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ABSTRACT 
 

Surgical robotic systems and virtual reality simulators have introduced an 
unprecedented precision of measurement for both tool-tissue and tool-
surgeon interaction; thus holding promise for more objective analyses of 
surgical skill.  Integrative or averaged metrics such as path length, time-
to-task, success/failure percentages, etc., have often been employed 
towards this end but these fail to address the processes associated with a 
surgical task as a dynamic phenomena.  Stochastic tools such as Markov 
modeling using a ‘white-box’ approach have proven amenable to this 
type of analysis. While such an approach reveals the internal structure of 
the of the surgical task as a process, it requires a task decomposition 
based on expert knowledge, which may result in a relatively 
large/complex model. In this work, a ‘black box’ approach is developed 
with generalized cross-procedural applications., the model is 
characterized by a compact topology, abstract state definitions, and 
optimized codebook size. Data sets of isolated tasks were extracted from 
the Blue DRAGON database consisting of 30 surgical subjects stratified 
into six training levels.  Vector quantization (VQ) was  employed on the 
entire database, thus synthesizing a lexicon of discrete, task-independent 
surgical tool/tissue interactions. VQ has successfully established a 
dictionary of 63 surgical code words and displayed non-temporal skill 
discrimination.  VQ allows for a more  cross-procedural analysis without 
relying on a thorough study of the procedure, links the results of the 
black-box approach to observable phenomena, and reduces the 
computational cost of the analysis by discretizing a complex, continuous 
data space.   

 
 
1. INTRODUCTION 

 
Modern surgical trainees and preceptors face decreasing time and resources for 

training and evaluation as well as pressure for consistent self-accreditation directed towards 
the general surgical community.  This in turn motivates the development of more 
consistent, objective, and computerized tools for surgical skill evaluation. The 
implementation of virtual reality (VR) simulation and robotic interfaces into surgical tasks 
has allowed the extraction of quantitative metrics.  Much work has been devoted to 
translating such data into a scoring of surgical skill. While many of these findings reveal 
generally significant performance metrics such as completion time, path length, and 
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success/failure percentages, they often neglect other physical variables inherent in surgical 
tasks [1,2,3].   

A complete, quantitative characterization of surgical skill is a very ambitious 
undertaking.  Such a system must include all spatial, temporal, and energetic aspects of the 
surgeon/patient interaction, the interactions between those factors as well as the context of 
the specific organ/tissue/procedure, and the consequences of each manipulation in terms of 
patient outcome.  The eventual goal is an algorithm which processes surgeon actions, 
measured by a variety of sensors simultaneously, in the context of a specific task or 
surgical procedure.   

Stochastic techniques such as hidden Markov modeling (HMM), taking advantage 
of their success in speech recognition [4],  hold much promise to robustly capture the 
relevant temporal information of surgical tasks. It was shown that HMM is amenable to the 
analysis of telemanipulation [5] but that it is more successful when developed with human 
knowledge of the manipulation task. Moreover, HMMs were applied in manipulation data 
with particular emphasis on context dependence [6]. This ‘white-box’ approach of pre-
programmed, built-in human knowledge is amenable to surgical analysis and utilizes 
dynamic surgical characteristics [7,8]. 

A discrete HMM can be utilized instead of its continuous counterpart through the 
use of Vector Quantization (VQ).  This discretization strategy has been used in speech 
processing on HMM’s [9,10].  For a surgical application, VQ allows the compression of a 
high-dimensional input data vector, having both continuous and discrete components, into 
a single “codeword” for each unit of time. The traditional implementation has been the k-
means algorithm [11,12,13].  Rosen, et al., have shown that this approach was successful 
when aided by built-in expert human knowledge.  While this VQ approach proved 
successful in processing  surgical data, it remains dependent on a task decomposition based 
on highly specialized expert knowledge (a “white-box” approach) and may result in an 
unnecessarily complex model.  Such requirements may prove undesirable or forbidding for 
efficiently generalizing the application of this VQ-HMM approach across different surgical 
procedures.  Image processing applications catalyzed much of the development and 
optimization of VQ algorithms themselves [14] and a variety of more specialized VQ 
algorithms exists.  These are surveyed in [15].  For surgical applications, a category of 
‘greedy’ VQ algorithms appears particularly relevant [16,17].  In this paper, we compare 
the performance of four different VQ algorithms with surgical data and investigate the 
ability for VQ alone to differentiate surgical skill. 
 
2. METHOD/TOOLS 
 

Data sets of isolated surgical tasks were extracted from a database acquired with the 
Blue DRAGON consisting of 30 surgical subjects stratified into six training levels, each 
completing a laparoscopic porcine task of bowel suturing [18]. The input vector included 
forces, torques, and velocities in the xy plane and along the z axis (aligned with the tool’ 
shaft) expressed with respect to a coordinate system located at the port of each tool, 
aligning with  grasping force, angular velocity of the handle and binary contact 
information. The data streams of all 30 participants were concatenated into a single 
sequence and each channel was normalized via a linear scaling to an interval of [-1 1].  
Binary/discrete data were scaled directly while continuous data channels were normalized 
based on their 97th percentile.   

Vector quantization was employed on this scaled, concatenated database, thus 
synthesizing a lexicon of discrete tool/tissue interactions. Towards this end, three variant 
VQ training algorithms were utilized and compared: (1) the generalized Lloyd algorithm 
(GLA, Method I), (2) a variant of GLA that increments codebook size by 1 instead of 
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doubling it, and a modified GLA which also increments its codebook size by 1 but has a 
‘greedy’ criterion for best word-choice. The traditional k-means algorithm, a well-known 
VQ method, could not be implemented due to the large size of the database. Each VQ 
algorithm is briefly described in Table I. The algorithm exhibiting best performance based 
on lowest final distortion was chosen.   Codebook size ‘M’ was established by examining a 
relative ‘knee’ characteristic in the distortion vs. codebook-size curve, as well as some less 
subjective sudden-drop-in-distortion artifacts.  Once chosen, this codebook encoded each 
subject’s scaled data.  Hence for every unit of time, a multi dimensional vector of 
continuous data is mapped to the closest discrete codeword, taken from a codebook of 
established size M.  
 
 GLA  

(Method I) 
Modified GLA 

(Iterated Method I) 
Full Search “Greedy”  

VQ Algorithm 
Traditional K-means 

Algorithm 
Step 1 Place first word at mean 

vector of data 
 

Place first word at mean 
vector of data 
 

Place first word at mean 
vector of data 
 

Initially choose code-
book size N and 
randomly distribute N 
points in the data 
space 

Step 2 Increase the size of the 
codebook by 2n, splitting 
all code-words 
 

Increase the size of the 
codebook by 1, splitting 
the most populous 
codeword(s) 
 

Find the codeword 
giving largest distortion 
drop when split (full 
search through 
codebook, using step 4 
each time) and split it 

Iteratively migrate 
each codeword 
towards local point 
clusters to min-imize 
global  distortion 
 

Step 3 Relocate each word until 
a (local) minimum of 
distortion is reached 

Relocate each word  
until a (local) minimum of 
distortion is reached 

Relocate each word  
until a (local) minimum 
of distortion is reached 
(using GLA techniques) 

Continue step 2 until 
the (percent) change 
in distortion is less 
than threshold 

Step 4 Continue steps 2-3 until 
the (percent) change in 
distortion is less than 
threshold 

Continue steps 2-3  
until the (percent) 
change in distortion is 
less than threshold 

Continue steps 2-3  
until the (percent) 
change in distortion is 
less than threshold 

Repeat steps 1-3 with 
different random 
initializations to 
approach global 
extrema 

Normalized 
Execution 

Time* 

 
1 

 
72 

 

1440 
(degrades greatly w/ 

larger book sizes) 

Forbiddingly Slow  
(sensitive to  
initial conditions) 

Relative 
Distortion 

 
High 

 
High 

 
Low 

Lowest (theoretically)  
(highly sensitive to 
initial conditions) 

Table I:  Overview of different VQ algorithms- (*)The execution time factor is normalized with respect to 
GLA method. Given the currently available computational power, the execution time for identifying 250 
codewords using the GLA method on a SUN Ultra Enterprise 450 Platform with dual UltraSPARCTM II 
processors is 5 min. 
 
3. RESULTS  
 
Figure 1 depicts three VQ codebook training sessions using the selected algorithms and 
initializations. Each curve begins at a codebook size of M=1, having a distortion equal to 
the variance of the entire training data set. Codebook distortion drops with increase in 
codebook size until it reaches zero when the number of codewords equals the number or 
samples in the training data.  Figure 1 illustrates this curve in the domain of 3 to 250 
codewords.  Both the Standard GLA (Method I) and iterated GLA yield the highest 
distortion values.  The two runs (different random seed initializations) of the ‘greedy’ 
word-choice algorithm gave lowest overall distortion and exhibited more convergent 
behavior.  While training time for the ‘greedy’ trials increased rapidly with higher 
codebook size, it was acceptable for codebooks smaller than 250.  
Both a ‘knee’ characteristic and occasional sudden drops in distortion appear in the curves. 
Selecting Run #2 of the ‘greedy’ VQ algorithm for lowest distortion, a small but discrete 
drop at size M=63 suggests that it is a good codebook size for the training set. Each 
subject’s data was grouped into appropriate experience levels of experts and 1st through 5th 
year residents (R1…R5) then encoded with this codebook.  Histograms of the percent of 
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time each codeword was in use, normalized to the average task completion time of that 
group were plotted in Fig. 1 B-F.  First-year residents (R1) were compared with experts to 
illuminate the differences between the skill levels.  Figure 1B shows the percentage of time 
each codeword was in use as taken from the Expert or R1 group, whichever was larger.   
The shading scheme corresponds to this value and identifies the codewords in all 
subsequent figures.  Figure 1C illustrates the logarithmic ratios of each codeword 
frequency between the R1s and experts.  For example, R1s used codeword 26 
approximately 20 times more than experts, both groups used codeword 54 approximately 
equally, and experts never used codeword 39 (Fig 1C) while R1s used it more than two 
percent of their task time (Fig 1A).  Considering that average R1 task time was 12 minutes, 
this percentage appears to be significant.  Because the darker shading corresponds to more 
time-in-use, the darker ratio bars might be given greater weight in assessment of skill. 
 
 

 
 
Figure 1:  Percentage of time experts and 1st-year residents (R1) spent using each codeword.  Max[R1, 
Expert] refers to the larger of the value from Expert or R1 levels.  (A) and (B) are sorted by the value of 
Max[R1, Expert], (C) and (D) are sorted by their title value.  The shading scheme is consistent for all axes 
and acts as an identifier. 
 
Figure 1 D and 2F shows the expert and beginner codeword histograms sorted by 
frequency, but separately for each group. Beginners appear to use a larger variety of 
codewords.  Experts spend 25% of their task time using only four words which in fact are 
the darkest, as opposed to the 6 words used in the top 25% of the R1’s task time.  These 
differences are also evident at the 50%, 75%, and 90% levels.  It should also be noted that 
code-words used most often by experts (the three darkest bars) are used less often by 
beginners. Figure 2 summarizes the 5 normalized most frequently used code-words (code 
word 59-63) in the database.  
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Figure 2: The Five most commonly used normalized code-words marked as 59-63 with the appropriate 
correspondence to Fig. 1 (Definitions: Fxy, Txy- force and torque in the xy plane; Fz, Tx - force and torque 
along the long shaft of the endoscopic instrument; Vxy/g- Angular velocity;  Vz –Linear Velocity ; ConL – 
Tool/Tissue contact; L – left Tool; R- right tool). Each signal was normalized into a range of [1 -1] which is  
translated into the Max/Min values appeared in the table.  
 
4. DISCUSSION AND CONCLUSIONS  
 

Analyzing the data with four VQ methods indicates that a ‘greedy’ VQ algorithm 
provided a codebook with the lowest distortion while adequately coped with the 
complexity level of the  surgical database.  A code-book with 63 code-words performed 
well with the bowel suturing data.  The VQ successfully established a dictionary of surgical 
vocabulary and even displayed an ability to objectively differentiate surgical skill level.  It 
should be stressed that this was an entirely ‘black-box’ approach that did not rely on pre-
existing human knowledge of the task to achieve its capability to distinguish surgical skill 
level.  Moreover, this approach affords a significant data reduction method that not only 
allows a transfer from a high-dimensional continuous space to a finite set of discrete values 
but also allows the mixing of data types such as binary tissue contact information (context) 
with continuous force-torque signatures. While in itself this technique shows potential to 
differentiate experience levels, it does so without any temporal considerations. Future 
improvement in skill discrimination should be possible once these code-words are 
processed by a temporal process such as Hidden Markov Model (HMM).   

The approach of choosing optimal codebook size presented in this paper is 
undesirably subjective.  While some analytical methods do exist for quantifying optimality, 
they were not yet explored. For significantly large data sets of high complexity, training the 
codebook can be time consuming.  However, this step needs to be completed only once 
(offline) and so long as the training data are sufficiently characteristic of subsequently 
encoded surgical behavior, this issue does not hinder VQ implementation into surgical skill 
evaluation.  Once an optimal codebook is established, input data can be processed (VQ 
encoded) in real-time [19].  
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Range Max Min 
Norm 1 -1 

FxyL [N] 4.745  0.059 
Txy [Nm] 1.326   0.046 
Tz [Nm] 0.023 –0.016 

Vxy [Rad/s] 0.015 0 
Vz [m/s] 0.029 –0.026 

Vg [Rad/s] 0.0480 -0.0390 
ConL 1.000 0.000 
FxyR 4.863 0.0798 

FzR [N] 36.002 -41.959 
FgR [N] 29.069 -5.419 
Txy [Nm] 1.021 0.0211 
TzR [Nm] 0.0190 -0.020 
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