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Abstract— The exoskeleton robot, serving as an assistive
device worn by the human (orthotic), functions as a human-
amplifier. Setting the human machine interface (HMI) at the
neuro-muscular level may lead to seamless integration and an
intuitive control of the exoskeleton arm as a natural extension
of the human body. At the core of the exoskeleton HMI there
is a myoprocessor. It is a model of the human muscle, running
in real-time and in parallel to the physiological muscle, that
predicts joint torque as a function of the joint kinematics and
neural activation levels. The study is focused on developing
a myoprocessor based on the Hill phenomenological muscle
model. Genetic algorithms were used to optimize model
internal parameters using an experimental database that
provides inputs to the model and allows for performance
assessment. The results indicate high correlation between joint
moment predictions of the model and the measured data.
Consequently, the myoprocessor seems an adequate model,
sufficiently robust for further integration into the exoskeleton
control system.

Index Terms— Exoskeletons, muscle models, genetic algo-
rithms.

I. INTRODUCTION

Integrating human and robot into a single system offers
remarkable opportunities for creating a new generation of
assistive technology for both healthy and disabled people.
Humans possess naturally developed algorithms for control
of movement, but have limited muscle strength. Moreover
muscle weakness is the primary cause of disability in
people with neuromuscular disorders and central nervous
system injuries. In contrast, robotic manipulators can per-
form tasks requiring large forces; however, their artificial
control algorithms do not provide the flexibility to perform
in a wide range of fuzzy conditions while preserving
the same quality of performance as humans. It seems,
therefore, that combining the human and the robot into
a single integrated system may lead to a solution that will
benefit from the advantages offered by each subsystem.

The exoskeleton robot, serving as an assistive device, is
worn by the human (orthotic) and functions as a human-
amplifier (Fig. 1). Its joints and links correspond to those
of the human body, and its actuators share a portion of the
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external load with the operator. Setting the human machine
interface (HMI) at the neuro-muscular level, using the
body’s own neural command signals as one of the primary
command signals of the exoskeleton, may lead to seamless
integration and an intuitive control of the exoskeleton arm
as a natural extension of the human body [1], [2].

The neuro-muscular HMI takes advantage of the electro-
chemical-mechanical delay (ECMD), an inherent property
of the musculoskeletal system. The ECMD exists from the
time when the neural system activates the muscular system
to the time when the muscles generate moments around the
joints. The myoprocessor is a model of the human muscle
running in real-time and in parallel to the physiological
muscle. During the ECMD, the system will gather informa-
tion regarding the muscle’s neural activation level based on
processed signals from surface electromyography (sEMG),
joint position, and angular velocity, and will predict the
force that will be generated by the muscle before con-
traction occurs. By the time the human muscles contract,
the exoskeleton will move with the human in a synergistic
fashion, allowing natural control of the exoskeleton as an
extension of the operator’s body.

(a) (b)
Fig. 1. A 7 DOF Exoskeleton arm: (a) CAD rendering of 7 degrees
of freedom (DOF) upper limb powered exoskeleton (shoulder joint - 3
DOF, elbow joint - 1 DOF, wrist joint 3 DOF (b) An exposed view of
the Exoskeleton arm in a reach posture.

The aims of the study are: (i) to develop Hill-based
myoprocessors for the flexor/extensor muscles of the el-
bow joint, (ii) to optimize their parameters using genetic
algorithms and (iii) to evaluate the joint-torque moment
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predictions of the model with experimental data.

II. MATERIALS AND METHODS

A. Experimental Protocol and Preliminary data processing

The experimental protocol included flexion/extension
movements of the elbow joint (0 − 145o range) using the
“Arm Curl” VR2 Cybex (Cybex International, Inc) exercise
machine (Fig. 2). Each movement was repeated three times
with three different loads (4.54, 6.80, 9.07 Kg) moving
at three angular velocities (average values of 1.8 ± 0.26,
1.4 ± 0.13, 0.7 ± 0.04 rad/s, that are further referred as
fast, medium and slow). The joint angle was measured by
a potentiometer (Midori America Corp., CA) located on the
Cybex machine. sEMG signals were collected using Silver-
Silver Chloride surface electrodes (In Vivo Metric) from 28
individual right upper-limb, chest, and back muscles (Fig.
2). Electrodes were located for optimal signal detection
based on [3], [4]. Maximal voluntary muscle activations
were recorded during isometric contractions. The sEMG
signals were amplified by analog amplifiers (Teledyne Inc.)
and the data were sampled at 1KHz by a 14 bit A/D card
(United Electronic Industries) using the Matlab Real-time
workshop toolbox (Mathworks Inc.)

(a) (b)
Fig. 2. (a) Surface electrodes attached to the subject measuring EMG
signals from 28 muscles simultaneously, (b) Flexing and extending the
elbow joint under different loads using CYBEX exercise machine while
recording the joint position and muscle EMG signals.

The moments applied on the joint as a function of time
by the external load were calculated based on the measured
joint kinematics, and the Cybex machine geometry and
mechanical model.

B. The myoprocessor

The myoprocessor, depicted in Fig. II-B, is composed
of three modules: (i) a module that estimates the degree
of neural activation using sEMG signals, (ii) a module
that computes the force exerted by the muscle using the
activation level and the muscle length and shortening
velocity, and (iii) a module that calculates the muscle
lengths and moment arms given the joint angles and the
limb kinematics. Finally, the torque contribution from each
muscle is computed as the product of force and correspond-
ing moment arm.

A Myoprocessor for each one of the seven muscles and
sub-muscle groups (head) involved in the flexion/extension
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Fig. 3. (A) Myoprocessor Block diagram. (B) Detail of the Hill model
implementation (see eq. 1-6); the “inv SE” block represents eq. 1 solved
for ∆L given FCE (that is equal to FSE) as input.

of the elbow joint was implemented in the Matlab/Simulink
environment (MathWorks Inc.).

The modeled muscles are: Brachialis (BRS); Biceps
Brachii long head (BLH); Biceps Brachii short head
(BSH); Brachioradialis (BRD); Triceps Brachii long head
(TLgH); Triceps Brachii medial head (TmH); and Triceps
Brachii lateral head (TLtH).

The module converting sEMG to neural activation levels
consists of a cascade of digital filters (with a causal imple-
mentation) and nonlinear blocks: (1) Butterworth 4th order
high-pass filter (cut-off frequency 10Hz); (2) Butterworth
4th order notch filter (60 Hz); (3) full wave rectification;
(4) Butterworth 4th order low pass filter (cut-off frequency
5 Hz); (5) normalization with respect to the maximal
voluntary muscle activation levels [1].

As previously indicated in the literature [5], [6], the
moment arm and the length-angle relation have a profound
effect on the joint moment model prediction. For this
reason a model of the muscle-joint interaction based on
[7]–[9], has been implemented.

The model in [7]–[9] takes advantage of data derived
from the Visible Human Project. For each muscle, origin
and insertion points are provided, together with fixed via
points, i.e. points that constrain the muscle path. In order
to provide better matching with the physiological path,
muscles are allowed to wrap around obstacles that simulate
other anatomical structures such as muscles, soft tissues,
or bones. The obstacles are modeled as spheres, cylinders,
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or combination of these two basic elements. The muscle
path is then calculated as the shortest path from origin to
insertion while maintaining obstacle constraints.

The Hill model of the muscle is a phenomenological
model commonly used for its relative computational sim-
plicity. The model presents two elements arranged in series
- the passive serial element (SE) and the active contractile
element (CE) - and a passive element (PE) arranged in
parallel to the previous two . The development of the Hill-
based muscle model in this work follows previous research
efforts [10]–[12]. An extensive review of literature has been
presented by Yarden [12]. The functions describing the
three principal elements of the model are defined by Eq.
1-5 [10], [12].

The force generated by PE or SE is defined as

FPE,SE =

[

Fmax

eS − 1

]

[

e(
S

∆Lmax
∆L) − 1

]

(1)

where ∆L is the change in length of the element with
respect to the slack length, S is a shape parameter (related
to the stiffness of the element), Fmax is the maximum force
exerted by the element for the maximum change in length
∆Lmax, and FPE,SE is the passive force generated by the
PE or the SE element depending on the set of parameters
used.

The force generated by the CE element is defined as

FCE = u · fl · fv (2)

fl = exp



−0.5

(

∆LCE

LCE0

− 0.05

0.19

)2


 (3)

fv =
0.1433

0.1074 + exp
(

−1.3sinh
(

2.8 VCE

VCE0

+ 1.64
)) (4)

VCE0
= 0.5(u + 1)VCEmax

(5)

Finally, the total force, FT , developed by the muscle is:

FT = FCE + FPE (6)

In these equations u ∈ [0, 1] is the normalized neural
activation, VCE0

is the maximal CE velocity when FCE =
0, fl is the FCE when VCE = 0 and u = 1, VCEmax

is
VCE0

when the activation is maximum (u = 1), LCE0
is

the optimal fiber length.
There are 7 muscles represented in the model, however

the sEMG were recorded only from 5 of them due to
anatomical limitations in accessing these muscles using
non-invasive techniques. In order to estimate the unmea-
sured neural activation levels, the following assumptions
were made: (i) the neural activity of the two heads of
the Biceps, measured by a single pair of electrodes, was
assumed to be the same except for a scaling factor; (ii)
similarly the Brachialis was assigned a scaled version of
the Brachioradialis activation level [13], [14].

C. Myoprocessor Parameter Optimization - Genetic Algo-
rithms

A genetic algorithm (GA) was used in order to tune
the parameters of the model. GAs are commonly used as
optimization techniques [15], [16]. Their advantage over
other techniques is in their capability to deal with very large
search spaces, minimizing the risk of finding solutions that
are only locally optimal. Given an optimization problem,
defined by a certain (usually high) number of parameters,
GAs find an optimal solution by using simulated evolution
processes. The optimal parameters search starts from an
initial random population of “chromosomes”, each one
representing a potential solution. The “survival of the
fittest” criterion and “genetic operators” are used to reach a
final population of best solutions [17]. The degree of fitness
of a certain set of parameters is evaluated by a problem-
specific fitness function. The GA implementation follows
a stepwise process:

1) Encode the parameters of the problem at hand into
a chromosome. Choose an alphabet (such as binary
or real numbers) for the genes and choose selection,
mutation, crossover, and fitness functions (genetic
operators).

2) Create the initial population of chromosomes and
estimate, using a fitness function, the fitness degree
of every chromosome.

3) Create an intermediate population, selecting elements
from the previous population, using the selection
function (a function that privileges best individuals).

4) Create new individuals using crossover and mutation
and insert them into the population which becomes
the new population (“children” substitute “parents”
so that population size is stable).

5) If the termination criterion is met (i.e., there is an
individual whose fitness function has the desired
value), terminate evolutive process and give the best
individual as result, else start again from step 3.

In this study the chromosome has been designed with
38 “genes”. Each gene represents a scaling factor γ with
respect to the reference parameters shown in Table I. A
gene with a value of one preserves the reference value
of the parameter it represents. For each muscle 5 genes
were used with bounded values including: optimal fiber
length (γLCE0

∈ [0.8, 1.2]), maximum force for the optimal
fiber length when velocity is zero (γFCEmax

∈ [0.5, 1.5]),
fast fiber percentage (γα ∈ [0.5, 1.5]), shape factor for
PE (γSP E

∈ [0.8, 1.2]), and shape factor for SE (γSSE
∈

[0.8, 1.2]). In addition, three other global parameters were
defined: a scale factor for the activation of biceps long
head with respect to the short head (γebi ∈ [0.8, 1.2]),
a scale factor Brachialis / Brachioradialis activation level
(γebr ∈ [0.5, 4]) and a geometric scale factor for the skeletal
parameters (γg ∈ [0.8, 1.2]).

The parameters of the model (used in Eq. 1-6) not listed
in Table I were computed as follows [12], [5]:
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TABLE I
NOMINAL PARAMETERS FOR THE MYOPROCESSOR MODEL BASED ON

[8], [12]

Muscle Lmax

[cm]
LCE0

[cm]
LTs

[cm]
FCEmax

[N]
α
[%]

SPE SSE

BSH 40.46 13.07 22.98 461.76 56 9 2.8

BLH 41.94 15.36 22.93 392.91 56 9 2.8

TLgH 40.29 15.24 19.05 629.21 66 10 2.3

TMH 18.95 4.90 12.19 619.67 66 10 2.3

TLtH 28.22 6.17 19.64 1268.87 66 10 2.3

BRD 35.35 27.03 6.04 101.58 75 9 2.6

BRA 13.01 10.28 1.75 853.90 38 9 3

VCEmax
= 2 · LCE0

+ 8 · LCE0
· α (7)

FPEmax
= 0.05 · FCEmax

(8)
∆PEmax

= Lmax − (LCE0
+ LTs

) (9)
FSEmax

= 1.3 · FCEmax
(10)

∆SEmax
= 0.03 · LTs

(11)

where α is the percentage of fast fibers in a muscle,
LTs

is the tendon slack length (other symbols have been
previously defined). Given the experimental protocol, the
data collected in one of the repetitions (namely the first
repetition, medium velocity, 6.80 Kg load) was used for
optimizing the model, whereas the other repetitions were
used to evaluate the overall model prediction. In addition,
the model predictions were assessed with respect to the
actual moments using three criteria: maximum error (Eq.
12), root mean squared error (Eq. 13) and correlation
coefficient (Eq. 14). The root mean squared error was also
used as a fitness function for the GA.

Emax = max
i

|T [i]− T̃ [i]| (12)

Erms =

√

√

√

√

1

N

N
∑

i=1

(T [i]− T̃ [i])2 (13)

ρ =
CT T̃

σT σT̃

(14)

where T represents the actual torque, T̃ is the torque
computed by the model, and N is the number of sample
points, CT T̃ is the covariance coefficient, σT and σT̃ are
the standard deviations.

III. RESULTS

Fig. 4 depicts typical kinematics (joint angles), dynamics
(joint torques), and the neural activation levels of the
flexor/extensor muscles as a function of time. The joint
kinematics and the neural activation levels of the muscles
were used as inputs to the myoprocessor whereas the exter-
nal joint load was used to optimize the model parameters
and to assess the myoprocessor predictions.

Typical joint torques as a function of time are plotted
in Fig. 5. The data depicted represents two repetitions of
full flexion/extension of the elbow joint with the following
loading conditions: (i) Fig. 5 top - medium velocity, 6.8 Kg
- data that were used for optimizing the muscle parameters
(ii) Fig. 5 bottom - fast velocity, 9.07 Kg - data that were
used for evaluate the myoprocessor predictions. Each plot
includes three torques: (1) the actual torque as computed
by using the kinematics and the dynamics of the Cybex
exercise machine (actual), (2) the myoprocessor predictions
with nominal model parameters (non optimized), and (3)
with optimized parameters (optimized) using the GA.

The results plotted in Fig. 5 (top) indicate that when
comparing the myoprocessor prediction with the actual
measured data the maximum error was Emax = 6.5Nm,
the root mean squared error was ERMS = 2.67Nm, the
correlation coefficient was ρ = 0.91, and the excursion,
defined as the peak-to-peak amplitude of the torque, was
19.8 Nm. Conversely, the non optimized model yielded
Emax = 14.64Nm, ERMS = 7.78Nm, ρ = 0.79. The
test data set depicted in the bottom plot yielded optimized
Emax = 12.6Nm, ERMS = 5.2Nm, ρ = 0.90 and
non optimized Emax = 23.4Nm, ERMS = 11.4Nm,
ρ = 0.82.
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Fig. 4. Typical datasets recorded as part of the experimental protocol for
various loading conditions during flexion/extension of the elbow joint.

Table II summarizes the experimental results using the
metrics defined in Eq. 12-14. The results were averaged
over the two repetitions that were not used for the model
optimization.

As part of the optimization process using the GA,
the myoprocessor internal parameters deviated from the
nominal values presented in table I. Fig. 6 depicts the
parameters’ scaling factors (nominal values are defined as
0) of all the internal model parameters. This optimal set
of parameters (best chromosome) was obtained by using
a population of 90 chromosomes and 500 generations.
The roulette wheel selection function, together with the
elitist method has been used; arithmetic crossover, simple
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line) moments at the elbow joint during flexion/extension movements as
measured and predicted by the myoprocessor. Top panel - the optimization
set (medium velocity, 6.8Kg); bottom panel - one of the data sets used
for evaluation (fast velocity, 9.07Kg).

TABLE II
AVERAGED RESULTS FOR THE TEST DATA SETS

trial ρ Erms

[Nm]
Emax

[Nm]
total
escursion
[Nm]

fast, 4.54Kg 0.935 4.13 10.20 33.80

fast, 6.80Kg 0.895 4.97 12.85 31.93

fast, 9.07Kg 0.905 5.25 11.95 29.8

med, 4.54Kg 0.855 3.28 14.40 19.72

med, 6.80Kg 0.915 3.41 9.05 27.30

med, 9.07Kg 0.860 6.00 11.40 20.15

slow, 4.54Kg 0.780 3.08 9.78 8.89

slow, 6.80Kg 0.825 4.05 10.28 12.98

slow, 9.07Kg 0.695 7.15 12.30 12.20

crossover, boundary mutation, and uniform mutation have
been used as genetic operators [17]. The most significant
optimized scaling factors are: (1) the Brachioradialis to
Brachialis sEMG scaling factor (∼3.5); (2) the geometrical
scaling factor (∼1); (3) the maximum force of the three
head of the triceps (lowered to the maximum extent); (4)
the fast fiber percentage scaling factors (greater than one
for all the muscles).

IV. DISCUSSION

The objective of this study was to develop a myoproces-
sor to be used as an elbow joint moment predictor for an
upper limb exoskeleton. As a central element of a neurally
controlled exoskeleton, the myoprocessor should be robust,
providing accurate torque predictions over broad loading
conditions in real-time.

In order to achieve adequate performance and robust-
ness, the myoprocessor has been developed with internal
parameters that preserve close ties with the physiological

glob BSH BLH TLgH TmH TLtH BRS BRA 

-0.5

0

0.5

1

1.5

2

sc
al

in
g 

fa
ct

or
-1

Fig. 6. Scaling factors of the nominal values of the muscle models
parameters obtained by the Genetic Algorithm optimization. The nominal
values are defined in Table 1. For readability purposes, the scaling factor
values present an offset of one. A value of zero indicates that no change
was made to the parameter nominal value. The first three genes are 1)
scaling factor for biceps long head sEMG, 2) scaling factor for brachialis
sEMG, 3) geometrical scaling factor. For each muscle the parameters are:
1) optimal fiber length; 2) maximum force at the optimal length; 3) fast
fiber percentage 4) SPE parameter; 5) SSE parameter.

parameters of muscles while preserving the required sim-
plicity to allow real-time operation.

The core of the myoprocessor is a Hill-based muscle
model along with a three-dimensional anatomical repre-
sentation of the upper limb based on the Visible Human
Project [7]–[9].

Given the experimental database obtained for various
loading conditions, genetic algorithms were used to op-
timize a large set of the myoprocessor internal parameters.
This methodology allows one to modify the generic internal
nominal parameters and adjust them to a specific individual
under study. As indicated by the results, the ability of
the myoprocessors to accurately predict the joint moment
increased significantly with an optimized set of internal
parameters.

The results indicated that the model is limited in pre-
dicting the joint moments for slow movements, particu-
larly when the elbow joint approaches full flexion. This
phenomenon could be explained by the lack of measured
sEMG data for predicting the Brachialis muscle neural
activation levels. In fact, the Brachialis muscle activation
levels were estimated as a percentage of the Brachioradialis
activation levels [13]. It was previously indicated that the
Brachialis is more active during isometric elbow flexion,
compared to dynamic elbow flexion, where the biceps plays
a major role [14]. When the elbow joint approaches max-
imum flexion, the moment arm of the Brachialis muscle
reaches its maximal value and the joint angular velocity
decreases until it reaches a value of zero at the end of the
flexion movement.

Therefore it is reasonable to assume that the Brachialis
muscle contributes to the overall joint moment. As a
result, an approximation of the Brachialis muscle neural
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activity based only on the Brachioradialis muscle may lead
to some discrepancies in the overall model prediction in
these specific conditions. The importance of the Brachialis
muscle is confirmed by the relatively high scaling factor
value (∼ 3.5) obtained with respect to the Brachioradialis
muscle. It is also evident that the optimization algorithms
tended to lower the maximum force of the Triceps muscle.
During the elbow flexion movement the Triceps muscle
acts as a joint stabilizer, while decreasing the net joint
torque mainly generated by the flexor muscles. Since
joint stabilization through co-contraction is not part of the
optimization criteria, the optimization process decreases the
Triceps muscle contribution to the net joint torque. In future
studies more accurate extensor muscle parameters should
be obtained by also including active extension movements
in the optimization data set.

It is evident from the results (Fig. 6) that no global
geometrical scaling was necessary. This result is validated
by a close match between the anthropometrical data of the
subject under study and the visible human database that
was incorporated into the model.

The fast fiber percentage (α) increase that was obtained
after the optimization, even if not physiologically satis-
factory, could be explained based on the effect it has on
VCEmax

(see eq. 7) and consequently on the shape of the
fv curve (eq. 4). In fact, an increase in α causes an increase
in VCEmax

so that greater values of force could be obtained
at a given velocity, during concentric contractions.

Finally, it is worth noticing that the parameters of the
model were optimized based on a single data set (repetition
#1, medium velocity, 6.8Kg load) and that the model was
robust enough to provide adequate predictions while using
data sets that were not used for its parameter optimization.

Improvements to the myoprocessor’s performance may
be obtained in the future by a more refined estimation of
the neural activation from the sEMG signals. The muscle
model may be refined by using the findings in [18]–[21]
that improve the accuracy of the contractile element. In
addition a model of the Brachialis muscle activation level
may be developed in order to better cope with the lack of
noninvasive sEMG data. Finally, the anatomical model of
the arm may be refined allowing optimization of all the
parameters affecting muscle paths.

In conclusion, the myoprocessor utilizing a Hill-based
model provides a robust and accurate prediction of the joint
moment given the neural activation levels of the muscles
and the joint kinematics. In the future development of
this research, one myoprocessor for each muscle of the
human arm will be run in real-time (1 KHz) as part of the
exoskeleton control system.
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