
  

 

Abstract— The algorithm of epileptic seizure is at the core of 

any implantable device aimed to treat the symptoms of this 

disorder. A training free (on line) epileptic seizure detection 

algorithm for implantable device utilizing Autoregressive (AR) 

model parameters is developed and studied. Pre-recorded (off 

line) epileptic seizure data are used to estimate the internal 

parameters of an AR model prior and following the seizure 

Principle Component Analysis (PCA) is used for reducing the 

dimension of the problem while allowing only the salient 

features representing the seizure onset to be saved into the 

implantable device. The implantable device estimates the AR 

model parameter in real time and compares the saved features 

of seizure onset with feature from the incoming signals using 

cosine similarity. In order to guarantee an efficient on line signal 

processing, Weighted Least Square Estimation (WLSE) model 

is utilized. Simulation result shows that the proposed method 

has average 96.6% detection accuracy and 1.2ms latency for the 

data sets under study. The proposed approach can be extended 

to multi channel approach using Multi-Variant Autoregressive 

(MVAR) model which enables seizure foci localization and the 

sophisticated seizure prediction. 

I. INTRODUCTION 

HE Epilepsy is a chronic and complex neurological 

disorder, which affects approximately 1% of the world 

population. Pharmacotherapy is a standard treatment 

offered to epileptic patients. However, for more than 25% of 

patients pharmacotherapy does not provide seizure control or 

generate side effect as a response to medication [1]. Although 

surgical intervention may be considered as an alternative 

treatment for this group of patients, many individuals are 

excluded since the epileptogenic region may contain brain 

areas that lead to sensory or motor deficits. As a result, 

several new therapeutic techniques are investigated including 

but not limited to closed-loop stimulation [2] which directly 

stimulate affected region of brain electrically or chemically. 

This treatment highly depends on robust seizure detection 

algorithms and technical complexity of an integrated system 

that can be implanted on the brain [3].  

It is known that epilepsy can be detected based on the 

electroencephalogram (EEG) signal analysis. EEG signal of 

epilepsy patients during a seizure shows patterns which are 

significantly different compared to the normal state of the 

brain with respect to space, time and frequency patterns. In 

recent years, many research efforts demonstrated the 

feasibility of using intracranial or scalp EEG signal to predict 

and detect seizures. Short-time mean Teager energy detection 

based on Nonlinear Energy Operator (NEO) was used to 

detect abrupt energy variation during the seizure [4]. For 

improving the   detection, three different energy operators 

were previously used including mean curve length, mean 

energy, and Teager energy as features and Support Vector 

Machine (SVM) for a classifier [5]. In this scheme, seizure 

detection is declared when the parameters change 

significantly from their nominal values while representing 

normal brain activity. Frequency-based and time-based 

methods were previously developed for seizure detection for 

example Fourier Transformation (FFT) with sliding window 

[6], along with discrete wavelet transform and Artificial 

Neural Network (ANN) [7]. In addition, Auto Regression 

(AR) model is widely used to convey the spectral information 

[8]. The AR parameters suppress the noise effect and 

emphasize the characteristics of the signal while FFT process 

the signal and noise equally.  

To some extent all the existing algorithms are subject to one 

or more of the following limitations: (1) detection latency, (2) 

computational complexity, (3) patient-specific tuning and (4) 

long training period. These limitations narrow down the list 

of algorithms that can be considered as potential candidates 

for implantable system. In this paper, a novel AR 

model-based algorithm is developed and tested for Epileptic 

seizure detection that is suitable for an implantable device. 

The proposed model does not require complex training 

procedure while minimizing the requirements for patient 

specific parameter tuning.  

II. METHODS 

A. EEG data recording 

Three different datasets were used in the current study 

including: healthy group (Set B), Interictal group (Set C) and 

Ictal group (Set E). The datasets were made available online   

by Dr. Ralph Andrzejak of the Epilepsy Center at the 

University of Bonn, Germany [9]. EEGs are gathered from 

five different patients whose epileptogenic focus is correctly 

diagnosed as one of the hippocampal formations. A total of 

300 EEG datasets are available and they are sampled at  

173.61 Hz for 23.6 sec (4097 data points). The spectral 

bandwidth ranged from 0.5 Hz to 85 Hz and low-pass filter of 

40 Hz was applied. 
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 Fig. 1: System overview of Epileptic seizure detection. Signal processing 
blocks included in the dotted region are embedded in the implantable 
device. 

Fig. 2: AR model order estimation based on AIC criterion. When 

the model order and length of x(n) is set to 30 and 5 sec, AIC 
criterion reaches its minimal value 

B. System overview 

Fig. 1 depicts an overview of the system architecture for the 

Epileptic seizure detection algorithm. The AR model 

estimation for extracting features from the signal was selected 

since temporal changes of EEG signal, which plays an 

important role in an epileptic seizure evolution, affect the AR 

model parameters. For the training-free detection, features 

from the single EEG segment ( )SX n  containing the early 

stage of the seizure onset duration were first extracted. PCA 

was then used to reduce the dimension of the features of AR 

parameters in addition to the selection of the salient elements 

SF  among the entire feature set. The similar procedure was 

continuously applied to the EEG signal as described inside the 

red box in Fig. 1. According to this, continuously received 

EEG signal was captured by the window and fed into the 

system inside red box. Note that here ( )TiX n is defined as an 

EEG signal segment captured at any discrete time 
iT  having 

the same window size as ( )
S

X n  and 
TiF  represent N  

dimensional feature vector extracted from ( )TiX n  based on 

AR model estimation and PCA. Unlike the AR model 

estimation technique used for ( )
S

X n , WLSE based AR model 

estimation technique is taken into account considering the 

computational complexity. The similarity between two 

features 
TiF  and 

SF  was calculated according to the cosine 

similarity function defined by Eq. 1 and identify the similarity 

in the range of [0 1] where a value of 1 indicates similar 

features (parallel identical vectors) and 0 indicates 

non-similar features (orthogonal vectors) in the feature space. 

cos
T

S Ti
i

S Ti

F F

F F
θ

⋅
=           (1) 

Given a selected threshold for the similarity factor, seizure 

onset is detected by constantly calculating Eq. (1) with fixed 

features of the EEG signal obtained during the epileptic 

seizure and features of EEG signal received in real-time.  

 

C.  Autoregressive model for EEG 

Assuming that EEG signal ( )x n  has a zero mean and may be 

considered as a stationary signal in a finite time window 

( 1,  2 ... ,  n mT mT mT N= + + + ), it is possible to represent the 

current observation ( )x n  as a linear combination of past 

values and white noise as formulated in Eq. (2) [10] 
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k

x n a x n k e n
=
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,where 1 2, ..., Ma a a are AR parameters and ( )e n  is white 

noise with zero mean. In Eq. (2) the linear prediction of the 

current sample vector is given by  
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The estimation error or residue of this estimated value is given 

by 

ɵ( ) ( ) ( )x n x n e n− =           (4) 

The computational task is to determine the coefficients of the 

filter such that a function of the prediction error is minimized. 

In current study the AR parameters are estimate based on the 

Yule-Walker equation utilizing the Least Mean Squared 

(LMS) method criterion [10]. The model order of Eq. (2) is 

determined by the AIC criterion [11] and given by 
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,where M  and N  represent model order and number of 

samples in ( )x n respectively. The optimal order for the AR 

model is achieved by minimizing Eq. (5) and it represents a 

trade-off between the estimation error and the size of the 

model order. 

Fig. 2 depicts AIC as a function of the AR model order and 

number of samples used to estimate AR parameters The 

results depicted in Fig. 2 indicated that the Eq. (5) reaches its 

minimal value when the order of the for  AR model is 30 for 

the data set under study.  
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Fig. 3:  Cosine similarity test result for a data set E, B and C. 

D. WLSE for implantable device 

Yule-Walker equation was first used to compute SA , however 

this method involves complex matrix inversions and 

correlation computations that are not suitable for the hardware 

implementation. Given this implementation constraint, the 

WLSE algorithm was used to estimate AR model parameters 

which minimize the weighted sum of error between the 

predicted values and actual values of the EEG signals defined 

as 

2
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i

i x iβ α
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, where 
1( 1)i

iα α α−= < are the weights and ( )ku is the input 

to the filter at time t k= . 

( ) [ ( 1) ( 2) ...  ( )]Tk x k x k x k M= − − −u     (7) 

Also  

ɵ ( ) ( 1) ( )T

Mx k k k= −a u           (8) 

In Eq. (6) iα ( 1 1kα −
≪ ), which is referred to as the forgetting 

factor, will be neglected after sufficient time by 

deemphasizing the old data points. Thus by properly selecting 

the weights, it is possible to overcome storage limitation 

problem in the practical implementation. The optimum value 

of α depends on the property of the input process. Usually 

0.99α = [12] is chosen.  

The filter coefficients T

Ma
were adaptively computed to meet 

the minimum WLSE criterion in Eq (6). An outline of the 

WLSE is listed below (for detailed explanation of the WLSE 

see [12]). 
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, where it starts from  (1) {1,0,...,0}TM =a  and 

(1) M MP I R ×= ∈  Identity Matrix. Hence, one can adaptively 

estimate the next sample of the input process and a new set of 

filter coefficients at time instant 1t k= + using the values at 

the previous instant of time t k= . This method provides the 

relatively fast convergence rate and enables real time 

implementation of a Linear Predictor which does not require 

computation of autocorrelation function of the input process.  

E. PCA for dimensionality reduction 

PCA is a simple and effective method of reducing dimension 

of the complex data sets such that only the most relevant 

information underlying the complex data sets can be revealed.  

Let 
1 2{ , ,..., }S S S T M

S MA a a a R= ∈ whose elements are AR 

model parameters with order M estimated from ( )SX n  in Fig. 

1. Then by projecting feature vector
SA  and

TiA  

on
1 2{ , ,..., }S S S T N M

S NE e e e R ×= ∈ , only the most salient N 

principal components can be selected as follows. Note that 
S M

je R∈ in 
SE is the eigen vector of covariance matrix of

SA . 
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Thus when 
SA and 

TiA have the similar structure, cosine 

similarity of 
SF and 

Ti
F will be close to one. Finally threshold 

value will be determined for a desired detection rate based on 

the Receiver Operating Characteristic (ROC) result.  

F. Similarity test 

Let [ ,  ,  ]
E B C

D D D D=  is the collection of Ictal group (Set E), 

Healthy group (Set B) and Interictal group (Set C). Each 

element of set D  is composed of 100 independent EEG 

segments of which data points are 4097. SF is extracted from 

the first two second time segment of EEG data set E. As D  is 

sequentially fed into the detector, TiF  is computed in real 

time according to the proposed method. Here TiF  is estimated 

with data in 1 second duration window which slides every 0.5 

second. As shown in Fig. 3, cosine similarity is close to one 

when data duration is within 
E
D .  

III. RESULT 

In order to assess the detector performance, the ROC curve is 

computed and depicted in Fig. 4 for the proposed method and 

a line length detection method [3] which is defined as  

1 ( )
( ) [ ( 1) ( )]

n

k n N

L n
LL n abs x k x k

K K= −

= − − =∑    (10) 

( )LL n  is the running sum of distance between successive 

points within the sliding window of size N , ( )x k is the k th 

sample data and K is the normalization constant. Since the 

line length grows as the signal power or frequency increases, it 

can act as an amplitude and frequency demodulator.  

 In the simulation, both features are extracted using a block 

processing approach where data are windowed for feature 

extraction and the window slides by overlapping windows. 
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Fig. 5: Detection latency for Line Length detection and AR model 
based detection algorithms. 0
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Fig. 4: Upper left and right figures are ROC curve for line length detector 
and proposed method respectively. Lower one shows the comparison of 
ROC curve projected on to Pd-Pf plane. Note that Pf, Pd and Window 
length in Fig 4 represent the probability of false detection, probability of 
correct detection and window length for feature extraction respectively. 

Window size typically ranges between 0.25 and 5 seconds in 

EEG signal analysis. We use 1 second window duration as a 

default with 0.5 second overlap. Window duration for feature 

extraction changes from 1 to 2 second by 0.1 second step 

resolution [13]. In each case, ROC curves were estimated for 

both detection algorithms as shown in Fig 4. According to the 

simulation result in Fig 4 (a) and (b), it is demonstrated that 

window length does not significantly affect detection 

performance for our simulation condition. Thus we projected 

both ROC curves on to Pd-Pf plane for the easier comparison 

of detector performance as shown in Fig 4 (c). Result shows 

that the proposed method outperforms line length detector 

with higher accuracy when the false detection probability is 

ranged from 0 to 0.3. In addition, the average detection 

latency is simulated in Fig 5 for different window durations. 

The result indicates that proposed method detect epileptic 

seizure activity earlier than line length detection method for 

all window durations. By averaging detection delay over all 

window size, it is easily found out that average delay of 

proposed method is 400ms less than one of the line length 

detection. 

IV. CONCLUSION 

The research demonstrated a training-free Epileptic seizure 

detection algorithm based on AR model parameters detection 

which may offer a potential solution of implantable device. 

The simulation result indicated that AR model parameters 

robustly capture the abnormal brain activity and the proposed 

method improves the accuracy of the seizure detection 

compared to the line length based seizure detection algorithm. 

The proposed method is not based on any prior knowledge for 

the patient condition and requires minimal patient-specific 

parameter tuning with reasonable computational complexity. 

The proposed approach can be extended to multi channel 

approach using Multi-Variant Autoregressive (MVAR) model 

which enables seizure foci localization and the sophisticated 

seizure prediction. . 
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