include
more surgical procedures performed by more sur-
geons could extend the approach outlined in this
study. This extension is essential for full validation
of the proposed methodology. An intermediate step
toward achieving that goal is to determine how
many subjects at each level are required to show a
statistically significant difference between different
skill levels. These requirements initiated a more
extensive experimental protocol, currently under-
way, which includes five subjects in each skill
group. This new database will provide a deeper
insight into the complex multidisciplinary issue of
objective evaluation of surgical skills.

Another possible approach to further explo-
ration of the proposed methodology that avoids in
vivo experiments on laboratory animals is to use
VR simulators incorporating haptic devices. This
transformation from an in vivo surgical setup to VR
simulators will be possible only when these simu-
lators can realistically represent the surgical setup
from both the graphic and haptic perspectives. This
information, combined with other feedback data,
may form the basis of teaching techniques for op-
timizing tool usage in MIS. The novice surgeons
could practice their skills outside the operating
room using realistic VR simulators until they have
achieved the desired level of competence, and com-
pare themselves to norms established by experi-
enced surgeons.
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Fig. 7. The learning curve of surgical residence while
performing laparoscopic cholecystectomy: normalized sta-
tistical distance between surgical residents at different
stages of their training (R1, R3, R5) and expert surgeons
while performing selected steps of a laparoscopic cholecys-
tectomy (exposure of the cystic duct, LC-2, and dissection
of the gallbladder, LC-3). The vertical bars around data
points depict the standard deviations from the average sta-
tistical distances between the various groups.
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