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Abstract—The unique exoskeleton system (EXO-UL7) in
UCSC is controlled in two levels. The lower-level uses standard
PID control. Three force sensors in the upper-level send desired
trajectories to the lower-level. The impedance/admittance con-
trol can is limit both internal and contact forces. It is impossible
to design a model-based impedance/admittance control when
the model of the exoskeleton is unavailable. In this paper,
a model-free PID type admittance control is applied, whose
parameters can be designed by human impedance properties.
The inverse kinematics are required when the desired tra-

jectories generated by admittance control in task space. It is
difficult to solve the inverse kinematics problem especially when
the robots are redundant, such as exoskeleton system. In this
paper, we put both the upper-level PID admittance control and
the lower-level linear PID control in task space. Novel sufficient
conditions of semiglobal asymptotic stability are proposed via
stability analysis in task space. These conditions give an explicit
selection method of PID gains.

I. INTRODUCTION

Exoskeletons could be regarded as wearable robots, which
are worn by the human operators as orthotic devices. A
wearable robot is a metachromatic system whose joints and
links correspond to those of the human body. Application
fields include telemanipulation, man-amplification, neuro-
motor control and rehabilitation, and to assist with impaired
human [14]. The first generation prototype, known as Hardi-
man [23], was the first attempt to mechanically design a man-
amplifying exoskeleton using a hydraulically powered artic-
ulating frame worn by an operator. The second generation
of exoskeletons utilized the direct contact forces (measured
by force sensors) between the human and the machine as
the main command signals to the exoskeleton. The operator
was in full physical contact with the exoskeleton throughout
its manipulation [18]. The third generation of exoskeletons
is defined by at higher levels of the human physiologi-
cal (neurological) system hierarchy, one can overcome the
electro-chemical-mechanical delay, usually referred to as the
electromechanical delay (EMD) [10]. Throughout the last
three decades, several designs of exoskeletons for human
power amplification have been developed and evaluated, such
as Honda Exoskeleton Legs [12], Berkeley Lower Extremity
Exoskeleton [18], Hybrid Assistive Limb [13], and MIT
Exoskeleton [8].

In order to promote high performance while ensuring
safe operation, recently a research group in UCSC has
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Fig. 1. The 7 DOF upper limb exoskeleton (EXO-UL7)

successfully constructed a 7-DOF exoskeleton robot, see
Figure 1. In this paper, we use force sensors to design a
PID admittance control for it.

The adoption of a purely positional control strategy may
lead to the build up of large forces (both external and
internal). Hence, an impedance control strategy is devised
aimed at limiting both internal and contact forces. The mass-
damper-spring behavior under the action of an external force
and moment can be described by a mechanical impedance
[15]. In mechanical systems, particularly in the field of
haptics, an admittance is a dynamic mapping from force to
motion. The input of an admittance is force and the output
is velocity or position. In other words, an admittance device
would sense the input force and "admit" a certain amount of
motion. Path tracking accuracy and contact forces are two
contradiction objectives in stiffness control [34] and force
control [5]. Improvement of the position tracking accuracy
might give rise to larger contact forces. The force/position
control [26] and impedance control [15] used inverse dy-
namic such that the task space motion is globally linearized
and decoupled, and asymptotically stable. However, it is
impossible to design a model-based impedance/admittance
control when a complete dynamic model of the robot is
unknown. In this paper, we will transform the impedance/
admittance control into PID form to realize a model-free
admittance control.

Although great progress has been made in the century-long
effort to design and implement robotic exoskeletons, many
design challenges still remain. There are many factors that
continue to limit the performance of exoskeletons. An impor-
tant factor limiting today’s exoskeletons is the lack of simple
and effective exoskeletal control systems [28]. In joint space,
proportional derivative (PD) control is the simplest scheme
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that may be used to control robot manipulators. However,
asymptotic stability is not guaranteed when manipulators
dynamics contain the gravitational torques vector, friction
and the other uncertainties. Several types of compensation
were used, such as adaptive gravity compensation [32],
nonlinear PD [25], and sliding mode compensation [29].
From a control viewpoint, the position error can be removed
by introducing an integral component to the PD control. It is
PID control, although it may reduce bandwidth of the closed-
loop system. Only a few research works on the stability
of industrial PID control (linear PID). In [19], a tuning
procedure for linear PID parameters was proposed in task
space. The stability of linear PID control was proven in [30],
where asymptotic stability was not achieved.

Since impedance/admittance control is in task space, in-
verse kinematics are needed for joint space control [24]. It
is difficult to solve the inverse kinematics problem because
they provide an infinite number of joint motions for a certain
end-effector position and orientation. Conventionally, the
pseudoinverse technique is widely used for the utilization of
redundancy to avoid the joint limits of redundant robots. The
general solution by this technique is obtained as a minimum
norm solution plus the homogeneous solution, which is
referred to as the “self motion” [20]. It does not guarantee
a minimization of each individual joint, particularly when
the number of degrees of redundancy becomes less than the
number of critical axes for a given task.

In this paper, we apply a linear PID control in task space
directly. A novel semiglobal asymptotic stability proof is
proposed, which generates explicit conditions for linear PID
gains. From the best of our knowledge, stability analysis for
linear PID in task space are still not published. Finally, the
UCSC 7-DOF exoskeleton robot is controlled in joint space
by our new linear PID algorithm.

II. UCSC UPPER LIMB EXOSKELETON

The main advantage of the PID attendance control pro-
posed in this paper is that the complete dynamic model and
inverse kinematics of the exoskeleton robot is not needed.
However in this section we discuss its dynamic model
because: 1) Some properties of the exoskeleton robot are
used for the controller design; 2) Gravity compensation is
very important for a heavy wearable robot, a simplified
gravity model is needed; 3) The force control needs the
Jacobian and kinematics of the robot. The UCSC 7-DOF
exoskeleton robot is shown in Figure 1. Obviously, a standard
dynamic model for this 7-DOF robot is very complex. For
example, for the homogeneous transformation matrix  

1 =

12 · · · =

∙

1 1
0 1

¸
∈ 4×4  = 1 2 · · · 7. There

are about 28 summarized terms in 71 and 71

Fortunately, this upper limb exoskeleton is fixed on the
human arm, the behavior of the exoskeleton is the same as
the human arm, see Figure 2. It is composed of a 3-DOF
shoulder (J1-J3), a 1-DOF elbow (J4) and a 3-DOFon wrist
(J5-J7). J1-J3 are responsible for shoulder flexion-extension,
adduction and internal–external rotation, J4 create elbow
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Fig. 2. Human arm

flexion-extension, J5-J7 are responsible for wrist flexion–
extension, pronation-supination and radial–ulnar deviation.
We regard J1, J2 and J3 in Figure 1 as three spherical joints
of the human shoulder, see Figure 2. Also J5, J6 and J7 in
Figure 1 are considered as three spherical joints of the human
wrist. By using the D-H convention, we can easily obtain
the Jacobian matrices of each joint. Define −1 = 

1k

so −1 w.r.t. the base frame are given by the first three
elements in the third column of  

1 Since joint  is revolute,
the -th column of  is (all the axis of rotation are )

 = [1 · · ·]   = −1 × ( − −1)  here × is

vector cross product a×b =
⎡⎣ i j k

1 2 3
1 2 3

⎤⎦ =  sin n̄

n̄ is a unit vector perpendicular to the plane containing a
and b in the direction given by the right-hand rule.

The dynamics of exoskeleton robots include translational
kinetic  = 1

2
̇
hP7

=2


()  ()

i
̇, rotational

kinetic  = 1
2
̇
£P

=1 




¤
̇, potential  =P7

=2

1 and friction. Here the Jacobian of joint  in

the base frame is

 = [1 · · ·]   = −1× ( − −1)

where −1 are given by the first three elements in the third
column of  

1  is given by the first three elements of the
fourth column of  

1 × is vector cross product. Because the

first two entries of 1 in

∙

1 1
0 1

¸
are the   components

of the point  in the base frame

 =

7X
=1



1 1 =  1 = [  ]

 (1)

The dynamics of exoskeleton robots are derived from Euler-
Lagrange equation. It is

 () ̈ +  ( ̇) ̇ +  () = − 1  (2)

where  ∈ 7 represents the link positions.  () =  +

 ∈ 7×7 is the inertia matrix,  ( ̇) = {} represents
centrifugal force,  =

P7
=1 ̇   = 1 · · · 7,  is

Christoffel symbols  = 1
2

³



+ 

− 



´
,  () is

vector of gravity torques,  () = 

 (),  ∈ 7 denotes

the joint driving torque, 1 ∈ 6×7 is the Jacobian matrix,
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 ∈ 6 represents the contract force and torque in the end-
effector.

Three 6-axis force/torque sensors (ATI Industrial Automa-
tion, model-Mini 40) are rigidly attached to the exoskeleton,
see Figure 2. Force Sensor-3 is mounted on the handle at
the hand, it is used to control the position of the end-
effector of the exoskeleton. In order to ensure the human
feels comfortable, Force Sensor-1 and Force Sensor-2 are put
between the contract points of the human and the exoskeleton
at J3 and J5. The force signals of Force Sensor-3 together
with Force Sensor-1 and Force Sensor-2 are used for position
control of the upper limb exoskeleton.

The 7-DOF upper limb exoskeleton shown in Figure
1 is a redundant robot, i.e., the degrees of freedom of
the exoskeleton is greater than the end-effector degrees of
freedom. There are several methods to deal with the inverse
problem of the Jacobian. Many of them used pseudoinverse
[4] and the mobility tensor [22], where the null space has
to be introduced. The generalized inverse [20] is a popular
method, but it needs the inverse of the inertia matrix. In
[24], geometric properties of a human arm are used to obtain
the seventh DOF in task space. However with all above
methods, the standard properties, such as skew symmetric,
are lost in the task space. In this paper, we use the task space
augmentation method [11][31], such that the properties of
robots are kept.

It is well known that when the exoskeleton’s end-effector
contacts the environment, a task space coordinate system
defined with reference to the environment is convenient for
the study of contact motion. Let 1 ∈ 6 be the task space
vector defined by 1 =  ()  here 1 is position and
orientation of the end effector in base coordinates.  (·) ∈
7 → 6 is the forward kinematics of the robot, which is
a nonlinear transformation describing the relation between
the joint and task space. The Cartesian velocity vector ̇ =£
  

¤ ∈ 6  ∈ 3 is the linear velocity,  ∈ 3 is
the angular velocity. Besides the original control task for the
end-effector, the joint space of the 7-DOF exoskeleton are
also subjected to some constraints, because the exoskeleton
is fixed with a human arm. We define one constraint task as
 =  ()  here  is a scalar. The augmented task space is
defined as = [1 ]

 ∈ 7 The derivative of  is given
as

̇ =

∙
̇1
̇

¸
=

"





#
=

∙
1̇

̇̇

¸
= ̇ (3)

where  =
h
1 ̇

i
∈ 7×7 is the Jacobian matrix in the

augmented task space. In order to design a control which is
free of the definition of the augmented task space  we
may choose ̇ as the null space of 1 i.e.,

̇ =
h
 − 1

¡
1


1

¢−1
1

i
 (4)

where  ∈ 7 is a small vector. It is assumed that the
exoskeleton is operating in a finite work-space such that 
is nonsingular. Since ̈ = ̈+ ̇ ̇, the relations between the

dynamic models of the task space and the joint space are

̈+ ̇+  =  −  (5)

where = −−1 ∈ 7×7  =

−
h
 −−1̇

i
−1 ∈ 7×7  = ̄ = −  ∈

7×1  = −, here   and  depend on  and
̇ Since  =  () and ̇ = ̇  and ̇ can be computed
from inverse kinematic and ̇ = −1̇ So   and 
can be regarded as function of  and ̇ The PID attendance
control of this paper will not use  and  only the
following properties will be used to prove stability.
P1. The inertia matrix  () is symmetric positive defi-

nite, and

0   { ()} ≤ kk ≤  { ()} ≤    0

(6)
where  {} and  {} are the maximum and mini-
mum eigenvalues of the matrix 

P2. For the Centrifugal and Coriolis matrix  ( ̇)  there
exists a number   0 such that

k ( ̇) ̇k ≤  k̇k2    0 (7)

and ̇ − 2 are skew symmetric, i.e.


h
̇ ()− 2 ( ̇)

i
 = 0 (8)

also
̇ () =  ( ̇) +  ( ̇)

 (9)

P3. The gravitational torques vector  () and  () is
Lipschitz

k ()−  ()k ≤  k− k (10)

The proof of above properties are similar with non-
redundant robots in [21].

III. PID ADMITTANCE CONTROL

Mechanical impedance describes a force/velocity relation
of the end-effector [15]

 ()

̇ ()
=  () =+ +




(11)

where  represents the force exerted on the environment, ̇
represents the velocity of the manipulator at the environmen-
tal contact point.  represents the environmental impedance,
,  and  are the inertia, viscosity and stiffness of the
end-effector, respectively. When robot dynamic is known, the
traditional impedance control is

 = ()−1
³
− ̇ ̇

´
+  ( ̇) ̇ +  () +  () 

 = ̈ +


(̇ − ̇) + 


( − )− 



the parameters ,  and  are designed such that the
closed-loop system

 (̈ − ̈) + (̇ − ̇) + ( − ) = 

behaves like a target impedance. The admittance relation is
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Fig. 3. Human-robot system

̇ ()

 ()
=  () =+ +




(12)

where  represents force and torque of the force sensor, ,
 and  are design parameters for admittance control.

The control scheme for the upper limb exoskeleton is
shown in Figure 3. When we send a command signal 
to the robot, it should generate a reference  in task space.
Then we use a task space controller to regulate the robot
position  such that  can follow  At the same time, the
person can control his force  based on the position error
between the final reference  and 

There are two fundamental way that the admittance control
can be implemented. The first is to use the impedance control
(11) to generate reference signal,

 () =
1

2 ++

 () (13)

(13) is called as impedance filter [33]. The impedance
characterization of the human arm [9] and biomechanical
data [17] can help us to select the right inertia and damping
parameters ,  and  in (13). However the impedance
filter can cause user discomfort with small differences in
exoskeletons position and the users desired position, because
the impedance filter can not guarantee zero contract force.

For this reason, we will use the second method, it applies
admittance relation (12) directly,

̇ () =
¡
+ +





¢
 ()

 () =
R 
0
̇ () 

(14)

It has the same form as PID control and the control parame-
ters can be chosen based on the kinematics and dynamics of
the human arm.

Generally, impedance/admittance control involves three
components: rigidity, damping and inertia. In the literature
there is evidence that variation in the three components
modifies the biomechanical characteristics of the tremor in
the upper limb. If the arm and exoskeleton device are moving
together perfectly, the force between the user and the device
should be zero. When our reference force is set to be zero,
the admittance block in Figure 3 can be regarded as PID
regulation

̇ = +

Z 

0

 () +̇  () =

Z 

0

̇ () 

(15)
where ,  and  are also regarded as proportional,
integral and derivative gains of the PID controller, respec-
tively.

The musculoskeletal system (each joint of the upper limb
that contributes to the tremor) can be modelled as a second-
order biomechanical system [1][27]. It is known that the

dfPID 
Admittance

0 Human 
impedance

dx

Fig. 4. PID admittance control

frequency response of a second-order system presents the
behavior of a low-pass filter [37]. The cut-off frequency of
this filter is directly related to the biomechanical parameters
of the second-order system. The PID admittance regulation
is shown in Figure 4. The human impedance system can be
written in the frequency domain

 ()

 ()
=



 2
2 + 2+ 1

If the PID admittance control (14) is written as

̇ () = 

µ
1 +

1


+ 

¶
 ()

where  =  is the proportional gain,  =



is the
integral time constant and  =




is the derivative time

constant. We use the following tuning rule

 =
20



  = 15  =
 2
10

(16)

to tune the admittance control parameters. This rule is similar
with [16] and [6], in their case  =

51
3

  = 21

 =
1+01
081

 It is different from the other two famous
rules, Ziegler-Nichols [36] and Cohen-Coon [7] methods,
where  =  


  = 2  = 05 or  =




³
4
3
+ 

4

´
  =

(32+6)

13+8
  =

4
11+2



Because their rules are suitable for process control, our rule
is for mechanical systems. Table 2 can refine PID gains when
(16) is not satisfied.

We use the force and torque signals of the force sensors
to generate reference position and orientation of the end
effector. Since the force senors are mounted in different
positions, they should be transformed into a common frame.
In the base frame, the forces of all force sensors are

1 = 311 2 = 512 3 = 713

where the signal vector of Force Senor-1 is
£

1 Γ


1

¤
 

1

is force, Γ1 is torque, 1 and 1 are the force and torque
of Force Senor-1 in the frame of the base frame. 31 is the
rotation transformation from link 3 to the base frame, it is
a part of the homogeneous transformation matrices. Since
Force Senor-1 and Force Senor-2 are not mounted on the
rotation axis, the torque on the base frame should include
their in luences

1 = 31Γ1+3×1 2 = 51Γ2+5×2 3 = 71Γ3

where 3 and 5 are the vectors from the base frame to Force
Senor-1 and Force Senor-2.
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Finally, the command signal  = [0 0]
 in (13), (14)

and (15) is a combination of the three force sensors

0 =

3X
=1

 0 =

3X
=1

 

where  and  are given weights, which decide the contri-
butions of the force sensors.

Because  ∈ 6  ∈ 6 we need to define a reference
for the augmented task space  When we choose null space
for  we let the reference in  is zero. The total reference
is  = [ 0]

 ∈ 7

IV. LINEAR PID CONTROL IN TASK SPACE

The desired position and orientation of the end effector
 are generated by PID admittance control proposed in
last section. In this section, we will design a linear stable
PID control in task space to regulate the exoskeleton to the
desired position. We define the regulation error as

̃ =  − 

The objective of position control in task space is ̃→ 0 and
·
̃→ 0 when initial conditions are in arbitrary large domain
of attraction.

A linear PID control in task space law is

 = ̃+

Z 

0

̃ ()  +

·
̃+  (17)

where   and  are proportional, integral and deriv-
ative gains of the PID controller, respectively.  =  () 

̇ = ̇ The final control torque applied on each joint is

 =  (18)

In regulation case, ̇ = 0
·
̃ = −̇ the PID control law

can be expressed via the following equations

 = ̃−̇+  + 

̇ = ̃  (0) = 0
(19)

We require that the linear control (19) is decoupled, i.e.
 and  are positive definite diagonal matrices. The
closed-loop system of the robot (5) is

̈+ ̇+  () = ̃−̇+  ̇ = ̃

In matrix form it is





⎡⎢⎣ 

̃
·
̃

⎤⎥⎦ =
⎡⎣ ̃

−̇
−1 (̇+  −̃+̇− )

⎤⎦
(20)

Theorem 1: Consider the robot dynamic (5) controlled by
the linear PID controller (19), the closed loop system is
semiglobally asymptotically stable at the equilibrium  =∙
 − 

¡

¢
 ̃

·
̃

¸
= 0 provided that control gains satisfy

 () ≥ 3
2


 () ≤ 
()

 ()

 () ≥  +  ()

(21)

where  =

q
()()

3
  satisfies (10).

Proof: We construct a Lyapunov function as

 = 1
2
̇̇+

1
2
̃̃+  ()−  + ̃ 

¡

¢

+3
2

¡

¢

−1 
¡

¢
+ 

2
̃

−1 ̃ + ̃ ̃

−̃̇+ 
2
̃̃

(22)
where  = min { ()}   () =

R 
0
 (),  is added

such that  (0) = 0  is a design positive constant. We first
prove that  is a Lyapunov function,  ≥ 0 The term
1
2
̃̃ is separated into four parts, and  =

P4
=1 

1 =
1
6
̃̃+ ̃ 

¡

¢
+ 3

2

¡

¢

−1 
¡

¢

2 =
1
6
̃̃+ ̃ ̃ + 

2
̃

−1 ̃

3 =
1
6
̃̃− ̃̇+

1
2
̇̇

4 =  ()−  +

2
̃̃ ≥ 0

(23)

It is easy to find  ≥ 0, when  ≤
√

1
3
()()

 ()


Obviously, if
q

1
3


¡
−1

¢

3
2
 ()

1
2
 () ≥  () 

there exists
√

1
3
()()

 ()
≥  ≥ 3

(−1 )()


This means if  is sufficiently large or  is sufficiently

small, and 
³
̇ ̃ ̃

´
is globally positive definite. Using



 () = ̇  () 




¡

¢
= 0 and 



£
̃ 

¡

¢¤
=

·
̃



¡

¢
 the derivative of  is

̇ ≤ −̇ ( −  −  k̃k) ̇
−̃ ( ( +)− − ) ̃

≤ − [ ()−  ()−  k̃k] k̇k2
− [ ()−  ()− ] k̃k2

If

 () ≥  () +
q

1
3
 ()

p
 ()

 () ≥ 1
3


¡
−1

¢
 () () + 

(24)

Using 
¡
−1

¢
= 1

 ()
 (24) is (21). ̇ is negative

semi-definite. Define a ball Σ of radius   0 centered at
the origin of the state space, which satisfies these condition

Σ =

½
̃ : k̃k ≤  ()


= 

¾
̇ is negative semi-definite on the ball Σ There exists a ball
Σ of radius   0 centered at the origin of the state space
on which ̇ ≤ 0 The origin of the closed-loop equation
is a stable equilibrium. Since the closed-loop equation is
autonomous, we use La Salle’s theorem. ̇ = 0 if and only
if ̃ = ̇ = 0. For a solution  () to belong to Ω for all
 ≥ 0, it is necessary and sufficient that ̃ = ̇ = 0 for all
 ≥ 0. Therefore it must also hold that ̈ = 0 for all  ≥ 0.

Remark 1: The most important contribution of this con-
troller is that it is in task space, inverse kinematic [24] is not
needed and the tuning procedure of the PID parameters can
be calculated directly from the conditions (21), it is more
simple than the tuning procedures in [2][3][19][30]. Their
PID controllers are in joint space. No modeling information
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is needed. This linear PID control is exactly the same as
industrial robot controllers, and is semiglobally asymptoti-
cally stable. The upper or lower bounds of PID gains need
the maximum eigenvalue of  in (21), it can be estimated
without calculating  For a robot with only revolute joints
 () ≤   ≥  (max | |)  here  stands the
-th element of   ∈ × A  can be selected such
that it is much bigger than all elements.
Remark 2: It is well known that without the gravity force

 in (5), PD control with any positive gains can drive the
colsed-loop system asymptotic stability. The main objective
of the integral action can be regarded to cancel the gravity
torque. In order to decrease integral gain, an estimated
gravity is applied to the PID control (19). The PID control
with an approximate gravity compensation ̂ is

 = ̃−̇+ ̂ +  ̇ = ̃  (0) = 0 (25)

If we define ̃ =  − ̂ ̃ =
R 
0
̃ ̃ (0) = 0 ̃

also satisfies Lipschitz condition (10), k̃ ()− ̃ ()k ≤
̃ k− k  The above theorem is also correct for the PID
control with an approximate gravity compensation (25). The
condition for PID gains (21) becomes  () ≥ 3

2
̃

 () ≤ 3
2

̃
 ()

 here ̃ ¿   =

q
()()

3


V. CONCLUSIONS

In this paper, a PID type admittance control in task
space and a linear PID control aslo in task space for robot
manipulators are presented. The main contributions of this
paper are: 1) A PID type admittance control is proposed,
whose parameters can be designed by human impedance
properties. 2) Novel sufficient conditions of semiglobal as-
ymptotic stability are proposed via stability analysis in task
space. These conditions give an explicit selection method of
PID gains.
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