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ABSTRACT

Laparoscopic surgical skills evaluation of surgery residents is usually a subjective process,
carried out in the operating room by senior surgeons. By its nature, this process is performed
using fuzzy criteria. The objective of the current study was to develop and assess an objective
laparoscopic surgical skill scale using Hidden Markov Models (HMM) based on haptic
information, tool/tissue interactions and visual task decomposition. Methods: Eight subjects
(six surgical trainees: first year surgical residents 2xR1, third year surgical residents 2xR3
fifth year surgical residents 2xR5; and two expert laparoscopic surgeons: 2xES) performed
laparoscopic cholecystectomy following a specific 7 steps protocol on a pig. An instrumented
laparoscopic grasper equipped with a three-axis force/torque sensor located at the proximal
end with an additional force sensor located on the handle, was used to measure the forces and
torques. The hand/tool interface force/torque data was synchronized with a video of the tool
operative maneuvers. A synthesis of frame-by-frame video analysis was used to define 14
different types of tool/tissue interactions, each one associated with unique force/torque (F/T)
signatures. HMMs were developed for each subject representing the surgical skills by
defining the various tool/tissue interactions as states and the associated F/T signatures as
observations. The statistical distance between the HMMs representing residents at different
levels of their training and the HMMs of expert surgeons were calculated in order to generate
a learning curve of selected steps during laparoscopic cholecystectomy. Results:  Comparison
of HMM’s between groups showed significant differences between all skill levels, supporting
the objective definition of a learning curve. The major differences between skill levels were:
(i) magnitudes of F/T applied (ii) types of tool/tissue interactions used and the transition
between them and (iii) time intervals spent in each tool/tissue interaction and the overall
completion time. The objective HMM analysis showed that the greatest difference in
performance was between R1 and R3 groups and then decreased as the level of expertise
increased, suggesting that significant laparoscopic surgical capability develops between the
first and the third years of their residency training. The power of the methodology using
HMM for objective surgical skill assessment arises from the fact that it compiles enormous
amount of data regarding different aspects of surgical skill into a very compact model that can
be translated into a single number representing the distance from expert performance.
Moreover, the methodology is not limited to in-vivo condition as demonstrated in the current
study. It can be extended to other modalities such as measuring performance in surgical
simulators and robotic systems.

1. Introduction

One of the paramount issues in surgical education is the evaluation of surgical skill.
An accurate means of assessing surgical skill would allow surgical educators to evaluate the
effectiveness of skills training, monitoring progress and learning curves of students and
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residents along the course of their study. Skill evaluation in surgery in general, and
laparoscopic surgery in particular, is currently a subjective process, carried out in the
operating room or performed off-line using a video tape by expert surgeons grading the
performance of the student. By its nature, this process is performed using fuzzy criteria.

Surgical skills are accessible for analysis in three different environments : (1) open
or minimally invasive surgery (MIS) utilizing traditional surgical tools and equipment, (2) a
robotic system using a master/slave setup, and (3) a simulator utilizing a haptic device that
generates force feedback in addition to a virtual reality graphic representation of the
surgical scene. All of these systems have a human-machine interface. Through this
interface, visual, kinematic, and dynamic information is flowing back and forth between the
surgeon and the environment. The aim of the current research was to develop methodology
to acquire and analyze information at the human/tool interface in order to quantitatively and
objectively evaluate surgical skill and learning curves of MIS. The power of the proposed
methodology is that it can be incorporated into any of the three environments.

The methodology developed in the current study was based on the Hidden Markov
Modeling (HMM). HMMs were extensively developed in the area of speech recognition
(for mathematical review see [1]). Based on the theory developed for speech recognition
HMMs have become useful statistical tools in the fields of robotics, teleoperation [2, 3, 4],
human manipulation actions, manufacturing, gesture recognition. They are also being
applied to the recognition of facial expressions from video images, DNA and protein
modeling, nuclear power plants, and detection of pulsar signals. These applications suggest
that the HMMs have high potential to provide better models of the human operator in
complex interactive tasks with machines.

2. Materials and Methods

2.1 Subjects and Protocol

Eight subjects (six general surgery residents: first year residents - 2xR1, third year
residents 2xR3, fifth year residents - 2xR5 and two expert, attending laparoscopic surgeons
- 2xES) each completed the experimental protocol. . The protocol consisted of two phases.
During the first phase, subjects watched a 45-minute video of the surgical procedure guided
by a senior surgeon to standardize the technique of the procedure into 7 steps for purposes
of the study.. Following this introduction in the second phase, each subject performed a
laparoscopic cholecystectomy on a pig using using the force/torque sensing instrument. All
surgical procedures and animal care were reviewed and approved by the Animal Care
Committee of the University of Washington. Based on pilot data analysis, force/torque data
from 3 steps of the laparoscopic cholecystectomy (positioning of the gallbladder - LC-1,
exposure of the cystic duct - LC-2, and dissection of the gallbladder - LC-3) were recorded.
During these steps the instrumented endoscopic tool was used with an atraumatic grasper, a
Babcock grasper, and a curved dissector (Fig. 1c).

2.2 Experimental System Setup

During each procedure, information was collected from two sources: (i) force/torque
data measured at the human/tool interface and (ii) visual information of the tool tip
interacting with the tissues. The two sources of information were synchronized in time,
displayed in real time using graphical user interface, and acquired simultaneously at a
sampling rate of 30 Hz for off-line analysis. Two sets of sensors measured the F/T at the
interface between the surgeons’ hand and the endoscopic grasper handle (Fig 1a). The first
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sensor was a three-axis force/torque sensor (ATI-Mini model) which was mounted into the
outer tube (proximal end) of a standard reusable 10-mm endoscopic grasper (Storz). The
sensor was capable of simultaneously measuring the three components of force (F F Fx y z, , )

and three components of torque (T T Tx y z, , ) in a Cartesian frame (Fig. 1b). A second force

sensor (Futek - FR1010) was mounted to the endoscopic grasper handle to permit the
measurement of grasping force (Fg

) applied by the surgeon's fingers on the instrument. For

a detailed description of the system see [5, 6, 7]

               
                             (a)                                                  (b)                                      (c)

Figure 1: The instrumented endoscopic grasper: (a) The grasper with the three axis force/torque sensor
implemented on the outer tube and a force sensor located on the instrument handle (b) The tool tip and X,Y,Z
frame aligned with the three axis force/torque sensor  (c) Tool tips used in the surgical procedure (from left to
right): Atraumatic Grasper, Babcock grasper, Curved  dissector.

2.3 Data Analysis

Two types of analysis were performed on the raw data: (i) Video Analysis, encoding
the tool-tip/tissue interactions into states; and (ii) Hidden Markov Modeling (HMM), for
modeling.  The performance of surgeons at different level of their training (R1, R3, R5, ES)
was then compared.

Video analysis was performed by two expert surgeons , reviewing thevideo of each
surgical procedure step, frame by frame (NTSC - 30 frames per second). The encoding
process used a library of 14 different discrete tool maneuvers in which the endoscopic tool
was interacting with the tissue in a unique F/T pattern (Table 1). . For example, in
laparoscopic cholecystectomy, isolation of the cystic duct and artery (LC-2) involves
performing repeated pushing and spreading (PS-SP - Table 1) maneuvers which in turn
requires pushing forces mainly along the Z axis ( Fz ) and spreading forces ( Fg ) on the

handle that form a characteristic pattern or signature. These 14 states can be grouped into
three broader types (I, II, III) based on the number of movements performed
simultaneously. Type I are fundamental maneuvers that include the idle state (moving the
tool in space without touching any structures within the insufflated abdomen). The forces
and torques used in idle state represent mainly the interaction of the trocar with the
abdominal wall plus smaller gravitational and inertial forces. In the grasping and spreading
states, compression and tension are applied to tissue by closing/opening the grasper handle.
In the pushing state, compression is applied to tissue by moving the tool along the Z axis.
For sweeping, the tool is placed in one position while rotating around the X and Y axes
(trocar frame). Type II and type III states are defined as combinations of two or three Type
I states (Table 2).

During the second step of the data analysis, Hidden Markov Models (HMM) and the
methodology for evaluating surgical skill in laparoscopic surgery were develop. HMMs
were selected for modeling the surgical procedure because their generic architecture fitted
very well the nature of laparoscopic surgery task assessment. Moreover, the HMM

One axis force sensor ( Fg
) X

Y

Z

Three axes force/torque sensor
( F F Fx y z, , , T T Tx y z, , )
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mathematical formulation provided a very compact form that statistically summarized
relatively complex tasks such as individual steps of a laparoscopic surgery procedure.

Type State Name State Force / Torque Pattern
Acronym Fx Fy Fz Tx Ty Tz Fg

I Idle ID * * * * * * *
Grasping GR +
Spreading SP -
Pushing PS -
Sweeping SW +/- +/- +/- +/-

II Grasping - Pulling GR-PL + +
Grasping - Pushing GR-PS - +
Grasping - Sweeping GR-SW +/- +/- +/- +/- +
Pushing - Spreading PS-SP - -
Pushing - Sweeping PS-SW +/- +/- - +/- +/-
Sweeping - Spreading SW-SP +/- +/- +/- +/- -

III Grasping - Pulling - Sweeping GR-PL-SW +/- +/- + +/- +/- +
Grasping -Pushing - Sweeping GR-PS-SW +/- +/- - +/- +/- +
Pushing - Sweeping - Spreading PS-SW-SP +/- +/- - +/- +/- -

Table 1: Definition of tool/tissue interactions and the corresponding directions of forces and torques applied
during MIS.

Each laparoscopic surgical step could be decomposed into a series of finite states
defined by the way the surgeon is interacting with the tissues (Table 1). The surgeon could
move from one state to another or stay in the same. Once the surgeon was interacting with
the tissue in a specific state, a certain F/T signature was applied by the surgeon through the
surgical tool to the tissue. These F/T signatures, each defined as an observation, was
composed of seven components vector of data (F F Fx y z, , ,T T Tx y z, , , Fg

). Since the F/T were

continues stream of data distributed normally, each state could be defined by seven normal
distributions functions chartered by a mean and a standard deviation ( ( ) 7...1     , =iN i σµ ).

Combining the 7 elements vector into joint multivariable distribution function )(Of  was
done by using Eq. 1.
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where: O  is the F/T observation vector; µ  is the mean vector; ∑  is the covariance matrix,
and N is the observation vector size.

An example of the state analysis is given in Figure 2.  The diagram  describes the
process of deconstructing a laparoscopic surgical procedure step. Circles in this diagram
represented states and lines represented transitions between states. The F/T data -
observation signals were not included in Fig. 2. The HMM is termed “hidden” due to the
fact that tool/tissue interactions - the states - not included in the analysis and the only
observed signals are the F/T data. Although any procedure step could be decomposed
manually using a frame-by-frame video analysis, this is time consuming and unnecessary
since the data can also be evaluated mathematically by the HMM once its parameters are
optimized.

From the mathematical perspective, four elements should be defined in order to
specify a HMM ( λ ) [23]: (i) the number of states in the model – N, (ii) the state transition
probability distribution matrix – A, (iii) the observation symbol probability distribution
matrix – B, and (iv) the initial state distribution vector– π . The HMM is then defined by
the compact notation (7)
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),,( πλ BA= (2)
Given the HMM architecture there are three basic problems of interest [1]: (i) The

evaluation problem – Computing the probability ( P ) of the observation sequence given the
model )(λ  and the observation sequence )(O .

Given: 
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(ii) Uncover the hidden states – Computing the corresponding hidden state sequence )(Q ,
given the observation sequence )(O  and the model )(λ .

Given: 
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(iii) The training problem – Adjusting the model parameters ),,( πBA to maximize the
probability ( P ) of the observation sequence )(O .

Given: { ),,( πλ BA= ; Adjust: { π,, BA  ; Maximize:  { )|( λOP (5)
Using the given HMM architecture (Fig. 3a), HMMs were trained for each surgeon

performing each step of the surgical procedure (8 HMM models, one for each surgeon
performing one surgical procedure step). The skill level of each subject (R1, R3, R5) was
evaluated based on the statistical distance between his/her HMMs and the expert surgeons
(ES)

Given two HMMs 1 λ  and 2 λ the statistical distances between them ),( 2 1 λλD  and

),( 1 2 λλD  were defined by Eq. 6
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),( 2 1 λλD  is a measure of how well model 1 λ  matches observations generated by model 2 λ
relative to how well model 2 λ  matches observations generated by itself. Since ),( 2 1 λλD

and ),( 1 2 λλD  are nonsymmetrical, The natural expression of the symmetrical version is
defined by Eq. 7.
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In order to scale the statistical distance between the various groups (R1, R3, R5) and
the expert surgeons (ES), for each surgical procedure the statistical distance between a
certain group and the expert group ( ),(        iESiRSD λλ ) was normalized with respect to the

distance between the two experts ( ),( 2  1 ESESSD λλ ) - Eq. 8.
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The practical meaning of the normalized statistical distance ( ),(        iESiRSD λλ ) is how far each

subject is from performing like the sampled expert surgeons.

3. Results

The data analysis demonstrated several phenomena. First, expert and novice
surgeons took different paths to reach the same goal. Each group utilized states and
transitions not used by the other group. Secondly, studying the median completion time of
the novice surgeon group and the expert surgeon group showed a significant difference
between these groups (p<0.05). The surgical procedure’s completion time was longer for
the R1 by a factor of 1.5 to 4.8 when compared to the ES. The difference between R1 and
ES was more profound in steps requiring higher dexterity and more complex skills
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compared to steps where a specific organ was placed in a specific position (e.g. positioning
of the gallbladder). The main factor contributing to the significant difference in the
completion times between R1 and ES was the time spent in the idle state. The R1 spent
significantly more time in the idle state compare to the ES.
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Figure 3: HMM Analysis - (a) HMM architecture defined by 14 fully connected state diagram (arrow heads
of all the lines connected two states were omitted for simplifying the drawing) (b) The performance or
“learning” curve of surgical residents while performing MIS - Normalized statistical distance between two
different HMM architectures (continuous 14 state model, and discrete 4 state model) representing the
performance of surgical  residents(R1, R3, R5) at different year of training compared to experts surgeons

HMMs were developed foreach of the 8 subjects (and statistical distances were
normalized (

SD  - Eq. 8) between ES and R1 ,R3 ,R5 (Fig. 3b). The objective laparoscopic

surgical skill learning curve showed significant differences between all skill levels (Fig. 7).
The 

SD  value converged to a value of one exponentially as expertise increased although the

highest gradient was between R1 and R3. This results suggest that surgical residents
acquire a major portion of their laparoscopic surgical capabilities between the first and the
third years of training. Calculating the 

SD  values for LC-1 (not plotted in Fig. 7) showed no

significant difference between the groups. This is correlated with the F/T magnitude
differentiation analysis between the R1 and ES. The practical meaning of that result is that
a simple surgical maneuver such as LC-1 may not include sufficient haptic information to
differentiate skill levels. On the other hand, more complex steps such as  LC-2 and LC-3 do
provide such information (Fig. 3b).

4. Discussion

Surgery with minimally invasive techniques is a complex task that requires a
synthesis between visual and haptic information. Analyzing MIS in terms of these two
sources of information is a key step towards developing objective criteria evaluating
technicalperformance..  The power of this methodology is that it brings together thousands
of observations through different aspect of a surgical procedure into a single, objectively-
derived number.  This number represents the probability that surgical performance for the
subject under study approximates that of an expert.
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The preliminary results expressed in this study suggest that HMMs derived from
carefully standardized surgical tasks should allow objective quantification of skill based on
the statistical distance between HMMs. Moreover, this methodology may be useful to
determine if a surgical trainee’s technical performance matches his or her peers.

Another facet of the HMM methodology for objective surgical skill assessment
arises from the fact that it is not limited to the in-vivo conditions demonstrated in the
current studybut could be extended to other modalities such as surgical simulators and
robotic systems.
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