
Chapter 15
Unilateral and Bilateral Rehabilitation
of the Upper Limb Following Stroke
via an Exoskeleton

Jacob Rosen, Dejan Milutinović, Levi M. Miller, Matt Simkins,
Hyunchul Kim, and Zhi Li

Abstract Recent studies reported positive effects of bilateral arm training on stroke
rehabilitations. The development of novel robotic-based therapeutic interventions
aims at recovery of the motor control system of the upper limb, in addition to the
increase of the understanding of neurological mechanisms underlying the recovery
of function post stroke. A dual-arm upper limb exoskeleton EXO-UL7 that is
kinematically compatible with the human arm is developed to assist unilateral and
bilateral training after stroke. Control algorithms are designed and implemented to
improve the synergy of the human arm and the upper limb exoskeleton. Clinical
studies on the robot-assisted bilateral rehabilitations show that both the unilateral
and bilateral training have a positive effect on the recovery of the paretic arm.
Bilateral training outperforms unilateral training by a significant improvement of
motion range and movement velocities.
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Department of Computer Engineering, University of California, Santa Cruz, CA 95064, USA
e-mail: rosen@ucsc.edu; dejan@soe.ucsc.edu; msimkins@soe.ucsc.edu; zli12@ucsc.edu

L.M. Miller
Carbon Design Group, Seattle, WA, USA
e-mail: levimakaio@gmail.com

H. Kim
Apple Inc., Cupertino, CA, USA
e-mail: hyunchul78@gmail.com

P. Artemiadis (ed.), Neuro-Robotics: From Brain Machine Interfaces
to Rehabilitation Robotics, Trends in Augmentation of Human Performance 2,
DOI 10.1007/978-94-017-8932-5__15, © Springer Science+Business Media Dordrecht 2014

405

mailto:rosen@ucsc.edu
mailto:dejan@soe.ucsc.edu
mailto:msimkins@soe.ucsc.edu
mailto:zli12@ucsc.edu
mailto:levimakaio@gmail.com
mailto:hyunchul78@gmail.com


406 J. Rosen et al.

15.1 Introduction

Stroke is a leading cause of long-term neurological disability and the top reason for
seeking rehabilitative services in the U.S. Challenges in rehabilitation after stroke,
especially in the chronic phase are two-fold: the first is the development of systems
for intense delivery of targeted rehabilitative interventions based on neural plasticity
that will facilitate recovery and the second is to understand neural reorganization
that facilitates the recovery of function. Whereas in the acute phase post stroke,
medical management focuses on containing and minimizing the extent of the injury,
in the chronic phase post stroke, neural plasticity induced by learning/training
is the fundamental mechanism for recovery. The development of novel robotic
based therapeutic interventions aims at facilitating neural plasticity and inducing
sustainable recovery of the motor control system of the upper limb. In addition,
studies on the synergy of the human are and wearable robotic system (e.g., an upper
limb exoskeleton) improve the understanding of neurological mechanisms which
aim to maximize the recovery of function post stroke.

15.1.1 Bilateral Robotic System and Treatment

Research studies suggest that manual bilateral movements in which both arms
and hands move simultaneously in a mirror image fashion or work simultaneously
while performing a bilateral task have profound effects on the reorganization of the
neural system due to inherent brain plasticity. Using such a therapeutic approach for
stroke patients is based on the understanding that both brain hemispheres (damaged
and undamaged) are going through a natural recovery process, as well as neural
reorganization following a learning-based therapy. In spite of significant scientific
evidence, translating a mirror image bilateral therapeutic approach into an intense
(high dosage) physical rehabilitation treatment regime has been difficult. A therapist
administering this regime is challenged to simultaneously control the 16 degrees of
freedom (DOF) of both arms (14 DOF) and hands (2 DOF limited to 3-point chuck
type grasping).

When considering bilateral symmetric movement training as an option for
therapy, there are two aspects to its efficacy. The first aspect relates to neuroscience.
Based on experiments relating to bilateral symmetric manual coordination using
trans-cranial magnetic stimulation and kinematic modeling, symmetric movement
might reduce inhibitions between the left and right hemispheres [1, 2]. In other
words, bilateral symmetric movements have been found to increase cross-talk in the
corpus callosum. In that vein, multiple studies have demonstrated the effectiveness
of mirror therapy. Using mirror therapy, stroke survivors were able to improve
function based on the optical illusions of their paretic arm moving normally [3, 4].
Based on such research, it has been proposed that symmetric movement training
might exploit such coupling thereby allowing for an increased use of undamaged
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ipsilateral projections [5]. In this way, symmetric movement training might improve
the recovery process after a CVA. With respect to clinical outcomes, the results are
somewhat mixed. It is admittedly difficult to detect improvement. For individuals
who have chronic motor impairment, improvement after therapy is often subtle.
Standard care, unilateral and bilateral movement training have all been shown to
result in some improvement. However, distinguishing between training modalities
is difficult and the differences are small. To that end, there is virtually no data
(such as brain imaging) relating to neurological activity and bilateral therapy. For
these reasons, it remains uncertain if bilateral symmetric therapy is truly better
than unilateral therapy in the sense that there is more or less cross-talk between
the hemispheres. More to the point, there is no conclusive evidence that bilateral
symmetric movement training has a neurological basis.

Beyond neurological considerations, there are factors that distinguish the efficacy
of bilateral and unilateral movement training. Bilateral movement training was
shown to have better results than unilateral movement training in terms of the
range of motion (ROM). One explanation for this difference is that the paretic
arm was provided robotic assistance, while in the unilateral case, no assistance was
provided. Subjects also reported that they preferred assistance [6]. While it is true
that a robot can provide assistance for unilateral movement training, the control
algorithms and game designs become much more constrained. During movement
training, providing assistance that moves the arm through large angles might make
the therapy feel unpredictable and might raise safety concerns. However, when the
paretic arm is made to move symmetrically with the less affected arm, the subject is
in control, and the game play is more predictable and the assistance is more natural.
Therefore, bilateral training provides a flexible control paradigm for unstructured
assistance.

There are two approaches for bilateral training. One involves full assistance [7]
and the other requires partial assistance [6]. For full assistance, the paretic arm is
forced into symmetric motion. Using this approach, the subjects may focus entirely
on their less affected limb in order to play therapy games or to complete tasks.
The subjects might use a minimum of effort to move their paretic arm, and what
movements they do make will have little to no effect on the game play or task
completion. Bilateral symmetric movement training with partial assistance allows
the robot to provide some help for the paretic arm. However, the subjects cannot
quite play the game or complete the task with their paretic arm unless they provide
some voluntary effort. Subjects also perceived better outcomes for full assistance
than partial assistance [6].

Bilateral symmetric movement training does have the potential to aggravate
spasticity [6]. The cause for this relates to the speed of motion. It is known that
rapid flexion and extension of spastic joints can intensify existing spasticity. This
in turn can result in pain, weakness, and reduced coordination. When subjects
perform symmetric movements, their less affected arm might move too rapidly.
In turn, as the robot attempts to maintain symmetry, the paretic arm might move
too quickly thus aggravating spasticity. The largest effects were evident in the hand.
Therefore, bilateral symmetric movement is recommended for individuals who have
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mild spasticity. If robotic training is used with assistance, be it bilateral or unilateral,
care is needed not to move the paretic arm too fast.

15.1.2 Robot-Assisted Stroke Rehabilitation

Recently research results have demonstrated that robotic devices can deliver effec-
tive rehabilitation therapies to patients suffering from the chronic neuromuscular
disorders [8–10]. MIT-MANUS is one of the successful rehabilitation robots
which adopted back-drivable hardware and impedance control as a robot control
system [11]. ARMin is a 7-DOF upper limb exoskeleton developed in ETH Zurich
and the University of Zurich. This robot provides visual, acoustic and haptic
interfaces together with cooperative control strategies to facilitate the patient’s active
participation in the game. The lengths of the upper arm, lower arm, hand and the
height of the device are adjustable to accommodate patients of different sizes. The
rehabilitation site and robotic system are wheelchair accessible. Pneu-WREX is
a 6-DOF exoskeleton robot developed in UC Irvine. This robotic system adopted
pneumatic actuators [12]. Although the pneumatic actuator is harder to control
due to its non-linear characteristics, it produces relatively large forces with a low
on-board weigh [13]. The robot interacts with the virtual-reality game T-WREX
based on a Java Therapy 2.0 software system. Arizona State University researchers
developed a robotic arm, RUPERT (Robotic Upper Extremity Repetitive Therapy)
targeting cost-effective and light-weight stroke patient rehabilitation [14, 15]. The
device provides the patient with assistive force to facilitate fluid and natural
arm movements essential for the activities of daily living. The controller for the
pneumatic muscles can be programmed for each user to improve their arm and
hand flexibility, as well as strength by providing a repetitive exercise pattern.
In our previous work [16], the seven-DOF exoskeleton robot UL-EXO7 [8, 17, 18]
was exploited as a core mechanical system for the long-term clinical trial of
the bilateral and unilateral rehabilitation program. The controllers equipped in
UL-EXO7 provided the assistive force to help patients make the natural arm
posture based on the work in [19,20]. For the objective and fine-scale rehabilitation
assessment, a new assessment metric, an efficiency index, was introduced to tell the
therapist how close the patient’s arm movements are to the normal subject’s arm
movements.

15.1.3 Objective and Paper Structure

This chapter describes the EXO-UL7 – an upper limb exoskeleton system and
its clinical applications to bilateral stroke rehabilitation. Section 15.2 reviews the
kinematic design of the EXO-UL7 with considerations in its compatibility with
the kinematics of the human arm. Based on the kinematic modeling of the human
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arm, the forward and inverse kinematics are derived. The control architectures are
addressed, including the control algorithms for admittance control, gravity com-
pensation, inter-arm teleoperation and redundancy resolution. Clinical studies on
robot-assisted bilateral rehabilitations are presented in Sect. 15.3, with a comparison
of the outcomes of unilateral and bilateral training.

15.2 An Upper Limb Exoskeleton: EXO-UL7

15.2.1 System Overview

The kinematics and dynamics of the human arm during activities of daily living
(ADL) have been studied to determine specifications for exoskeleton design
(see Fig. 15.1). Articulation of the exoskeleton is achieved by seven single-axis
revolute joints which support 99 % of the range of motion required to perform
daily activities. Three revolute joints are responsible for shoulder abduction-
adduction, flexion-extension and internal-external rotation. A single rotational
joint is employed at the elbow, creating elbow flexion-extension. Finally, the
lower arm and hand are connected by a three-axis spherical joint resulting in
wrist pronation-supination, flexion-extension, and radial-ulnar deviation. As a

Fig. 15.1 The upper limb exoskeleton EXO-UL7 with seven DOFs, supporting 99 % of the range
of motion required to preform daily activities
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human-machine interface (HMI), four six-axis force/torque sensors (ATI Industrial
Automation, model-Mini40) are attached to the upper arm, the lower arm, the
hand and the tip of the exoskeleton. The force/torque sensor at the tip of the
exoskeleton allows measurements of the interactions between the exoskeleton and
the environment [8, 9, 21].

15.2.2 Kinematic Design of the Upper Limb Exoskeleton
EXO-UL7

15.2.2.1 Kinematic Modeling of the Human Arm

The upper limb exoskeleton EXO-UL7 is designed to be compatible with the human
arm kinematics. The human arm is composed of segments linked by articulations
with multiple degrees of freedom. It is a complex structure that is made up of both
rigid bone and soft tissue.Although much of the complexity of the soft tissue is
difficult to model, the overall arm movement can be represented by a much rigid
body model composed of rigid links connected by joints. Three rigid segments,
consisting of the upper arm, lower arm and hand, connected by frictionless joints,
make up the simplified model of the human arm. The upper arm and torso are rigidly
attached by a ball and socket joint. This joint enables shoulder abduction-adduction
(abd-add), shoulder flexion-extension (flx-ext) and shoulder internal-external (int-
ext) rotation. The upper and lower arm segments are attached by a single rotational
joint at the elbow, creating elbow flx-ext. Finally, the lower arm and hand are
connected by a 3-axis spherical joint resulting in pronation-supination (pron-sup),
wrist flx-ext, and wrist radial-ulnar (rad-uln) deviation. Models of the human arm
with seven DOFs have been widely used in various applications, including rendering
human arm movements by computer graphics [22, 23], controlling redundant
robots [24, 25], kinematic design of the upper limb exoskeletons [18, 26, 27], and
biomechanics [28–30]. These models provide a synthesis of proper representation
of the human and the exoskeleton arm as redundant mechanisms along with and
adequate level of complexity.

The kinematics and dynamics of the human arm during activities of daily
living (ADL) were studied in part to determine engineering specifications for the
exoskeleton design [8]. Using these specification, two exoskeletons were developed,
each with seven DOFs. Each exoskeleton arm is actuated by seven DC brushed
motors (Maxon) that transmit the appropriate torque to each joint utilizing a cable-
based transmission. The mechanisms are attached to a frame mounted on the wall,
which allows both height and distance between the arms to be adjusted. Articulation
of the exoskeleton is achieved about seven single axis revolute joints – one for
each shoulder abd-add, shoulder flx-ext, shoulder int-ext rotation, elbow flx-ext,
forearm pron-sup, wrist flx-ext, and wrist rad-uln deviation. The exoskeleton joints
are labeled 1–7 from proximal to distal in the order shown in Fig. 15.2. With seven
joint rotations, there is one redundant degree of freedom.
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Fig. 15.2 Exoskeleton axes assignment relative to the human arm. Positive rotations about each
joint produce the following motions: (1) combined flx/adb, (2) combined flx/add, (3) int rotation,
(4) elbow flx, (5) forearm pron, (6) wrist ext, and (7) wrist rad dev

The fundamental principle in designing the exoskeleton joints is to align the
rotational axis of the exoskeleton with the anatomical rotations axes. If more than
one axis is at a particular anatomical joint (e.g. shoulder and wrist), the exoskeleton
joints emulate the anatomical joint interaction at the center of the anatomical joint.
Consistent with other work, the glenohumeral (G-H) joint is modeled as a spherical
joint composed of three intersection axes [31]. The elbow is modeled by a single axis
orthogonal to the third shoulder axis, with a joint stop to prevent hyperextension.
Exoskeleton pron-sup takes place between the elbow and the wrist as it does. Finally,
two intersecting orthogonal axes represent the wrist. The ranges of motion of the
exoskeleton joints support 99 % of the ranges of motion required to perform daily
activities [8].

Representing the ball and socket joint of the shoulder as three intersecting joins
introduces of singularities that are not present in the human arm model. A significant
consideration in the exoskeleton design is the placement of singularities [24]. The
singularity is a device configuration in which a DOF is lost or compromised as a
result of the alignment of two rotational axes. In the development of a three DOF
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Fig. 15.3 Two singularities exist in the exoskeleton device, one when joints 1 and 3 align and the
other when joints 3 and 5 align. (a) The orientation of joint 1 places the singularity at the shoulder
in an anthropomorphically difficult place to reach. (b) Joints 1 and 3 align with simultaneous
extension and abduction of the upper arm by 47:5ı and 53:6 ı. (c) Similarly, the same singularity
can be reached through flexion and adduction by 132:5ı and 53:6ı. (d) Alignment of joints 3 and
5 naturally occurs only in full elbow extension

spherical joint, the existence or nonexistence of singularities will depend entirely
on the desired reachable workspace. Spherical workspace equal to or larger than
a hemisphere will always contain singular positions. The challenge is to place
the singularity in an unreachable, or near-unreachable location, such as the edge
of the workspace. For the exoskeleton arm, singularities occur when joints 1 and
3 or joints 3 and 5 align. To minimize the frequency of this occurrence, the
axis of joint 1 is positioned such that singularities with joint 3 take place only
at locations that are anthropometrically hard to reach. For the placement shown
in Fig. 15.3a, the singularity can be reached through simultaneous extension and
abduction of the upper arm by 47:5ı and 53:6ı, respectively (see Fig. 15.3b).
Similarly, the same singularity can be reached through flexion and adduction by
132:5ı and 53:6ı, respectively (see Fig. 15.3c). The singularity between joints 3
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Fig. 15.4 (a) Given a fixed wrist position in a 3D workspace, the arm plane formed by the
positions of the shoulder (Ps), the elbow (Pe) and the wrist (Pw) can move around an axis that
connects the shoulder and the wrist due to the kinematic redundancy. (b) The redundant DOF can
be represented by a swivel angle �

and 5 naturally occurs only in full elbow extension, i.e., on the edge of the forearm
workspace (see Fig. 15.3d). With each of these singularity vectors at or near the
edge of the human workspace, the middle and majority of the workspace is free of
singularities [8, 9].

15.2.2.2 Representation of the Redundant Degree of Freedom

Given the position (x, y, z) and the orientation (�x , �y , and �z) of a target in a
3-dimensional (3D) workspace, the human arm has a redundant DOF which allows
the elbow to move around an axis that goes through the center of the shoulder
and the wrist joints. This redundant DOF provides the flexibility in human arm
postures when completing the tasks defined in the 3D workspace. When applied
to controlling the upper limb exoskeleton, a swivel angle is used to represent the
redundant DOF. It specifies how much the elbow position pivots about the axis that
goes through the center of shoulder and center of wrist, when the hand has a specific
position and orientation.

As shown in Fig. 15.4, the arm plane is formed by the positions of the shoulder,
the elbow and the wrist (denoted by Ps , Pe and Pw, respectively). The direction of
the axis that the arm plane pivots about (denoted by n) is defined as:

n D Pw � Ps

jjPw � Psjj (15.1)
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Table 15.1 Denavit-Hartenberg (DH) Parameters for upper limb exoskeleton

Robot i � 1 i ˛i ai di �i

Left arm 0 1 �=2 0 0 �1 C � � 32:94ı

1 2 �=2 0 0 �2 C �=2 � 28:54ı

2 3 �=2 0 0 �3 C � � 53:6ı

3 4 �=2 0 L1 �4

4 5 ��=2 0 0 �5 � �=2

5 6 ��=2 0 L2 �6 C �=2

6 7 �=2 0 0 �7 C �

Right arm 0 1 �=2 0 0 �1 � 32:94ı

1 2 �=2 0 0 �2 � �=2 � 28:54ı

2 3 ��=2 0 0 �3 � � � 53:6ı

3 4 ��=2 0 �L1 �4

4 5 �=2 0 0 �5 C �=2

5 6 ��=2 0 �L2 �6 C �=2

6 7 �=2 0 0 �7 C �

The plane orthogonal to n can be determined given the position of Pe . Pc is the
intersection point of the orthogonal plane with the vector Pw � Ps . Pe � Pc is the
projection of the upper arm (Pe � Ps) on the orthogonal plane. u is the projection of a
normalized reference vector a onto the orthogonal plane, which can be calculated as:

u D a � .a � n/n
jja � .a � n/njj (15.2)

The swivel angle �, represents the arm posture, can be defined by the angle
between the vector Pe � Pc and u. The reference vector a is suggested to be
Œ0; 0; �1�T such that the swivel angle � D 0ı when the elbow is at its lowest possible
point [32].

15.2.2.3 The Forward and Inverse Kinematics
of the Upper Limb Exoskeleton

This section derives the forward and inverse kinematics of the EXO-UL7 exoskele-
ton. Table 15.1 shows the Denavit-Hartenberg (DH) parameters of the upper limb
exoskeleton, which are derived using the standard method (see [33]). The joint angle
variables are �i (i D 1; � � � ; 7). L1 and L2 are the length of the upper and lower
arms, respectively. The forward kinematics derives the transformation matrix 0

7T ,
which provides the position and the orientation of the wrist of the exoskeleton with
respect to the base frame Tbase:
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Table 15.2 Base rotation of
the upper limb exoskeleton

�X (ı) �Y (ı) �Z (ı)

Left arm 132.5 45 90
Right arm 132.5 �45 90

base
7 T D Tbase � 0

1T � 1
2T � 2

3T � 3
4T � 4

5T � 5
6T � 6

7T

D

2
664

r11 r12 r13 Pwx

r21 r22 r23 Pwy

r31 r32 r33 Pwz

0 0 0 1

3
775 (15.3)

In order to move the singularity out of the range of the daily movements of the
human arm, the bases of the two robotic arms of the upper limb exoskeleton are
rotated according to Table 15.2. Note that �X , �Y and �Z represent the rotation about
the X, Y and Z-axis, respectively. The transformation matrix for the base rotation is
described in Eq. (15.4).

Tbase D Rotx.�X /Rotz.�Y /Rotz.�Z/ (15.4)

With the specification of the transformation matrix 0
7T , the inverse kinematics

of the exoskeleton can be derived for the left and the right arm, respectively. The
redundant DOF of the human arm can be constrained by specifying the elbow
position (Pe D ŒP ex; P ey; P ez�

T ).
Based on the shoulder position Ps , elbow position Pe , and wrist position Pw, �4

can be derived as:

W D jjPw � Psjj (15.5)

c4 D L2
1 C L2

2 � W 2

2L1L2

(15.6)

s4 D
q

1 � c2
4 (15.7)

�4 D � � Atan2.s4; c4/ (15.8)

The transformation matrix 3
4T and its inverse 3

4T �1 can be found based on �4.
The transformation matrix without the base rotation, denoted base

7 T , can be
found by:

0
7T D T �1

0 �base
7 T D

2
664

r 0
11 r 0

12 r 0
13

0
7Pwx

r 0
21 r 0

22 r 0
23

0
7Pwy

r 0
31 r 0

32 r 0
33

0
7Pwz

0 0 0 1

3
775 (15.9)

Thus, the wrist position with respect to the rotated base is 0
7Pw D Œ07Pwx , 0

7Pwy ,
0
7Pwz�

T .
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Similarly, the elbow position with respect to the rotated base, denoted by 0
7Pe D

Œ07Pex , 0
7Pey , 0

7Pez�
T , is:

2
664

0
7Pex
0
7Pey
0
7Pez

1

3
775 D T �1

0 �

2
664

base
7 Pex
base
7 Pey
base
7 Pez

1

3
775 (15.10)

Note that 0
7Pe D 0

4Pe and

0
4T D 0

1T �12 T �23 T �34 T D

2
664

0
4Pex

0
4R 0

4Pey
0
4Pez

0 0 0 1

3
775 D

2
664

L1c1s2
0
4R L1c2

L1s1s2

0 0 0 1

3
775 (15.11)

For the both arms,

c2 D
0
4Pey

L1

(15.12)

For the left arm,

s2 D
p

.1 � c2
2/ (15.13)

For the right arm,

s2 D �
p

.1 � c2
2/ (15.14)

Thus, �2 can be resolved as:

�2 D Atan2.s2; c2/ � .�=2 � 28:54ı/ (15.15)

To resolve �1, for the both arms,

c1 D
0
4Pex

L1s2

(15.16)

s1 D
0
4Pez

L1s2

(15.17)

Thus, for the left arm,

�1 D Atan2.s1; c1/ � .� � 32:94ı/ (15.18)
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For the right arm,

�1 D Atan2.s1; c1/ C 32:94ı (15.19)

The transformation matrices 0
1T and 1

2T and their inverses 0
1T �1 and 1

2T �1 can be
found accordingly.

Thus, the wrist position with respect to Frame 2, denoted 2
7Pw D Œ27Pwx , 2

7Pwy ,
2
7Pwz�

T , can be found:

2
7T D 1

2T
�1 �01 T �1 �07 T D

2
664

2
7Pwx

2
7R 2

7Pwy
2
7Pwz

0 0 0 1

3
775 (15.20)

For the left arm,

2
7P w D

2
4

�L2c3s4

�L1 � L2c4

�L2s3s4

3
5 (15.21)

For the right arm,

2
7P w D

2
4

�L2c3s4

�L1 � L2c4

L2s3s4

3
5 (15.22)

To resolve �3, for the both arms,

c3 D
2
7Pwx

�L2s4

(15.23)

For the left arm,

s3 D
2
7Pwz

L2s4

(15.24)

�3 D Atan2.s3; c3/ � .� � 53:6ı/ � 2� (15.25)

For the right arm,

s3 D
2
7Pwz

�L2s4

(15.26)

�3 D Atan2.s3; c3/ C .� C 53:6ı/ (15.27)

The transformation matrix 2
3T and its inverse 2

3T �1 can be found accordingly.
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�5, �6 and �7 can be derived from the transformation matrices from Frame 4 to
Frame 7 4

7T .

4
7T D 3

4T
�1 �23 T �1 �12 T �1 �01 T �1 �07 T D

2
664

4
7r11

4
7r12

4
7r13

4
7Pwx

4
7r21

4
7r22

4
7r23

4
7Pwy

4
7r31

4
7r32

4
7r33

4
7Pwz

0 0 0 1

3
775 (15.28)

For the left arm,

4
7T D 3

4T
�1 �23 T �1 �12 T �1 �01 T �1 �07 T

D

2
664

c5c6c7 � s5s7 �c7s5 � c5c6s7 c5s6 0

�c7s6 s6s7 c6 L2

�c5s7 � c6c7s5 c5c7 � c6s5s7 �s5s6 0

0 0 0 1

3
775 (15.29)

For the right arm,

4
7T D 3

4T
�1 �23 T �1 �12 T �1 �01 T �1 �07 T

D

2
664

c5c6c7 � s5s7 �c7s5 � c5c6s7 c5s6 0

c7s6 �s6s7 �c6 L2

c5s7 C c6c7s5 c5c7 � c6s5s7 s5s6 0

0 0 0 1

3
775 (15.30)

Thus, for the left arm,

c6 D 4
7r23 (15.31)

s6 D
q

1 � c2
6 (15.32)

c5 D
4
7r13

s6

(15.33)

s5 D �
4
7r33

s6

(15.34)

c7 D �
4
7r21

s6

(15.35)

s7 D
4
7r22

s6

(15.36)
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For the right arm,

c6 D �4
7r23 (15.37)

s6 D
q

1 � c2
6 (15.38)

c5 D �
4
7r13

s6

(15.39)

s5 D �
4
7r33

s6

(15.40)

c7 D �
4
7r21

s6

(15.41)

s7 D �
4
7r22

s6

(15.42)

For the left arm,

�5 D Atan2.s5; c5/ C �=2 (15.43)

�6 D Atan2.s6; c6/ � �=2 (15.44)

�7 D Atan2.s7; c7/ � � C 2� (15.45)

For the right arm,

�5 D Atan2.s5; c5/ � �=2 (15.46)

�6 D Atan2.s6; c6/ � �=2 (15.47)

�7 D Atan2.s7; c7/ � � C 2� (15.48)

For reaching movements, the four DOFs in consideration (three DOFs at the
shoulder and one DOF at the elbow) can be resolved based on the wrist position
Pw and the elbow position Pe: �4 is resolved according to Eq. (15.8); �1, and �2 are
resolved according to Eqs. (15.11)–(15.19). With regards to �3,

For the left arm,

2
5P w D

2
4

�L2c3s4

�L1 � L2c4

�L2s3s4

3
5 (15.49)

for the right arm,

2
5P w D

2
4

�L2c3s4

�L1 � L2c4

L2s3s4

3
5 (15.50)

Therefore, �3 can be resolved as Eqs. (15.23)–(15.27).
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Fig. 15.5 A block Diagram of the exoskeleton control algorithms: (a) admittance control scheme
– Single arm configuration, (b) teleoperation control scheme – dual arm configuration

15.2.3 Control Algorithms

15.2.3.1 Control Architecture of EXO-UL7: Overview

Two unique control algorithms are used to control the exoskeleton system in its
unilateral (single arm) and bilateral (dual arm) modes of operation. The control
modes guarantee that the system is inherently stable given the bandwidth of the
human arm operation as the operators manipulate the system in virtual reality
exposing the system to force fields and force feedback (haptic) effects (Fig. 15.5).
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15.2.3.2 Admittance Control: Single Arm Exoskeleton

By definition, An admittance is the dynamic mapping from force to velocity. An
admittance control scheme utilizes three multi-axis force/torque (F/T) sensors as the
primary inputs. These F/T sensors are attached to all the physical interfaces between
the operator’s arm and the exoskeleton at the upper arm, forearm, and palm. A force
applied on the exoskeleton system by the operator commands the exoskeleton arm to
move with a velocity that is proportional to the force and along the same direction.
As the force increases, the system responds by moving faster. This approach is also
known as the “get out of the way” control scheme. As the system moves, the control
scheme tries to set the interaction force to zero [34, 35].

15.2.3.3 Teleoperation Control: Dual Arm Exoskeleton

In a teleoperation control scheme, the two arm exoskeleton system is configured as a
master and a slave. The exoskeleton arm attached to the human unaffected (healthy)
arm is defined as the master and the other exoskeleton arm attached to the affected
(disabled) arm is defined as the slave. A local teleoperation scheme is used in which
the master arm provides a position commands to the slave arm such that they both
move in a mirror image fashion. Any joint angle generated by the unaffected arm
is copied to the affected arm. In this mode of operation the unaffected arm controls
the movements of the affected arm. The coupling between the arms will be varied.
A tight coupling will be induced initially and it will be gradually reduced by 10 %
in each treatment such that in the very last treatment, each arm will be completely
independent (uncoupled).

15.2.3.4 Assistive Modes and Compensation Elements

The assistive modes are designed to further reduce the energy exchange between the
human arm and the exoskeleton and to improve the transparency of human-robot
interactions. Several force fields are applied on the patients as part on the training
and their application and magnitude will be a function of the specific task.

Gravity Compensation Joint torques are generated in part due to the gravitational
loads of the exoskeleton arm and the patient’s arm. The gravity compensation
algorithm estimates the joint torques for each arm configuration and provides a
feed forward command to the actuators which in turn produce joint torques that
counter the toque generated by gravity. This compensation will make the weight
of the exoskeleton itself transparent to the operator. As such, the operator will feel
as if the exoskeleton arm is completely weightless. This compensation mode will
be active at all times. Furthermore, an identical algorithm will compensate for the
gravitational loads of the patient’s own arm such that the operator will not feel the
weight of his/her arm. This compensation may vary between full compensation and



422 J. Rosen et al.

no compensation. The compensation of the patient’s own arm will change during
the treatment starting from full compensation during first treatment followed by a
reduction of 10 % with each treatment that gradually exposes the patient to the full
weight of the arm by the last day of the treatment.

Friction Compensation Friction is a force or a moment that resists the relative
motion of the joints. The static/kinetic (coulomb) friction, as well as viscous friction
is compensated through the feed forward element of the control algorithm such that
the operator does not feel any resistance associated with friction.

Redundancy Resolution The human arm with its seven DOF (excluding scapular
motion) is a redundant mechanism meaning that there are infinite arm configurations
that can be adopted for the same position and orientation of the hand for grasping an
object. Passing a virtual axis through the center of the shoulder joint and the center
of the wrist joint allows us to define the position of the elbow joint by an angle
defined with respect to this axis. This angle is defined as a swivel angle, which in
turn defines in a parametric fashion the redundancy of the arm. Given the anatomical
limitations of the shoulder and the wrist joint, the swivel angle has a specific range
of angles from which any value to be selected will not change to the position or
the orientation of the hand. The motor control system selects a specific swivel angle
within the available range, and in that way resolves the arm redundancy. Since the
human arm and the exoskeleton system are mechanically coupled, the redundancy
resolution imposed by the exoskeleton system has to match the same solution that
would have been adopted by an neuromuscular system. The algorithm implemented
into the exoskeleton is based on an extensive preliminary study of this problem
with both healthy and stroke patients. This algorithm synthesizes three classes of
criteria: (1) kinematic criteria, (2) dynamic criteria, and (3) comfort criteria. The
weight factors of each one of the three criteria change dynamically and will predict
the swivel angle for the next time interval. One should note that the redundancy
resolution is only required in the unilateral mode of operation. During the bilateral
mode of operation, the swivel angle of the unaffected arm is transmitted to the
affected arm, thus the exoskeleton system adopts the motor control redundancy
resolution.

15.2.4 Redundancy Resolution

The redundancy resolution is critical in the control of the exoskeleton, in order to
achieve the transparency of the interaction between the exoskeleton and its operator.
Ideally, the redundancy resolution controls the exoskeleton in the same way that the
human motor system controls arm movements. Therefore, the exoskeleton can be
used for power augmentation for the healthy human arm movements, as well as for
the correction of the abnormal arm movements in stroke rehabilitation.
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The problem of controlling redundant degrees of freedom, i.e., redundancy res-
olution, has been previously considered in the control of robot manipulators. When
solving an inverse kinematics or dynamics problem for manipulation tasks, redun-
dant degrees of freedom can be used to achieve secondary goals such as to satisfy
certain task constraints or to improve task performances. Task-based redundancy
resolutions control the extra DOF by integrating the task-dependent constraints into
an augmented Jacobian matrix [36, 37]. Performance-based redundancy resolutions
may optimize the manipulability [19, 38–40], energy consumption [41, 42], the
smoothness of movement [43–46], task accuracy [47] and control complexity [48].

The EXO-UL7 exoskeleton is designed to assist the operator’s arm movements
in unexpected tasks and in uncertain environments. It requires a real-time control
rather than a pre-planned motion control, and the redundancy resolutions have
to be based on local (instead of global) performance optimization. Under the
above constraints, we investigate the study of the motor control of the human arm
movements and select several control criteria, which are applicable for the control
of the exoskeleton. The selected criteria optimize different performances in motion
control, including motion efficiency, motion smoothness, energy consumption
and etc.

15.2.4.1 Maximizing the Motion Efficiency

H. Kim et al. proposed a redundancy resolution that determines the swivel angle by
maximizing the motion efficiency [19]. As shown in Fig. 15.6, when the elbow falls
on the plane formed by the positions of the shoulder Ps , the wrist Pw and the virtual
target Pm, the projection of the longest principle eigen-vector of the manipulability
ellipsoid on the direction from the hand to the virtual target Pm is maximized, and
so is the motion efficiency towards the virtual target Pm, which is hypothesized to
be on the head. Given the role of the head as a cluster of sensing organs and the
importance of arm manipulation to deliver food to the mouth, it is hypothesized that
the swivel angle is determined by the human motor control system to efficiently
retract the hand to the head region.

A good candidate for the position of virtual target is the position of the mouth.
This hypothesis is supported by intracortical stimulation experiments that evoked
coordinated forelimb movements in conscious primates [49,50]. It has been reported
that each stimulation site produced a stereotyped posture in which the arm moved
to the same final position regardless of its posture in the initial stimulation. In the
most complex example, a monkey formed a frozen pose with its hand in a grasping
position in front of its open mouth. This implies that during the arm movement
toward an actual target, the virtual target point at the head can be set for the potential
retraction of the palm to the virtual target.
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Fig. 15.6 The proposed
redundancy resolution intends
to maximize the motion
efficiency by maximizing the
projection of the longest
principle eigen-vector of the
manipulability ellipsoid on
the direction from the hand to
the virtual target Pm. The
corresponding elbow position
falls on the plane formed by
Ps , Pw and Pm

15.2.4.2 Minimizing Work in the Joint Space

Minimizing work in the joint space is proposed by T. Kang as a real-time
dynamic control criterion, which resolves the inverse kinematics by minimizing
the magnitude of total work done by joint torques for each time step [42]. With
the dynamic arm model, the joint torques (T ) can be extracted given the states of
the arm. The calculation of work in the joint space for each time step depends on
(1) the joint torques and (2) the difference in joint angles. Therefore, the work in the
joint space during the movement interval Œtk; tkC1� can be computed for two different
conditions. The dynamic constraint adopted in this chapter is from the original work
done by the aerospace medical research laboratory [51]. Here, we briefly include the
essential parts of the algorithm for the integrity of the chapter:

if Ti;tk � Ti;tkC1
> 0,

Wi D .Ti;tk C Ti;tkC1
/ � �qi

2
(15.51)

where Ti;tk and Ti;tkC1
are the joint torques of the i-th joint at the time tk and tkC1.

�qi D .qi;tkC1
�qi;tk / is the difference of the i-th joint angle during the time interval

Œtk; tkC1�.
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When Ti;tk � Ti;tkC1
< 0,

Wi D .j�qi j � hi / � Ti;tkC1

2
� hi � Ti;k

2
(15.52)

where hi D .jTi;tk j � j�qi j/=jTi;tkC1
� Ti;tk j and denotes the difference of the i-th

joint angle from qi;tk to the value corresponding to the zero crossing of joint torque.
To minimize the work done in the joint space at each time step (e.g. jW jtk ;tkC1

for
the time interval Œtk; tkC1�), the swivel angle of the arm for a specified wrist position
is optimized by:

�.k C 1/ D arg min
�0.kC1/

jWi jtk ;tkC1

D arg min
�0.kC1/

4X
iD1

jWi jtk ;tkC1
(15.53)

where jWi jtk ;tkC1
denotes the work done by the i-th joint.

15.2.4.3 Minimizing Joint Angle Change

Minimizing joint angle change is a real-time kinematic criterion that impose smooth
motion in the joint space. Given the expected positions of the wrist Pw.k C 1/ and
the shoulder Ps.k C 1/, this criterion explores the possible the swivel angles for the
next time step �0.kC1/ and selects the one which minimizes the norm of the change
in the joint angle vector. For daily activities, the change in swivel angle within 0:01 s
is supposed to be no larger that 0:5ı. Given the current swivel angle �.k/, we search
within the range of Œ�.k/ � 0:5; �.k/ C 0:5�ı by the step of ı� D 0:1ı. The swivel
angle for the next time step �.k C 1/ is determined by:

�.k C 1/ D arg min
�0.kC1/

j�.k/ � � 0.k C 1/j

D arg min
�0.kC1/

vuut 4X
iD1

.�i .k/ � � 0
i .k C 1//2 (15.54)

In Eq. (15.54), �.k/ D Œ�1.k/; �2.k/; �3.k/; �4.k/�T is the joint angle vector for
current time step. � 0.k C 1/ is the joint angle vector for the next time step computed
from a possible �0.k C 1/ value.

At the kinematic level, alternative control criteria can optimize motion smooth-
ness by minimizing jerk (the square of the first derivative of acceleration) in the
joint space and/or task space, to account for the straight paths and bell-shaped speed
profiles observed in reaching movements [43, 44, 52]. At the dynamic level, the



426 J. Rosen et al.

optimization of smoothness can be achieved by minimizing the change in joint
torque [45, 46], which explains the mild curvature in the roughly straight hand-
reaching trajectories in the task space. By observing various implementations, we
have noticed that minimizing the norm of the change in the joint angle performs
better than minimizing the norm of the change in higher order derivatives of the
joint angle (e.g., velocity and acceleration). These control strategies are for global
motion planning and the computation of the trajectories in the task space and/or the
joint space before execution. Since the exoskeleton is designed to move with the
operator in unexpected task and uncertain environment, the smoothness of motion
is expected to be addressed more locally than globally.

15.2.4.4 Minimizing the Change in Kinetic Energy

Minimizing the change in kinetic energy is based on the following hypothesis: since
human movements are well adapted to gravity, unless the dynamics of the human
body is significantly affected by additional load, the motor control system may plan
the movements at daily-activity speed without compensating much for gravity. With
the dynamic model, the kinetic energy (Ke) can be computed given the state of the
arm. Similar to Criterion 3, we explore the possible swivel angles for the next time
step and find the one that minimizes the change in the kinematic energy.

�.k C 1/ D arg min
�0.kC1/

jKe.k/ � Ke0.k C 1/j (15.55)

For global energy optimization, J.F. Soechting et l. minimize the peak value
of kinetic energy, which requires the knowledge of the final arm posture [41]. In
addition, A. Biess et al. integrate the consideration of kinetic energy in the control
strategy by looking for a geodesic path in the Riemannian configuration space,
which consumes less muscular effort since the sum of all configuration-speed-
dependent torques vanishes along the path [53]. For the real-time control of the
exoskeleton, we prefer minimizing the change in kinetic energy locally.

15.2.5 Performance Comparison of Different Redundancy
Resolutions

To study the performance of different redundancy resolutions, we collect data of the
point-to-point reaching movements in a 3D workspace from healthy subjects (see
Figs. 15.7 and 15.8). The arm postures predicted by different redundancy resolutions
are compared and evaluated with reference to the measured arm postures.

A comparison of the arm posture prediction performance has been conducted
between the redundancy resolutions by maximizing motion efficiency (Redundancy
Resolution I) and by minimizing work in the joint space (Redundancy Resolu-
tion II). The mean (�) and standard deviation (� ) of the prediction errors are
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Fig. 15.7 The spherical workspace for the reaching movement experiments: (a) the top view and
(b) the front view. The height of the workspace center is adjustable and is always aligned with the
right shoulder of the subject

Fig. 15.8 (a) Eight targets are selected among all the available targets (denotes as blue dots) in
the spherical workspace. Considering the motion range of the right arm, Target 1, 2, 3, 5, 7 (in
green circles) are within the comfortable arm motion range, while Target 4, 6, and 8 (in magenta
circles) are close to the motion range boundary. (b) A subject is performing the instructed reaching
movement. The subject is seated in a chair with a straight back support. The right arm is free
for reaching movements, while the body of the subject is bounded back to the chair to minimize
shoulder displacement. During the experiment, the subject uses index finger to point from one
instructed target to another, with his/her wrist kept straight. A motion capture system catches the
positions of the passive-reflective markers attached to the torso and the right arm, recording the
movements at 100 Hz
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computed for each individual valid trail (2,674 out of 2,800 in total), and their
distributions are presented in Fig. 15.9. It is shown that the Redundancy Resolution
II has higher performance on both the mean and standard deviation of the prediction
errors, which results from the fact that Redundancy Resolution II has to start
its prediction from the arm posture measured at the beginning of the movement,
while Redundancy Resolution I does not need to initialize its prediction with any
measured data. One way to improve the performance of Redundancy Resolution
I is to estimate the position of the virtual target dynamically based on the recent
history of the swivel angle measurements. As shown in Fig. 15.9e,f, the improved
performance is slightly higher than that of Redundancy Resolution II [54].

15.3 Clinical Study: Application of EXO-UL7
on Stroke Rehabilitation

15.3.1 Experiment Protocols

15.3.1.1 Apparatus

The system used for this research consisted of the upper limb exoskeleton
EXO-UL7, a control computer, and a game computer. The control computer
used PID control to provide gravity compensation, as well as bilateral symmetric
assistance or unilateral assistance, as needed. In all cases where assistance was
provided, the robot only provided partial assistance, helping subjects by giving a
helpful push in the desired direction [6, 7, 55].

The games were created using Microsoft Robotic Developer Studio [56]. The
game computer was connected to a 5000 flat screen monitor. In addition to generating
real time virtual reality [57] game images, the game computer also collected position
and force data at 100 Hz.

The games are depicted in Fig. 15.10. The games were played for 10–15 min
each. Over the course of the study, each subject played every game multiple times.
Therefore, the rehabilitative efficacy of any given game is confounded with the other
games [58]. The BSRMT group played each game using both arms and the URMT
group played each game using only the paretic arm. For BSRMT, the subject’s
less-affected arm was the master, and the paretic arm was the slave. As subjects
moved their less-affected arm the robot moved the paretic arm in a mirror-image
fashion. Aside from gravity compensation, for URMT, the robot only provided
partial assistance in the Flower game (see Fig. 15.1a). A more detailed evaluation of
these games is provided in [6].
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Fig. 15.9 Swivel angle prediction performance of the redundancy resolutions by maximizing the
motion efficiency (the Redundancy Resolution I, see (a) and (b)) and by minimizing the work
in joint space (the Redundancy Resolution II, see (c) and (d)). The performance of Redundancy
Resolution I can be improved by dynamic estimation of the position of the virtual target (see (e)
and (f))
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Fig. 15.10 Screen shots from the various games. The avatar arms move in response to the
movement of the subject. In the Pinball and Circle games, avatar arms are not visible so that the
view of the Pingpong table will not be blocked. (a) Flower game. (b) Paint game. (c) Reach game.
(d) Pong game. (e) Pinball game. (f) Circle game. (g) Handball game

15.3.1.2 Pilot Study

Ten male and female subjects between 27 and 70 years of age, for more than
6 months post stroke, with a Fugl-Meyer score between 16 and 39 and a score of
19 or greater on the VA Mini Mental Status Exam were recruited for the study.
All were screened and consented prior to a random assignment. The subjects were
sub-categorized by severity and then randomly assigned to either the unilateral
robotic training or to the bilateral robotic training. All subjects were scheduled for
12 training sessions. The visits were scheduled twice a week for 6 weeks. This study
was approved by the Committee on Human Research at the University of California-
San Francisco (UCSF) and each session was preformed at UCSF under the guidance
of a trained therapist.

In the pilot study, subjects sit in front of a screen with a virtual reality game to
play. In this game, small target balls are located spherically around the robot. When
the target balls with the tip of the virtual arm is touched, the ball color changes (see
Fig. 15.11). The ratio of the touched balls to the total number of target balls can be
used to assess the mobility improvement of the subjects.

15.3.1.3 Unilateral and Bilateral Robotic Training via the EXO-UL7

The research on the unilateral and bilateral robotic training was approved by the
University of California, San Francisco, Committee on Human Research. Inter-
ventions consisted of 12, 90-min sessions of robotic assisted training or standard
care. An elastic restraint around the torso and thighs helped subjects maintain a
neutral sitting position during robotic training. The experimental setup is depicted
in Fig. 15.12.
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Fig. 15.11 Pilot study: Subjects paint the virtual environment in either a unilateral control or
bilateral control architecture

Fig. 15.12 A subject with right-side hemiparetic performing BSRMT

Included were 15 subjects who are more than 6 months post stroke, ranging in
ages from 23 to 69 years, with Fugl-Meyer scores between 16 and 39. The subjects
were stratified by their Fugl-Meyer score and then randomly assigned to the
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BSRMT, URMT or usual care with a physical therapist. With an upper limb Fugl-
Meyer score between 16 and 39, each subject had the necessary control of their
paretic arm to be able to play the games, while still having the potential for
improvement.

Improvement Metrics This work includes just a fraction of clinical measures
that were gathered from this study. The measures considered presently include:
spasticity, dexterity, hand strength, and shoulder range of motion (ROM). These
measures all assess different aspects of motor dysfunction. In that sense, they are
independent. The reason for focusing on these measures is because they were
explainable using kinematic analysis. For example, it is difficult to relate kinematic
analysis to measures such as psychological state or pain scales. Additionally, these
metrics all involved data that suggested a significant change in performance as
measured before and after the intervention.

Data Analysis Clinical data was analyzed using standard hypothesis testing.
Specifically, for each test type, the corresponding subject groups were tested for a
significant change in performance as measured before and after the intervention.
This includes paired t-tests for parametric measures and 2-Sample Wilcoxon-
Mann-Whitney (Wilcoxon) tests for non-parametric data. For both types of tests,
p-values were reported. For the Wilcoxon test, p-values were adjusted for ties
where applicable. Statistical calculations were performed using Minitab Statistical
Software (Minitab Inc., State College, PA, USA). Confidence limits of 95 %
(p < 0.05) and 90 % (p < 0.01) were used to test significance. A confidence limit
of 90 % is generally not used for clinical assessments [59,60]. However, 90 % limits
are used in other contexts, albeit as a lower limit. Given the comparatively small
population of subjects in each training group (n D 5), this study is best described as
a pilot, or feasibility study. Notwithstanding, only relatively large differences will
achieve the 95 % level for sample sizes such as this and it is left to the discretion of
the reader how to interpret these levels.

Over the past decades, a large number of metrics have been proposed to
assess human movements using robots and/or motion capture [55]. There are two
difficulties with such approaches. First, it is often unclear if a change in a given
metric is caused by legitimate rehabilitation or if it is related to familiarity with
the system. For example, a subject might improve at playing a given game even
though there is no actual therapeutic improvement. Second, real-time, multi-joint
force and velocity data are generally not available in clinical settings, nor are they
standardized. Therefore, measures that are gathered from a given robotic system
are difficult to replicate. It is also unlikely that they directly translate to standard
clinical measures. For these reasons, this research focused on clinical measures
of performance that were collected before and after the intervention. Kinematic
data collected from the robot were used to contrast movement training differences
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between BSRMT and URMT modes, but not as a measure of improvement. For a
detailed analysis of subject performance using kinematic data collected from the
robot, see [16].

The Data Analysis Section references joints by number. The directions of positive
joint rotation are depicted in Fig. 15.2. In words, the axes are defined as follows:
Joint 1 is a combination of shoulder flexion and abduction; Joint 2 is a combination
of shoulder flexion and adduction; Joint 3 shoulder inner rotation, Joint 4, elbow
flexion; Joint 5 is the elbow/wrist supination; Joint 6 is the wrist flexion; and joint 7
is the wrist ulnar deviation.

In an effort to tie the clinical outcomes to training, a metric is needed to quantify
overall movement training. A long-standing tenet in the rehabilitation community is
that repetition of movement is required for recovery. To quantify overall movement
training for a given game during a given trial, seven numbers are calculated, one
for each joint. Each of the seven numbers relate to the proportional contribution of
movement for a given joint. An eighth number is calculated to capture the overall
intensity of movement. With respect to the proportions of movement for each of the
seven joints, a row vector is defined as Eq. (15.56):

ˇ̌
p1 p2 p3 p4 p5 p6 p7

ˇ̌
(15.56)

where p1 is the proportion of rotation for joint 1, p2 is the proportion of rotation
of joint 2, and so on. Accordingly,

ˇ̌P7
iD1 pi D 1

ˇ̌
(15.57)

Thus, the sum of the proportions account for 100 % of the total joint rotation for
the 7 DOF of the arm. The 8th number being calculated is the “intensity” of the
training and is given by I. Thus, the intensity of training for joint j is given by pj

PI .
Equations (15.56) to (15.57) require some measure of movement training

intensity. One approach is to calculate the total angular position, velocity, and
acceleration for a given joint. As a start, consider the angular position. A change
in the angular position is given as �	. Summing �	 for successive samples in
the data set is infeasible because rotations in one direction will be canceled with
rotations in the other direction. Therefore, a more suitable calculation for the angular
position of the j-th joint is to take the RMS as follows:

RMS	j D
vuut 1

n

nX
i�1

�	i;j (15.58)

were n is the number of joint measurements, and i is the ith measurement.
Angular velocity, ! is given by �	=�t . Therefore, the RMS for ! is given by
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RMS	!;j D
vuut 1

n

nX
i�1

.
�	i;j

Ts

/2 (15.59)

where Ts is the sample time. In this case, the sampling rate was 100 Hz and
Ts D 0:01 s. Because Ts is a constant, Eq. (15.58) is essentially the same calculation
Eq. (15.59) except that it is scaled by the constant value 1=Ts . Therefore, calculating
the RMS of both angular position and angular velocity is of little value and the
discussion that follows considers only angular velocity and acceleration.

In an effort to minimize the effects of noise and finite sampling times, a 5-point
numerical differentiation was used to calculate the RMS for angular velocity and
acceleration. Thus, the RMS calculation that is used for velocity is

RMS	!;j D
vuut 1

n

nX
i�1

.
�	iC2;j C 8	iC1;j � 8	i�1;j C 	i�2;j

12Ts

/2 (15.60)

and for angular acceleration,

RMS	!;j D
vuut 1

n

nX
i�1

.
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(15.61)

With the RMS calculations for angular acceleration and velocity in hand,
calculating the proportional contributions of each joint according to Eq. (15.56) is
obtained by the following equation:

0
@

nX
j D1

RMSj

1
A

�1

ˇ̌
RMS1 RMS2 RMS3 RMS4 RMS5 RMS6 RMS7

ˇ̌
(15.62)

The proportions given in Eq. (15.62) are presented as percentages throughout
this chapter. Intensity I is calculated for each game of each trial for both angular
acceleration and angular velocity using the average RMS of the 7 joints. The
intensity calculation is given as follows:

I D 1

7

7X
j D1

RMSj (15.63)

Data processing was accomplished using custom MatlabTM scripts (The Math-
works Inc, Natick, MA, USA).
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15.3.2 Results

15.3.2.1 Pilot Study

During the clinical trial for the paint game, the travel distance and time-to-finish
were recorded. Averaged travel distances show that the bilateral training group
traveled 2.2 m/session and unilateral group did 1 m/session. The bilateral group
spent 22 s/session and unilateral group spent 12 s/session. The percent improvement
defined between the first and last session 12 weeks later showed that the bilateral and
unilateral training group had 97 and 2 % improvement, respectively for the travel
distance, while both groups showed similar improvement for time-to-finish [16].

15.3.2.2 Clinical Outcomes of the Unilateral and Bilateral
Robotic Training

Clinical Measures Non-parametric data are summarizes in Figs. 15.13–15.16 and
parametric data are summarized in Figs. 15.17–15.19. For each group the average
percent change is calculated for parametric data. For non-parametric data the
median change is calculated. Also, a p-value for the corresponding hypothesis
test (Wilcoxon or paired-t test) is given below each plot. The bold type indicates
significant differences. The strongest changes, ˛ � 0:05, are distinguished with a
dark shade of box plot gray for parametric data. For 0:05 < ˛ � 0:10, the box plots
are distinguished with a lighter shade of gray.

There was a statistically significant reduction in finger flexion (see Fig. 15.13b),
and elbow flexion/extension spasticity for URMT, see Fig. 15.13c, d, as well as a
significant improvement on the Box and Block Test (see Fig. 15.17b). However,
there was a significant reduction in grip strength for URMT, as measured with a
Jamar hand dynamometer (Lafayette Instrument Company, Lafayette, IN).

There were significant differences for ROM [61] in the shoulder for all three
groups, see Fig. 15.18e–g. All ROM measurements were performed with a goniome-
ter. There was a relatively large improvement in shoulder abduction for the BSRMT,
see Fig. 15.18e, and the standard care groups. The subjects in the BSRMT group also
had significant improvements for shoulder external rotation ROM, see Fig. 15.18g.
The URMT group had the least improvement in shoulder ROM. In addition, the
BSMRT group had a significant reduction in internal rotation ROM at the shoulder,
see Fig. 15.18f.

Movement Training Measures At times subjects would pause their movement
training. Causes for such halting could result from a variety of reasons. Examples
include: stops for technical corrections for the robot or game, readjustments of
straps or restraints, dialog with the subjects, respites, and bathroom breaks. As a
specific example, a training interval of approximately 300 s is depicted in Fig. 15.20.
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Fig. 15.13 Individual value plots of clinical measures for non-parametric data: spasticity metrics.
Individual values represent percent improvements as measured before and after the intervention.
Also depicted are significant (p � 0:05), or marginally significant (p � 0:10) changes as
determined by a Wilcoxon test. Connecting lines attach median values. Note, for cases where a
decrease in a metric is regarded as an improvement the individual values are given positive, and
vice-a-versa
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Fig. 15.14 Continue Fig. 15.13. Individual value plots of clinical measures for non-parametric
data: phvchological metrics

Fig. 15.15 Continue Fig. 15.14. Individual value plots of clinical measures for non-parametric
data: general metrics

Notice that there are two apparent pauses wherein most of the joints stop moving
(flat lines). Pauses such as this will deflate the measures given by Eq. (15.60) and
Eq. (15.61). Perhaps the most accurate measure of training intensity Eq. (15.63) and
percent contributions Eq. (15.62) would consider only data with the pauses removed.
However, such segregation of data is open to interpretation and is fought with
uncertainty. For this reason, the following analysis will consider data sets only for
the top 50-th percentile of training as measured by intensity. Cases where training is
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Fig. 15.16 Continue Fig. 15.15. Individual value plots of clinical measures for non-parametric
data: strength metrics

halted will result in lower intensities. Therefore, by excluding the lower half of the
data, it is more assured that data analysis only includes training that was continuous
and without interruption.

Figure 15.23 depicts URMT percentage contributions by joint for veloc-
ity Eq. (15.60) and acceleration Eq. (15.61). Each element in Eq. (15.62) is
summarized statistically as a CI for velocity and acceleration. Notice that angular
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Fig. 15.17 Box plots of clinical measures for parametric data: hand strength metrics. Individual
values represent percent improvements as measured before and after the intervention. Also
depicted are significant (p � 0:05), or marginally significant (p � 0:10) changes as determined
by a paired t-test. Connecting lines attach mean values

velocity and acceleration track are fairly close for each joint. In general, based on
the percent contributions of each joint, and the training intensities, velocity and
acceleration tended to co-vary. Putting it in another way, comparison of BSRMT
and URMT by velocity was roughly equivalent to using acceleration. Therefore,
considering the differences between BSRMT and URMT in terms of velocity and
acceleration are of little value. Thus, with the proviso that acceleration would have
been an equally valid measure, the remainder of this chapter will consider only
velocity RMS values.

Depicted in Fig. 15.21 is a comparison of the affected arm to the control arm
for BSRMT. Perhaps not surprisingly, the control arm had similar joint contribution
percentages as the affected hemiparetic arm. However, in terms of intensity, the
affected was significantly lower than the control arm, p D 0:017, see “All joints”
in Fig. 15.22.

Bilateral Symmetric Versus Unilateral Training Because the improvement of
the affected side is most important, the following comparison between BSRMT
and URMT considers only the paretic arms. This comparison is summarized
in Fig. 15.23. The most important difference was in terms of intensity. The right
most set of CI’s in Fig. 15.9 depicts the overall intensity of bilateral versus unilateral
training as calculated by Eq. (15.63). A 2-sample t-test indicated that there was
a statistically significant difference in intensity between the two training groups
(p � value < 0:001) with BSRMT having a mean intensity that was 25 %
higher than URMT. Additionally, Fig. 15.23 shows that the BSRMT resulted in a
higher proportion of movement for Joint 4 (elbow). Thus, the EXO-UL7 imposed
significantly higher velocities on the wrist and elbow as it attempted to maintain
symmetry between the paretic arm and the faster moving unaffected arm.
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Fig. 15.18 Continue Fig. 15.17. Box plots of clinical measures for parametric data: range of
motion metrics
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Fig. 15.19 Continue Fig. 15.18. Box plots of clinical measures for parametric data: dexterity
metrics

Fig. 15.20 Joint pauses. Bilateral training for subject 5, trial

Fig. 15.21 Joint percentages
for velocity and acceleration
for all unilateral subjects.
Circles and diamonds
indicate average values,
whiskers indicate the 95 % CI
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Fig. 15.22 Bilateral percent
contributions by joint of the
control arm (unimpaired
arm), versus the slave
(affected) arm given as 95 %
CIs with mean values

Fig. 15.23 BSRMT versus
URMT given as 95 % CIs
with mean values

15.4 Discussion

15.4.1 Pilot Study

Patients played the therapy game longer in the bilateral mode with admittance
control compared to the unilateral mode and the bilateral group showed more
activity for a given therapy session. We can infer that the bilateral with admittance
control helped patients spend more time on the therapy compared to the unilateral
training group. In physical therapy, it is important to expose the patients to the
therapy for as long as possible to maximize the efficiency of the therapy. There
is great promise in using assistive methods such as the bilateral with admittance
control to improve the therapy results even if it is just by allowing patients to tolerate
longer session.

15.4.2 Unilateral vs Bilateral Robotic Training

In this stroke study, there were significant differences in clinical gains following
BSRMT versus URMT. The URMT group experienced a greater decrease in tone
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and the BSRMT group demonstrated greater gains in ROM. Using the approach
described in the Data Analysis section, position, velocity, and acceleration were
approximately equivalent measures. This approach also allowed for a more detailed
comparative analysis of training. With respect to differences between the less
affected control arm and the affected arm for BSRMT, the paretic arm did not always
move as far, or as fast as the less affected arm. This difference is explainable by the
fact that the robot only provided partial assistance. Recall that the EXO-UL7 only
provides a helpful push for the paretic arm. Therefore, for USRMT involving partial
assistance, the less affected arm will move more vigorously than the affected arm.

For the Box and Block test, there was a significant improvement for URMT
subjects. Given that this test involves grasping blocks and transporting them over
a barrier [62], improved performance on the Box and Block test was likely related
to grasping improvements: reductions in spasticity in the hand and elbow, as well
as improved ROM in the shoulder. The changes in grasping strength for URMT
are somewhat puzzling. The EXO-UL7 provides no means to explicitly exercise
the hand. Instead, subjects simply grasp a handle while performing training. The
EXO-UL7 does not measure gripping force in the hand. Therefore, an explanation
for reduced grip strength is somewhat speculative. Notwithstanding, a reduction in
hand strength has been associated with reduced spasticity [63]. Thus, like the Box
and Block test, reductions in hand strength might relate to reduced spasticity.

The analysis of kinematic data showed that BSRMT was associated with higher
velocities of movements in the hand and elbow than URMT. Rapid extension of
spastic muscles is generally regarded as undesirable. Thus, if reduction in spasticity
of the elbow and/or hand is a therapeutic goal, BSRMT should be avoided. If
BSRMT is used, precautions are needed to ameliorate the deleterious effects of
rapid symmetric movements on the wrist and elbow. One solution could be to adjust
the symmetric control algorithm. This adjustment might limit the joint speeds in
the paretic elbow and wrist. However, this would lead to asymmetrical rather than
symmetrical movements. An alternative approach could involve a control scheme
in which speed is limited for the unaffected arm. For example, providing a viscous
sensation in the unaffected wrist and elbow would reduce the velocities in both arms
and preserve symmetry. Unilateral robotic training has shown promising results in
other stroke studies [11,64,65]. With such precautions in place, BSRMT might have
had comparably good results with URMT in terms of reduced spasticity in the elbow
and wrist.

Given that all three training groups had some improvement in terms of ROM in
the shoulder, these results could be interpreted as an indication that ROM in the
shoulder was generally more amenable to an intervention. The range of motion was
most improved in the shoulder for the BSRMT. It was significantly improved in the
standard care groups but results were mixed for the URMT group. It is not clear
how improved shoulder ROM for BSRMT is explainable by a greater cross-talk
between the hemispheres of the brain. Indeed, BSRMT is unique from other types
of robotic assistance in that the movements are self-guided by the patient. In this
respect, the movements imposed on the paretic arm are literally a reflection of how,
and when a subject chose to move their arm. Self-generated BSRMT did result in
more intense training of the paretic arm. Thus, improvement in ROM may have
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resulted simply from greater intensity, and potentially more natural movements of
the paretic shoulder. Lacking more direct measures of neurological activities, we
find it exceedingly difficult to make conclusions about the effects of robotic training
on hemispheric changes in connectivity with kinematic measures alone.
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