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Abstract. The aim of this work is to characterize the regularity and variability of
human arm movements. The arm posture is quantified by a swivel angle that is ex-
perimentally measured when a healthy subject is reaching for targets in a spherical
workspace. It is shown that without specific instruction, a subject moving his/her
arm tends to use a consistent arm posture with small variations when reaching the
same target position, regardless of whether the subject is moving toward or away
from the target. This observed posture consistency indicates that human motor con-
trol chooses a unique arm posture associated to a 3D hand position. From the per-
spective of posture consistency, this work further examines the posture predictions
based on two hypotheses on human arm control strategies: one that maximizes the
movement efficiency towards the head, particularly toward the mouth; and the other
that minimizes the power consumption in joint space. The arm posture predictions
based on these two control strategies are compared and the prediction errors for each
control strategy are analyzed.

1 Introduction

The study of human arm movements is complex due to the kinematic redundancy
in the human arm. The human arm processes seven degrees of freedom (DOFs)
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while tasks in three-dimensional (3D) space only require six DOFs to be specified.
A healthy human motor system provides natural resolutions to the inverse kinemat-
ics of the arm, with its control of the extra DOF outperforming that of wearable
robotic arms (e.g., upper limb exoskeletons). Existing research has been focused on
characterizing human arm movements in order to reveal a control strategy of the
healthy human motor system, and to facilitate the design and control of upper limb
exoskeletons. Enhanced synergy between the human arm and upper limb exoskele-
tons is expected to benefit applications such as the rehabilitation of stroke patients
via upper limb exoskeletons [39, 25].

1.1 Characteristics of Human Arm Movements

Research on the characterization of human arm movements falls into two categories:
from the perspective of regularity, the movements of healthy human arms demon-
strate significant similarity when completing daily-life tasks, within and across hu-
man individuals; from the perspective of variability, it has be observed that the arm
movements of each human individual are not exactly the same even when repeating
the same task. These characteristics, namely regularity and variability universally
exist in human movement, including human arm movement. Both of them con-
tribute to the higher performance of the human arm, compared to that of existing
robotic arms.

Regularity in Human Arm Movements: For decades, continuous research efforts
on the regularity of human movements intended to reveal the control strategy of the
healthy human motor system. According to Donders’ law, the central nervous sys-
tem (CNS) chooses a unique eye orientation for each gaze direction. When applied
to human arm movements, Donders’ law predicts that every position of the hand in
3D space naturally corresponds to a unique posture of the arm, which can be param-
eterized by joint angles at the shoulder and elbow. The unique pointing direction
of the human arm corresponding to a given hand position (denoted by r) can be
expressed by a rotation axis n and a rotation angle α [17].

r = tan
α
2

n (1)

However, there have been experimental results that contradicted Donders’ law. The
law is obeyed more strictly for pointing movements with straight arms than for
pointing movements with less restriction. According to Soechting et al [53], the arm
posture corresponding to a given hand location is not independent of its previous
posture. Furthermore, it has been confirmed that Donders’s law is violated in some
3D space tasks [29]. The upper arm torsion varies widely when the pointing target is
specified, yet the variation of torsion can be reduced by specifying the elbow angle.
Note that while Donders’s law is partially valid for reaching/pointing movements, it
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is generally invalidated by grasping experiments [57, 54]. Due to the limited motion
range at the wrist, the posture of the upper arm is strongly affected by hand orienta-
tion and therefore the violation of Donders’s law is significant. Without restricting
the precise orientation of the hand, Donders’ law might still be applicable to the arm
motions [9].

The posture consistency in reaching movements of the human arm revealed by
Donders’s law results in a category of posture-based movement planning strategies.
These movement planning strategies assume that there exists an optimal final pos-
ture for each target position at the end of the trajectory. This assumption contradicts
the prediction of trajectory-based movement planning strategies, which may lead to
various arm postures at the end of the trajectory. It was proposed that posture-based
strategies plan the movements at a kinematic level, while trajectory-based strategies
plan the movements at a dynamic level [43]. Other approaches of combining move-
ment planning at kinematic and dynamic levels with the posture at the end of the
trajectory are described in [18, 22]

Variability in Human Arm Movements: Variability is another universal charac-
teristic of the motor control of human arm movements [63, 66]. Early experimental
studies (e.g. recording of hammering movements by Bernstein [5]) in human motor
control find that human movements do not repeat in exactly the same way for the
same task, even with intention. It has been found that this variability can be used
as a signature to distinguish skilled from unskilled task performance. A lower level
of the variability may indicate the existence of control, while its absence may indi-
cate diseases [34]. The redundancy in the human motor system may contribute to
the variability of human movements, though it is not necessarily the source of the
variability [13, 31, 59].

1.2 Redundancy Resolution Based on Performance Optimization

By controlling redundant degrees of freedom, the resolution of inverse kinemat-
ics or inverse dynamics can satisfy additional task-based constraints and/or achieve
an optimized performance. Existing research has considered performance optimiza-
tion from the perspectives of manipulability, energy consumption, smoothness of
movement, task accuracy and control complexity. Task-based redundancy resolu-
tions are more straightforward since the control of the extra DOFs can be gen-
erally achieved by integrating the task-dependent constraints into an augmented
Jacobian matrix [7, 50, 51]. The redundancy resolutions based on performance opti-
mization tend to be more flexible, given that there are many performance indices in
consideration.

Manipulability Performance: At a singular configuration, a manipulator can only
execute motion and/or resist wrenches in limited directions. Keeping the manipula-
tor away from its singularities is convenient for task operation in general, and this
can be achieved either by mechanical design and/or motion planning.
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Manipulability was originally defined either as the distance from the singular-
ity [2], or as the efficiency of velocity/force transmission [6]. The Jacobian matrix,
denoted as J (or the matrix JJT if J is a lower-rectangular matrix), has been used
to quantify manipulability. Singular value decomposition (SVD) can be applied to
the Jacobian matrix of manipulators, in order to construct the manipulability ellip-
soid [45]. Possible manipulability indices for performance optimization are mostly
based on the measures of the manipulability ellipsoid. The radii of the manipulabil-
ity ellipsoid are frequently considered, either for the maximum/minimum singular
values, or for their ratio (e.g., condition number [3], isotropy [1]). The determinant
of the Jacobian matrix or dynamic Jacobian is also considered, resulting in perfor-
mance indices such as manipulability and dynamic manipulability [67, 68].

The directions of the principle axes of the manipulability ellipsoid have rarely
been considered as manipulability performance indices. It is worth noting that the
direction of the principle axes indicate the movement efficiency of a manipulator
configuration. For a given uniform effort (measured by joint velocity) in all the
applicable directions in the joint space, the most efficient movement in task space is
in the direction of the major principle axis of the manipulability ellipsoid, while the
least efficient movement in task space is in the direction of the minor principle axis.
With regards to global manipulability, indices such as condition number, isotropy
can be integrated for the measurements of the workspace [14, 27].

Energy Performance: Minimization of energy, either in joint space or task space,
implies that the final arm posture depends on both the initial arm posture and the
trajectory. As a consequence, the arm postures for a given 3D hand position are not
unique. It has been shown that energy minimization can not account for the average
behavior of the arm movement [36], of eye movements [16] and of some full-body
movements (e.g., standing up from a chair [37]). However, the consideration of
energy performance can not be ruled out given the effects of dynamics. Instead, it
should be integrated into other performance considerations such as the smoothness
of motion, which reduces energy consumption by penalizing joint torque [62, 35],
muscle forces [37], or time-derivatives of end-effector acceleration (i.e. jerk) [19,
11, 60, 52].

Smoothness of Movement: The idea of optimization for the smoothness of move-
ment was first introduced as the minimization of jerk [19, 11], to account for the
straight path and bell-shaped velocity of task-space trajectories in reaching move-
ments, as well as for trajectories of ”via-point” tasks, in which the hand is instructed
to pass a sequence of positions. For arbitrary arm movements, minimizing the jerk
along the trajectory accurately predict the speed profile of the trajectory [60] com-
pared to the 2/3 power law [56, 64, 46]. The minimization of jerk has been also
extended to account for movements in grasping tasks [52]. An alternative of jerk
minimization in task space is to minimize the jerk in the joint space [65].
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Performance optimization for the smoothness of motion can also be achieved at
a dynamic level by minimizing the time-derivative of joint torque [62, 35]. This
minimization also accounts for the slight asymmetry observed in some via-point
tasks [62, 35], which cannot be addressed by kinematic motion strategies that ignore
the nonlinear arm dynamics.

Task Accuracy: Motor noise is considered to contribute to the variance of end-
effector position across repetitions of the same task. It is know that motor noise is
dependent on control, with its magnitude proportional to muscle activations [58, 55,
47]. As a consequence, the choice of control signals will affect the variability of a
movement.

Within an open-loop control framework, the control strategy of minimizing the
variance intends to optimize a sequence of muscle activations, for reduced variances
in the end-effector positions and improved task accuracy [15]. The minimum vari-
ance model produces an accurate prediction of eye movements at the level of mus-
cle activations, yet its prediction accuracy is not clear for human arm movements.
Movements with longer durations can not be addressed by minimum-variance con-
trol, since the movement variability is strongly affected by sensory feedback, which
is not considered in open-loop control [44].

However, considering the universal existence of the motor noise in biological
systems, it makes sense to assume that there exists a general control strategy so that
the relation between a trajectory and its velocity profile can be addressed.

Control Complexity: Control strategies yield different performance in the pres-
ence of noise, even if the averaged behavior is the same [59]. Optimal feedback
controllers can resolve the redundancy in real-time according to the minimum in-
tervention principle: make no effort to correct deviations away from the average
behavior unless the task performance is affected.

As demonstrated in [59], the minimal intervention principle pushes the state vec-
tor orthogonally to the redundant direction, in which performance is maintained and
corresponding states are equivalent to each other. In the redundant direction, which
has been quantified as an ”uncontrolled manifold”, the probability distribution of
observed states scatters in a wider range, compared to the non-redundant direction.
A wide range of behaviors [59, 5, 48, 49, 26] have provided evidence of the minimal
intervention principle.

Integrating Multiple Criteria for a Better Estimation of the Arm Posture: Ex-
isting hypotheses, either working collaboratively or individually, have not been able
to fully predict the natural movements of human arms. However, the integration
of multiple hypotheses for better prediction can help in understanding the control
strategy of natural human arm movements. In this case, the challenge of formulat-
ing a cost function is that performance indices have different units, and therefore it
is not trivial to combine them in a single criterion. Having this in mind, a appro-
priately chosen intermediate variable may help the integration of different indices
into a single criterion. As shown in [23], the swivel angle is chosen as the interme-
diate variable, to merge two performance indices of different units (manipulability
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and energy). However, the chosen intermediate variable may have different levels of
sensitivity to changes in different performance indices.

The optimization of a comprehensive cost function that integrates various types
of performance indices cannot be simply extended from the optimization of a single
performance index, particularly with the presence of noise and disturbance in the
implementation of the movement plan [42, 11]. The optimization of a single perfor-
mance index along a deterministic trajectory can be constrained by task-dependent
constraints, such as end-effector position, velocity and acceleration specified for the
beginning or ending state. Such constraints are not valid for stochastic problems, in
which the final state is affected by noise.

2 Kinematic and Dynamic Modeling of the Human Arm

2.1 Kinematic Modeling of the Human Arm

The kinematics and dynamics of the human arm during activities of daily living
(ADL) have been studied to determine specifications for exoskeleton design (Fig-
ure 1) [40][38]. Articulation of the exoskeleton is achieved by seven single-axis
revolute joints which support 99% of the range of motion required to perform
daily activities [40]. Three revolute joints are responsible for shoulder abduction-
adduction, flexion-extension and internal-external rotation. A single rotational joint
is employed at the elbow, creating elbow flexion-extension. Finally, the lower
arm and hand are connected by a three-axis spherical joint resulting in wrist
pronation-supination, flexion-extension, and radial-ulnar deviation. As a human-
machine interface (HMI), four six-axis force/torque sensors (ATI Industrial Au-
tomation, model-Mini40) are attached to the upper arm, the lower arm, the hand and
the tip of the exoskeleton [32]. The force/torque sensor at the tip of the exoskeleton
allows measurement of interactions between the exoskeleton and the environment.

2.1.1 Forward Kinematics

This section derives the forward kinematics for the upper limb exoskeleton.

Base Rotation for Singularity Avoidance: The bases of the two robotic arms of
the upper limb exoskeleton are rotated according to Table 1, in order to move the
singularity out of the range of the daily movements of the human arm.

Table 1 Base rotation of upper limb exoskeleton

about X-axis (θX ) about Y-axis (θY ) about Z-axis (θZ)
Left arm 132.5◦ 45◦ 90◦
Right arm 132.5◦ −45◦ 90◦
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Fig. 1 The upper limb exoskeleton with seven DOFs, supporting 99% of the range of motion
required to preform daily activities

The transformation matrix for base rotation can be represented as Equation (2).
Note that sinθi is denoted as si, cosθi is denoted as ci, sinαi is denoted as sαi, cosαi

is denoted as cαi.

Tbase = Rotx(θX)Rotz(θY )Rotz(θZ)

=

⎡
⎢⎢⎣

1 0 0 0
0 cθX −sθX 1
0 sθX cθX 1
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

cθY 0 sθY 1
0 1 0 0

−sθY 0 cθY 1
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

cθZ −sθZ 0 1
sθZ cθZ 0 1
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ (2)

For the left arm,

Tbase =

⎡
⎢⎢⎣

0.0000 −0.7071 0.7071 0
−0.6756 −0.5213 −0.5213 0
0.7373 −0.4777 −0.4777 0

0 0 0 1.0000

⎤
⎥⎥⎦ , (3)

for the right arm,

Tbase =

⎡
⎢⎢⎣

0.0000 −0.7071 −0.7071 0
−0.6756 0.5213 −0.5213 0
0.7373 0.4777 −0.4777 0

0 0 0 1.0000

⎤
⎥⎥⎦ . (4)
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Denavit-Hartenberg (DH) Parameters: The Denavit-Hartenberg (DH) parame-
ters of the upper limb exoskeleton (shown in Table 2) are derived in the standard
method defined by [8].

Table 2 Denavit-Hartenberg (DH) Parameters for upper limb exoskeleton

Robot i−1 i αi ai di θi

Left 0 1 π/2 0 0 θ1 +π −32.94◦
Arm 1 2 π/2 0 0 θ2 +π/2−28.54◦

2 3 π/2 0 0 θ3 +π −53.6◦
3 4 π/2 0 L1 θ4
4 5 −π/2 0 0 θ5 −π/2
5 6 −π/2 0 L2 θ6 +π/2
6 7 π/2 0 0 θ7 +π

Right 0 1 π/2 0 0 θ1 −32.94◦
Arm 1 2 π/2 0 0 θ2 −π/2−28.54◦

2 3 −π/2 0 0 θ3 −π −53.6◦
3 4 −π/2 0 −L1 θ4
4 5 π/2 0 0 θ5 +π/2
5 6 −π/2 0 −L2 θ6 +π/2
6 7 π/2 0 0 θ7 +π

Note that L1 and L2 are the length of the upper and lower arms, respectively.
By direct kinematics, we can derive the transformation matrix 0

7T , which includes
the position and the orientation of the wrist of the exoskeleton with respect to the
base frame:

base
7 T = Tbase ·01 T ·12 T ·23 T ·34 T ·45 T ·56 T ·67 T =

⎡
⎢⎢⎣

r11 r12 r13 Pwx

r21 r22 r23 Pwy

r31 r32 r33 Pwz

0 0 0 1

⎤
⎥⎥⎦ (5)

For reaching movements, the three DOFs at the wrist are not considered. Therefore,
the forward kinematics that involves four DOFs of the human arm (three DOFs at
the shoulder and one DOF at the elbow) becomes:

base
7 T = Tbase ·01 T ·12 T ·23 T ·34 T ·45 T (6)

2.1.2 Inverse Kinematics

With the specification of the transformation matrix 0
7T , the inverse kinematics of the

exoskeleton can be derived for the left and the right arms, respectively. The redun-
dant DOF of the human arm can be constrained by specifying the elbow position
(Pe = [Pex,Pey,Pez]

T ).
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Based on shoulder position Ps, elbow position Pe, and wrist position Pw, θ4 can
be derived as:

W = ||Pw −Ps|| (7)

c4 =
L2

1 +L2
2 −W2

2L1L2
(8)

s4 =
√

1− c2
4 (9)

θ4 = π −Atan2(s4,c4) (10)

The transformation matrix 3
4T and its inverse 3

4T−1 can be found based on θ4.
The transformation matrix without the base rotation, denoted base

7 T , can be found
by:

0
7T = T−1

0 ·base
7 T =

⎡
⎢⎢⎣

r
′
11 r

′
12 r

′
13

0
7Pwx

r
′
21 r

′
22 r

′
23

0
7Pwy

r
′
31 r

′
32 r

′
33

0
7Pwz

0 0 0 1

⎤
⎥⎥⎦ (11)

Thus, the wrist position with respect to the rotated base is 0
7Pw = [07Pwx,

0
7 Pwy,

0
7 Pwz]

T .
Similarly, the elbow position with respect to the rotated base, denoted by 0

7Pe =
[07Pex,

0
7 Pey,

0
7 Pez]

T , is:

⎡
⎢⎢⎣

0
7Pex
0
7Pey
0
7Pez

1

⎤
⎥⎥⎦ = T−1

0 ·

⎡
⎢⎢⎣

base
7 Pex
base
7 Pey
base
7 Pez

1

⎤
⎥⎥⎦ (12)

Note that 0
7Pe =

0
4 Pe and

0
4T = 0

1T ·12 T ·23 T ·34 T =

⎡
⎢⎢⎣

0
4Pex

0
4R 0

4Pey
0
4Pez

0 0 0 1

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

L1c1s2
0
4R L1c2

L1s1s2

0 0 0 1

⎤
⎥⎥⎦ (13)

For the both arms,

c2 =
0
4Pey

L1
(14)

For the left arm,

s2 =
√
(1− c2

2) (15)

for the right arm,
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s2 =−
√
(1− c2

2) (16)

Thus, θ2 can be resolved as:

θ2 = Atan2(s2,c2)− (π/2− 28.54◦) (17)

To resolve θ1, for the both arms,

c1 =
0
4Pex

L1s2
(18)

s1 =
0
4Pez

L1s2
(19)

Thus, for the left arm,

θ1 = Atan2(s1,c1)− (π − 32.94◦) (20)

for the right arm,

θ1 = Atan2(s1,c1)+ 32.94◦ (21)

The transformation matrices 0
1T and 1

2T and their inverses 0
1T−1 and 1

2T−1 can be
found accordingly.

Thus, the wrist position with respect to Frame 2, denoted 2
7Pw = [27Pwx,

2
7 Pwy,

2
7 Pwz]

T ,
can be found:

2
7T = 1

2T−1 ·01 T−1 ·07 T =

⎡
⎢⎢⎣

2
7Pwx

2
7R 2

7Pwy
2
7Pwz

0 0 0 1

⎤
⎥⎥⎦ (22)

For the left arm,

2
7Pw =

⎡
⎣

−L2c3s4

−L1 −L2c4

−L2s3s4

⎤
⎦ (23)

for the right arm,

2
7Pw =

⎡
⎣

−L2c3s4

−L1 −L2c4

L2s3s4

⎤
⎦ (24)
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To resolve θ3, for the both arms,

c3 =
2
7Pwx

−L2s4
(25)

For the left arm,

s3 =
2
7Pwz

L2s4
(26)

θ3 = Atan2(s3,c3)− (π − 53.6◦)− 2π (27)

for the left arm,

s3 =
2
7Pwz

−L2s4
θ3 = Atan2(s3,c3)+ (π + 53.6◦) (28)

The transformation matrix 2
3T and its inverse 2

3T−1 can be found accordingly.
θ5, θ6 and θ7 can be derived from the transformation matrices from Frame 4 to

Frame 7 4
7T .

4
7T = 3

4T−1 ·23 T−1 ·12 T−1 ·01 T−1 ·07 T =

⎡
⎢⎢⎣

4
7r11

4
7r12

4
7r13

4
7Pwx

4
7r21

4
7r22

4
7r23

4
7Pwy

4
7r31

4
7r32

4
7r33

4
7Pwz

0 0 0 1

⎤
⎥⎥⎦ (29)

For the left arm,

4
7T = 3

4T−1 ·23 T−1 ·12 T−1 ·01 T−1 ·07 T

=

⎡
⎢⎢⎣

c5c6c7 − s5s7 −c7s5 − c5c6s7 c5s6 0
−c7s6 s6s7 c6 L2

−c5s7 − c6c7s5 c5c7 − c6s5s7 −s5s6 0
0 0 0 1

⎤
⎥⎥⎦ (30)

for the right arm,

4
7T = 3

4T−1 ·23 T−1 ·12 T−1 ·01 T−1 ·07 T

=

⎡
⎢⎢⎣

c5c6c7 − s5s7 −c7s5 − c5c6s7 c5s6 0
c7s6 −s6s7 −c6 L2

c5s7 + c6c7s5 c5c7 − c6s5s7 s5s6 0
0 0 0 1

⎤
⎥⎥⎦ (31)

Thus, for the left arm,
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c6 = 4
7r23 (32)

s6 =
√

1− c2
6 (33)

c5 =
4
7r13

s6
(34)

s5 = −
4
7r33

s6
(35)

c7 = −
4
7r21

s6
(36)

s7 =
4
7r22

s6
(37)

for the right arm,

c6 = −4
7r23 (38)

s6 =
√

1− c2
6 (39)

c5 = −
4
7r13

s6
(40)

s5 = −
4
7r33

s6
(41)

c7 = −
4
7r21

s6
(42)

s7 = −
4
7r22

s6
(43)

For the left arm,

θ5 = Atan2(s5,c5)+π/2 (44)

θ6 = Atan2(s6,c6)−π/2 (45)

θ7 = Atan2(s7,c7)−π + 2π (46)

for the right arm,

θ5 = Atan2(s5,c5)−π/2 (47)

θ6 = Atan2(s6,c6)−π/2 (48)

θ7 = Atan2(s7,c7)−π + 2π (49)

For reaching movements, the four DOFs in consideration (three DOFs at the shoul-
der and one DOF at the elbow) can be resolved based on the wrist position Pw and
the elbow position Pe: θ4 is resolved according to Equation (10); θ1 and θ2 are re-
solved according to Equations (13) to (21). With regards to θ3,
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For the left arm,

2
5Pw =

⎡
⎣

−L2c3s4

−L1 −L2c4

−L2s3s4

⎤
⎦ (50)

for the right arm,

2
5Pw =

⎡
⎣

−L2c3s4

−L1 −L2c4

L2s3s4

⎤
⎦ (51)

Therefore, θ3 can be resolved as Equations (25) to (28).

2.2 Jacobian Matrix

The Jacobian matrix denotes the mapping from joint space to task space at the ve-
locity level.

Ṗw = Jθ̇ (52)

For the seven-DOF arm model involving wrist orientation,

Ṗw = J3×7θ̇ (53)

where θ = [θ1,θ2,θ3,θ4,θ5,θ6,θ7]
T , and

J3×7 =
[
J1 J2 J3 J4 0 0 0

]
(54)

The arm model for reaching movements only involves four DOFs and therefore

Ṗw = J3×4θ̇ (55)

where θ = [θ1,θ2,θ3,θ4]
T and

J4×7 =
[
J1 J2 J3 J4

]
(56)

For the right arm, given that

Pw =

⎡
⎣

L2(s4(s1s3 − c1c2c3)+ c1c4s2)+L1c1s2

L1c2 +L2(c2c4 + c3s2s4)
L1s1s2 −L2(s4(c1s3 + c2c3s1)− c4s1s2)

⎤
⎦ (57)

we have

J1 =

⎡
⎣

L2(s4(c1s3 + c2c3s1)− c4s1s2)−L1s1s2

L1c2 +L2(c2c4 + c3s2s4)
L2(s4(s1s3 − c1c2c3)+ c1c4s2)+L1c1s2

⎤
⎦ (58)
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J2 =

⎡
⎣

L2(s4(s1s3 + c1c3s2)+ c1c2c4)+L1c1c2

−L1s2 −L2(c4s2 − c2c3s4)
L1c2s1 −L2(s4(c1s3 − c3s1s2)− c2c4s1)

⎤
⎦ (59)

J3 =

⎡
⎣

L2(s4(c3s1 + c1c2s3)+ c1c4s2)+L1c1s2

L1c2 +L2(c2c4 − s2s3s4)
L1s1s2 −L2(s4(c1c3 − c2s1s3)− c4s1s2)

⎤
⎦ (60)

J4 =

⎡
⎣

L2(c4(s1s3 − c1c2c3)− c1s2s4)+L1c1s2

L1c2 −L2(c2s4 − c3c4s2)
L1s1s2 −L2(c4(c1s3 + c2c3s1)+ s1s2s4)

⎤
⎦ (61)

For the left arm, given that

Pw =

⎡
⎣

L2(s4(s1s3 − c1c2c3)+ c1c4s2)+L1c1s2

L1c2 +L2(c2c4 + c3s2s4)
L1s1s2 −L2(s4(c1s3 + c2c3s1)− c4s1s2)

⎤
⎦ (62)

we have

J1 =

⎡
⎣
−L2(s4(c1s3 − c2c3s1)+ c4s1s2)−L1s1s2

L1c2 +L2(c2c4 + c3s2s4)
L1c1s2 −L2(s4(s1s3 + c1c2c3)− c1c4s2)

⎤
⎦ (63)

J2 =

⎡
⎣

L1c1c2 −L2(s4(s1s3 − c1c3s2)− c1c2c4)
−L1s2 −L2(c4s2 − c2c3s4)

L2(s4(c1s3 + c3s1s2)+ c2c4s1)+L1c2s1

⎤
⎦ (64)

J3 =

⎡
⎣

L1c1s2 −L2(s4(c3s1 − c1c2s3)− c1c4s2)
L1c2 +L2(c2c4 − s2s3s4)

L2(s4(c1c3 + c2s1s3)+ c4s1s2)+L1s1s2

⎤
⎦ (65)

J4 =

⎡
⎣

L1c1s2 −L2(c4(s1s3 + c1c2c3)+ c1s2s4)
L1c2 −L2(c2s4 − c3c4s2)

L2(c4(c1s3 − c2c3s1)− s1s2s4)+L1s1s2

⎤
⎦ (66)

2.3 Redundancy Representation by Swivel Angle

In addition to the elbow position, the extra degree of freedom can be constrained
by specifying the swivel angle. When the arm is not straight, the positions of the
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shoulder (Ps), the elbow (Pe) and the wrist (Pw) form a triangle. With the spherical
joins at both the shoulder and wrist, the elbow position Pe can only rotate around
the vector (Pw −Ps) (see Figure 2). A local coordinate system at the center of the
elbow circle (Pc) gives a reference for measuring the swivel angle (φ ) of the elbow.
A normal vector that points in the direction of (Pw −Ps) is defined as:

n =
Pw −Ps

||Pw −Ps|| (67)

A normalized vector projected onto the plane orthogonal to n is given by:

u =
a− (a ·n)n

||a− (a ·n)n|| (68)

where a is the vector to be projected. Badler and Torlani [4] suggest that a should be
[0,0,−1]T . This selection has real physical meaning. When φ is equal to zero, the
elbow is at its lowest possible point. The last vector of the coordinate system (v), is
found by taking the cross product of n and u. Vectors n, u and v form an orthogonal
coordinate system, where u and v are in the plane of the elbow circle (Figure 2(b)).
The radius (R) and center (Pc) of the circle are easily found through geometry.

cos(α) =
L2

1 −L2
2 −||Pw−Ps||2

−2L2
2||Pw −Ps|| (69)

sin(α) =
√

1− cos(α) (70)

R = L1 sin(α) (71)

Pc = Ps +L1 cos(α) ·n (72)

, where L1 and L2 are the lengths of the upper and lower arm segments (Figure 2(a)).
The position of the elbow can now be expressed as a parametrization of φ [61].

Pe = R [cos(φ)u+ sin(φ)v]+Pc (73)

2.4 Dynamic Modeling of the Human Arm

The dynamic models of the left and right human arms are built up by integrating
the kinematic model with the estimates of mass, the center of mass and the mo-
ment of inertia. Dynamic models of the human arm are rendered via the Autolev
package [12], which generates the motion equation by Kane’s method [20]. Each
arm model processes seven DOFs (three DOFs for the shoulder, three DOFs for
the wrist and one DOF for the elbow motion), with the frame setup in accordance
with the EXO-UL7. Since the analysis of reaching movements in free space does
not specify the wrist posture, the orientation of the hand in the dynamic model is
pre-specified by locking the three DOFs at the wrist joint.
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Fig. 2 Swivel angle

Given the initial condition of the human arm, the dynamic model can respond to
external forces (such as gravity) and provide an analytical calculation of the joint
space variables (i.e., joint angles, velocities and accelerations), as well as the kinetic
energy and potential energy. The analytical calculation of joint torque is integrated
in the dynamic model and can be extracted to compute work in the joint space. The
dynamic model can also respond to external joint torques and generate the resulting
joint space values accordingly.

Shoulder

Elbow

Wrist

Hand

43.6%43.6%

43.0%

56.4%

57.0%

50.6%

49.4%

Arm

Forearm

Center of Mass

Fig. 3 The distribution of the center of mass (COM) for the human arm segments [41]

The estimation of the mass, the center of mass and the moment of inertia of each
arm segment is required to customize the dynamic model for each subject. Figure 3
shows the distribution of the center of mass (COM) for the human arm segments. On
average, the human arm contributes 4.8% of the total body weight. The mass of arm
segments and their inertia matrices are calculated based on the weight of subjects
according to the regression equations in [30].
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3 Swivel Angle Estimation for Reaching Movements

3.1 Criterion I: Swivel Angle Estimation Using a
Biologically-Based Kinematic Constraint

Given the role of the head as a cluster of sensing organs and the importance of arm
manipulation to deliver food to the mouth, we hypothesize that the swivel angle is
determined by the human motor control system to efficiently retract the hand to the
head region. This hypothesis is supported by intracortical stimulation experiments
that evoked coordinated forelimb movements in conscious primates [10][33]. It has
been reported that each stimulation site produced a stereotyped posture in which the
arm moved to the same final position regardless of its posture in the initial stimula-
tion. In the most complex example, the monkey formed a frozen pose with the hand
in a grasping position in front of the open mouth. This implies that during the arm
movement toward an actual target, the virtual target point at the head can be set for
the potential retraction of the palm to the virtual target as shown in Figure 4.

Manipulability Ellipsoid: According to the above notion of efficient arm move-
ments toward a virtual target at the head, the redundancy of the human arm can be
closely associated with the manipulability ellipsoid. Let Pm denote the virtual target
position at the center of the head in Figure 5(a). When we consider the combinations

of joint velocities satisfying the condition in which Σn
i=1θ̇i

2
= 1, the hand velocity

as a function of the joint velocity is described by an ellipsoid that defines the arm’s
scaled Jacobian. The longest principle axis of the manipulability ellipsoid (i.e., the
major principle axis) defines the direction of the highest sensitivity where the end
effector velocity varies in response to the joint space velocity (see Figure 5(b)) [28].
Assuming that the virtual hand movement follows the shortest path connecting Pw

to Pm, the swivel angle is chosen such that the projection of the major principle axis
of the manipulability ellipsoid onto (Pm −Pw) is maximized.

Fig. 4 Virtual destination is at the head, which is a cluster of feedback sensors
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Lemma 1. Given the inequality ‖Pw −Ps‖> ‖Pw −Pe‖, the major principle axis of
the manipulability ellipsoid is coplanar with plane S, defined by Pw, Pe and Ps, and
its magnitude σ1 is expressed as

σ1 =
√

λ1 =
√
((L2

ws +L2
we)+ (L2

ws+L2
we)c1)/2 (74)

c1 =
√

1− c2, c2 = 4L2
weL2

ws sin2 ϕ/(L2
ws +L2

we)
2

(a) (b)

(c) (d)

Fig. 5 The new coordinate system composed of Pw, Pe, Ps and Pm. (a) Each element Ji in the
Jacobian matrix is defined with respect to the newly defined frame on the shoulder where the
x axis is defined as (Pw −Ps)/‖Pw −Ps‖ and the y axis sits on the plane S composed of Pw, Pe

and Ps. The new frame on the shoulder is defined for the convenience of the calculation. (b)
Manipulability ellipsoid at the wrist position. u1,u2 and u3 indicate the three principle axes
of the ellipsoid with magnitudes σ1,σ2 and σ3. (c) The direction of the largest manipulability
(i.e., vector u1) projected on the (Pm −Pw)/‖Pm −Pw‖ is marked as an arrow along (Pm −
Pw) and its magnitude can be represented as ‖u1‖cos(α)cos(β ). (d) It shows the specific
elbow position for the given wrist position that maximizes the manipulability projected on
the direction from the hand toward the virtual target. In this configuration, Pm,Ps,Pe and Pw

are on the same plane.
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Proof. As the human arm moves, the wrist position Pw and elbow position Pe change
and therefore a time-varying Plane ’S’ can be defined by three points Ps, Pe and Pw.
As shown in Figure 5(a), a frame attached to the time-varying Plane S, with its origin
located at Ps. The x-axis, denoted by ω1, is defined along the vector |Pw −Ps|, while
the z-axis, denoted by ω3, is orthogonal to the plane S’. Accordingly, the y-axis,
denoted by ω2 is within the time-varying Plane S. With Pe as the origin of the frame
of elbow flexion, θ4 represents the elbow flexion within the Plane S, with ω4 as the
axis to rotate about.

The relationship between the end-effector velocity Ṗ = [Ṗwx Ṗwy Ṗwz]
T and joint

velocity θ̇ = [θ̇1 θ̇2 θ̇3 θ̇4] is defined as:

Ṗ = Jθ̇ = [J1 J2 J3 J4]θ̇
= J1θ̇1 + J2θ̇2 + J3θ̇3 + J4θ̇4 (75)

Ji =

{
ωi × (Pw−Ps), i = 1,2,3

ωi × (Pw−Pe), i = 4
(76)

Note that J1 = ωi × (Pw−Ps) = x× (Ps−Pw) = 0. Therefore, we have

Ṗ = +J2θ̇2 + J3θ̇3 + J4θ̇4 (77)

With respect to the time-varying Plane S, the attached frame has its x-axis, y-axis,
and z-axis in a fixed direction, i.e., x = ω1 = [1,0,0]T , y = ω2 = [0,1,0]T and
z = ω3 = [0,0,1]T . ω4 is in parallel with ω3 and therefore we have ω4 = [0,0,1]T .
Using the cross product, the direction of Ji for i = 2,3,4 can be determined: J2 is
in the direction [0,0,−1]T ; J3 is in the direction [0,1,0]T ; the direction of J4 is per-
pendicular to Pw −Pe and ω4 and therefore in the Plane S, as shown in Figure 5(a).
Here, we define the angle between J3 and J4 as ϕ . Since all the ωis are unit vectors,
the magnitude of Ji can be determined:

||Ji||=
{||Pw −Ps||, i = 1,2,3

||Pw −Pe||, i = 4
(78)

Based on the above definitions, we can explicitly express each vector of the Jacobian
matrix with respect to the frame attached to Plane S:

J1 = [0,0,0]T (79)

J2 = ||Pw −Ps|| · [0,0,−1]T (80)

J3 = ||Pw −Ps|| · [0,1,0]T (81)

J4 = ||Pe −Ps|| · [−sinϕ ,cosϕ ,0]T (82)
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Thus, the Jacobian matrix is:

J =

⎛
⎝

0 0 0 −Lwe sinϕ
0 0 Lws Lwe cosϕ
0 −Lws 0 0

⎞
⎠ (83)

where Lws = ||Pw −Ps|| and Lwe = ||Pe −Ps||.
By singular value decomposition, we can find J=UΣVT , where U= [u1,u2,u3]

T ,
Σ = diag(σ1,σ2,σ3) and V = [v1,v2,v3]

T . The vectors ui determine the direction of
principle axes of the manipulability ellipsoid, and σi determine the radii, as shown
in Figure 5(b). By resolving det(JJT −λ I) = 0, we can obtain σi =

√
λi. Based on

Sarrus’s rule, the eigen-values λi can be found as:

λ1,2 =
(L2

ws +L2
we)± (L2

ws+L2
we)c1

2
,(λ1 > λ2) (84)

λ3 = L2
ws (85)

with

c1 =
√

1− c2 (86)

c2 =
4L2

wsL
2
we sinϕ2

(L2
ws +L2

we)
2 (87)

Note that 0 < c1 < 1 and 0 < c2 < 1 and therefore λ1,2 are not complex numbers.
Knowing that λ1 > λ2, the following proof will show λ1 > λ3 and therefore the
eigen-vector u1 corresponding to λ1 is the longest eigen-vector.

case1: Lws ≥ Lwe

λ1 −λ3 =
(L2

ws +L2
we)+ (L2

ws+L2
we)c1

2
−L2

ws

≥ (L2
we −L2

ws)+ (L2
ws+L2

we)cmin1

2

=
(L2

we −L2
ws)+ (L2

ws+L2
we)

√
1− cmax2

2

=
(L2

we −L2
ws)+

√
(L2

ws +L2
we)

2 − 4L2
wsL2

we

2

=
(L2

we −L2
ws)+

√
(L2

ws −L2
we)

2

2
= 0 (88)

where cmin1 is the minimum of c1; cmax2 is the maximum of c2 and

cmax2 =
max(4L2

weL2
ws sin(ϕ)2)

(L2
ws +L2

we)
2 =

4L2
weL2

ws

(L2
ws +L2

we)
2 (89)
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case2: Lws < Lwe

λ1 −λ3 =
(L2

ws +L2
we)+ (L2

ws +L2
we)c1

2
−L2

ws

≥ (1+ cmin1)(L2
ws +L2

we)

2
−L2

ws

≥ (L2
ws +L2

we)

2
−L2

ws

=
(L2

we −L2
ws)

2
≥ 0 (90)

λ1 > λ3 for all the possible Lws, corresponding to wrist positions for the reaching
movements of the human arm. Thus, we can conclude that the longest eigen-vector
of the manipulability ellipsoid is u1, corresponding to the largest eigen-value of

σ1 =
√

λ1 =
√
((L2

ws +L2
we)+ (L2

ws +L2
we)c1)/2 (91)

The direction of the longest eigen-vector can be found by:

(J ·JT )X = λ X (92)

where X = [x1,x2,x3]
T .

(J ·JT )X =

⎛
⎝

L2
we sinϕ2 −L2

we cosϕ sinϕ 0
−L2

we cosϕ sinϕ L2
ws +L2

we cosϕ2 0
0 0 L2

ws

⎞
⎠
⎛
⎝

x1

x2

x3

⎞
⎠= λ1

⎛
⎝

x1

x2

x3

⎞
⎠

(93)

Therefore

(L2
we sinϕ2 −λ1)x1 = L2

we cosϕ sin ϕx2

L2
we cosϕ sinϕx1 = (L2

ws +L2
we cosϕ2 −λ1)x2

L2
wsx3 = λ1x3 (94)

For the solution, we have

x1 = x1

x2 = −λ1 −L2
we sinϕ2

L2
we cosϕ sinϕ

x1

x3 = 0 (95)

Due to the joint limit, 0◦ < ϕ < 90◦. When ϕ = 0◦, the arm is fully extended and
therefore at its singular position; ϕ = 90◦ cannot be achieved since upper and the
lower arms can not fully overlap each other.
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Note that

λ1 −L2
we sinϕ2 =

(L2
ws +L2

we)+ (L2
ws +L2

we)c1 − 2L2
we sinϕ2

2

=

(L2
ws +L2

we)+ (L2
ws +L2

we)

√
1− 4L2

wsL2
we sinϕ2

(L2
ws+L2

we)
2 − 2L2

we sinϕ2

2

≥
(L2

ws +L2
we)+ (L2

ws +L2
we)

√
1− 4L2

wsL2
we

(L2
ws+L2

we)
2 − 2L2

we sinϕ2

2

=
(L2

ws +L2
we)+ ||L2

ws −L2
we||− 2L2

we sinϕ2

2

=
(L2

ws −L2
we)+ ||L2

ws −L2
we||+ 2L2

we cosϕ2

2

≥ 2L2
we cosϕ2

2
= L2

we cosϕ2 ≥ 0 (96)

With 0 < cosϕ ≤ 1 and 0 ≤ sin ϕ < 1,

− λ1 −L2
we sin ϕ2

L2
we cosϕ sinϕ

x1 ≤− L2
we cosϕ2

L2
we cosϕ sinϕ

=− 1
tanϕ

< 0 (97)

The direction of u1 is as shown in Figure 5(c).

Optimization of Swivel Angle Using Movement Efficiency: The control of the
extra DOF in the human arm, specified by the swivel angle φ , can be optimized for
best movement efficiency. The proposed biologically-based hypothesis considers
the human head (particularly the position of human mouth) as the virtual target for
human arm movements. Thus, an optimum swivel angle can be determined such that
the projection of the major principle axis u1 on the vector Pm −Pw is maximized for
a given wrist position, since in the direction of the major principle axis, the Jacobian
matrix provides the most efficient mapping from joint space velocity to task space
velocity.

φ = argmax
α ,β∈[0 π/2]

[uT
1 (Pm −Pw)]

= argmax
α ,β∈[0 π/2]

[‖u1‖‖Pm −Pw‖cos(α)cos(β )] (98)

By Equation (98), the brute force method is used to explore all the possible swivel
angles for a wrist position, to determine the optimum swivel angle. Figure 5(c)
demonstrates the geometry of finding the projection of u1 on Pm−Pw. In Figure 5(c),
α denotes the angles between (Pm − Pw) and plane S; β denotes the angle be-
tween u1 and the projection of (Pm −Pw) onto S. The component of u1 projected
onto (Pm −Pw) is represented by ‖u1‖cos(α)cos(β ), marked by the green arrow.
It is expected that Equation (98) is maximized when α = 0◦, regardless of the



Synthesizing Redundancy Resolution Criteria of the Human Arm Posture 223

β determined by the given wrist position; when α = 0◦, plane S is coplanar with
the plane composed by Pm, Ps and Pw, as shown in Figure 5(d). The optimum swivel
angle following the proposed hypothesis can be determined given the positions of
Pm, Pw and Ps. Define f = Pw −Pm and f

′
to be the projection of f on the direction of

Pw −P
′
c. Since f

′
is parallel to vector Pe(φ)−Pc when α = 0◦, the optimum swivel

angle is estimated as:

φkin = arctan2(n · (f′ ×u), f
′ ·u) (99)

This algorithm provides a real-time estimate of the swivel angle and therefore a
real-time solution to the inverse kinematics of the human arm. The performance of
the φest estimation has been evaluated in [24] and compared to a dynamic model
in [23]. This chapter intends to examine this algorithm (referred to as Criterion
I in the following section) in a more general experimental setup, in comparison
with another swivel angle estimation algorithm which addresses the effect of the
dynamics of the human arm.

3.2 Criterion II: Swivel Angle Estimation by a Dynamic
Constraint

According to [24], the biologically-based swivel angle estimation algorithm using
purely kinematic constraints can provide a good estimation. However, the effect of
dynamics on human arm movements cannot be underestimated. [23] integrates a
dynamic criterion in order to provide an improved estimation of swivel angles and
to reveal the effect of the dynamics on human arm movements. The dynamic cri-
terion, proposed in [21] and referred to as Criterion II in the following sections,
resolves the inverse kinematics by minimizing the magnitude of total work done by
joint torques for each time step. It has generated satisfactory predictions of the joint
space trajectory for the fundamental motions of the human arm, such as shoulder
adduction/abduction, shoulder flexion/extension, shoulder internal/external and el-
bow flexion/extension. Note that there exist other dynamic criteria which can also
be used to improve the estimation performance.

Optimization of Swivel Angles by Minimizing Work in Joint Space: For reach-
ing movements in a 3D workspace, the wrist position of the human arm can be
uniquely defined by three variables in the task space, while in the joint space there
are four joint angles (three for the shoulder motion and one for the elbow mo-
tion) available for configuration. Accordingly, the relationship between movements
and muscle forces in a musculoskeletal model is based on the four dynamic equa-
tions [21]:

T = MQ̈+C
(
Q, Q̇

)
+G(Q) (100)

In Equation (100), Q̈ = [q̈1, q̈2, q̈3, q̈4] and Q̇ = [q̇1, q̇2, q̇3, q̇4], where qi represents
the joint angle for the i-th DOF. M, C

(
Q, Q̇

)
and G(Q) represent the matrix of the
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moment of inertia, the centrifugal/coriolis forces and the gravity force respectively.
The external force is represented by E and this is regarded as zero in this paper
since the given task does not involve interacting with an external load. The active
and passive joint torque rendered by musculotendinous forces are represented by T .
The calculation of work in the joint space for each time step depends on (1) the joint
torques and (2) the difference in joint angles. Therefore, the work in the joint space
during the movement interval [tk, tk+1] can be computed for two different conditions.
The dynamic constraint adopted in this chapter is from the original work done by
[30]. Here, we briefly include the essential parts of the algorithm for the integrity of
the chapter.

if Ti,tk ·Ti,tk+1 > 0,

Wi =
(Ti,tk +Ti,tk+1) ·Δqi

2
(101)

where Ti,tk and Ti,tk+1 are the joint torques of the i-th joint at the time tk and tk+1.
Δqi = (qi,tk+1 − qi,tk) is the difference of the i-th joint angle during the time interval
[tk, tk+1].

When Ti,tk ·Ti,tk+1 < 0,

Wi =
(|Δqi|− hi) ·Ti,tk+1

2
− hi ·Ti,k

2
(102)

where hi = (|Ti,tk | · |Δqi|)/|Ti,tk+1 −Ti,tk | and denotes the difference of the i-th joint
angle from qi,tk to the value corresponding to zero crossing of joint torque.

To minimize the work done in joint space at each time step (E.g. |W |tk,tk+1 for
the time interval [tk, tk+1]), the swivel angle of the human arm for a specified wrist
position is optimized by the following cost function:

C = |W |tk,tk+1 =
4

∑
i=1

|Wi|tk ,tk+1 (103)

where |Wi|tk,tk+1 denotes the work done by the i-th joint.

4 Experiments

4.1 Experiment Setup

3D Spherical Workspace: A 3D spherical workspace is set up in order to examine
the swivel angle estimation performance of the above two criteria in more general
conditions. This spherical workspace, with its center denoted by the green point
in Figure 6, is calculated as a part of the surface of a virtual sphere. The calculated
target locations, denoted by blue marks, fall within a red circle, whose size is limited
by the width of the back frame of the experiment table. By varying the radius of the
virtual sphere, the spherical workspace can be resized, resulting in a new distribution
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(a) Simulation of a 3D spherical workspace. (b) Experimental setup.

Fig. 6 3D spherical workspace: (a) targets (shown as blues points) are arranged on the sur-
face of a virtual sphere, the center of which is shown as the green point; (b) the spherical
workspace is installed on the back frame of a table customized for reaching and grasping
experiments

(a) Top view (b) Front view

Fig. 7 Experiment setup for reaching movements in a 3D spherical workspace

of target locations and a different target density. The spherical workspace is installed
on the back frame of an experiment table customized for reaching and grasping
experiments.

To maximize the use of the back frame of the experiment table, this experiment
allocates the radius of the virtual sphere to be slightly larger than the width of the
back frame. The origin of the virtual sphere (as well as the shoulder of the subject)
is equidistant between the left and right boundaries of the frame (Figure 7(a)). With
an adjustable chair, the right shoulder of a subject can be aligned at the height of the
center of the virtual sphere. As shown in Figure 7(b), the center of the virtual sphere
and the shoulder of the subject overlap in the front view.
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Fig. 8 Targets involved in reaching experiments, marked by green circles

The spherical workspace is evenly discritized and 44 targets are allocated with the
same interval in both the vertical direction (i.e. along the z-axis) and the horizontal
direction (i.e. along the x-axis). Each target is numbered by its row and column.

Subjects: This experiment involves five healthy volunteer right-handed subjects
(three males and two females; age range 22-38 years old; average age 28 years
old) without any clinical symptoms or any history of motor, sensory or neurological
disorders. The subjects are naive as to the purpose the experiment, and are only
instructed to perform point to point reaching movements in a naturally self-paced
way.

Experiment Protocol: In this experiment, subjects are expected to conduct eight
sessions of reaching movements with their right arms. The targets involved in this
experiment are 25, 33, 38, 52, 59, 83, 88, and 96, as shown in Figure 8. Each of the
eight sessions chooses an involved target to be the destination (i.e. the end target) of
the reaching movements for the whole session. In each session, a subject iteratively
starts from one of all the other involved targets and reaches to the end target of that
session, according to the trial sequence denoted in Equation (104). Each session
consists of five repetitions of seven different reaching movements (35 trials in total).

5 repeats×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Session 1 : 33 → 25, 38 → 25, 52 → 25, 59 → 25, 83 → 25, 88 → 25, 96 → 25
Session 2 : 25 → 33, 38 → 33, 52 → 33, 59 → 33, 83 → 33, 88 → 33, 96 → 33
Session 3 : 25 → 38, 33 → 38, 52 → 38, 59 → 38, 83 → 38, 88 → 38, 96 → 38
Session 4 : 25 → 52, 33 → 52, 38 → 52, 59 → 52, 83 → 52, 88 → 52, 96 → 52
Session 5 : 25 → 59, 33 → 59, 38 → 59, 52 → 59, 83 → 59, 88 → 59, 96 → 59
Session 6 : 25 → 83, 33 → 83, 38 → 83, 52 → 83, 59 → 83, 88 → 83, 96 → 83
Session 7 : 25 → 88, 33 → 88, 38 → 88, 52 → 88, 59 → 88, 83 → 88, 96 → 88
Session 8 : 25 → 96, 33 → 96, 38 → 96, 52 → 96, 59 → 96, 83 → 96, 88 → 96

(104)
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During the experiment, a subject sits in a chair with a straight back support. The
placement of the chair enables the subject to point at the targets with comfort and
with his/her elbow flexed to roughly 90◦ (as shown in Figure 6(b)). The height of
the chair is adjustable such that the right shoulder of the subject is aligned with the
height of the center of the spherical workspace. The right arm is free for pointing
movements, but the body of the subject is bounded to the chair back, in order to
minimize shoulder displacement. During the pointing movements, the subject is
asked to keep the pointing finger in line with the forearm to minimize wrist flexion.

The subjects are instructed to point with the tip of the index finger at their own
paces. At the beginning of each trial, a subject is informed of the targets that the
trajectory starts with and ends at, i.e., the start target and end target. After receiving
a ”start” command, the subject points his/her index finger from the start target to the
end target.

A motion capture system records an individual file for each trial, starting from the
time when the subject puts his/her index finger on the start target and ending after
the index finger becomes steady at the end target. To avoid the effect of fatigue, the
subject can take a rest after completing each session and can take a rest during a
session if he/she feels like it.

5 Results and Discussion

This section presents the results of the swivel angle estimation based on different
criteria, and compares them with the measurements of swivel angles from the reach-
ing experiment. The performance of different swivel angle estimation algorithms is
evaluated and compared using their estimation errors at targets and during move-
ments.

Figure 9 provides an example of the swivel angle profiles of a subject reaching
between two targets: moving forward from Target 1 to Target 7, and moving back-
ward from Target 7 to Target 1. Note that when the measured swivel angle (the blue
lines in Figure 9), which denotes the arm postures of the subject in the experiment,
is approximately symmetric for moving forward and backward between the two tar-
gets. This symmetry of the arm postures is better addressed in the swivel estimation
by Criterion I (the green lines), than that by Criterion II.

Section 5.1 examines the swivel angle profiles of all the trials for each subject.
The experimentally measured swivel angle demonstrates posture consistency for
each individual subject, i.e. the same subject tends to use the same arm posture
(measured by the swivel angle) to reach for a target, regardless of whether the sub-
ject is moving toward or moving away from the target. In addition, reaching move-
ments are symmetric when comparing the profiles of measured swivel angles for
the reaching movements between the same two targets and in opposite directions.
The posture consistency and trajectory symmetry are related. Particularly, the pos-
ture consistency is an important characteristic of human arm movements, such that
the swivel angle estimation of a good control strategy for human arm movements
should be able to address it.
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(a) From Target 1 to Target 7 (b) From Target 7 to Target 1

(c) From Target 1 to Target 7 (d) From Target 7 to Target 1

Fig. 9 Figure 9(a) and Figure 9(b) show the experimentally measured swivel angle profiles
and the estimated swivel angle profiles by different criteria; Figure 9(c) and Figure 9(d) are
the profiles of joint angles correspondingly. In all the figures, the blue lines are the measured
swivel angle profiles, the green lines are the profiles of the swivel angle estimated based on
criterion I (the efficiency of arm movement), and the red lines are the profiles of swivel angle
estimated based criterion II (minimizing work in the joint space).

5.1 Posture Consistency in Human Arm Movements

Posture Consistency: The Regularity in Human Arm Movements: Posture con-
sistency is an interesting characteristic of human arm movements. Without any spe-
cific instructions or manipulation intentions, a subject moving his/her arm in free
space tends to use the same arm posture to reach the same position, regardless of
whether the subject is moving toward or away from the target.

Posture consistency is important because it implies that for reaching movements
in a free space, a unique redundancy resolution corresponding to a unique arm pos-
ture is associated with each wrist position. Among all the hypotheses of control
strategies for human arm movements, a control strategy that addresses posture con-
sistency can be systematically adjusted to achieve improved estimation accuracy,
while control strategies that do not address posture consistency may not represent
the characteristics of human arm movements.
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To study the arm postures at each target, we define the swivel angle that a subject
takes when he/she moves away from the target as the ”start posture”, and the swivel
angle that a subject takes when he/she moves toward the target as the ”end posture”.
Figure 10 presents the statistics of target postures for each subject, showing that at
each target the start and the end postures are very close to each other.

Figure 11 shows the statistics of averaged posture differences measured during
the experiment for each subject. The averaged posture difference ‖φstart − φend‖
is computed for each involved target, as the difference between the averaged start

(a) Subject 1. (b) Subject 2.

(c) Subject 3. (d) Subject 4.

(e) Subject 5.

Fig. 10 Swivel angle difference between the start and the end postures
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Fig. 11 Posture consistency measured in the experiments. Each subject had a median aver-
age posture difference of less than 5◦ across all targets, and the maximum average posture
difference was less than 10◦ for any target.

Fig. 12 Posture consistency by Criterion I. Each subject had a median average posture dif-
ference of less than 3◦ across all targets, and the maximum average posture difference was
less than 5◦ for any target.

posture at a target and the averaged end posture at the same target. As shown in
Figure 11, all subjects have a median of the averaged posture difference (across all
targets) of less than 5◦, and the maximum of the averaged posture difference for any
target was less than 10◦.

The average posture difference can also be calculated for the estimated target
postures according to the different estimation criteria. The average predicted posture
differences for each subject are generally smaller in Figure 12 than in Figure 13. It
can be concluded that posture consistency is addressed better by Criterion I than by
Criterion II. Under Criterion I all subjects have a median of the averaged posture
difference less than 3◦, and the maximum of the averaged posture difference across
all subjects is less than 5◦, while using Criterion II all subjects have a median of the



Synthesizing Redundancy Resolution Criteria of the Human Arm Posture 231

Fig. 13 Posture consistency by Criterion II. Each subject had a median average posture dif-
ference of less than 15◦ across all targets, and the maximum average posture difference was
less than 35◦ for any target.

averaged posture difference less than 15◦, and the maximum of the averaged posture
difference is less than 35◦. Criterion I has a better performance than Criterion II on
posture consistency.

Analysis of Systematic Errors in Swivel Angle Estimation: Figure 14 demon-
strates the systematic error in swivel angle estimation by different criteria, and for
start and the end posture, respectively. φexp is the average swivel angle measured
in the experiment, while φest and φdyna are the average swivel angle estimated by
Criterion I and Criterion II, respectively. Note that the perfect posture consistency
demonstrated in Figure 14(b) is because Criterion II intentionally uses the measured
swivel angle as the initial value to start its estimation.

Both Figure 14(a) and Figure 14(c) show that the systematic error of swivel an-
gle estimation based on Criterion I can be related to the horizontal position of tar-
gets with respect to shoulder location. In general, Criterion I tends to overestimate
the swivel angle and therefore expects higher elbow position than the experimen-
tal measurements; however, given targets of the same height, the overestimation is
more significant for targets to the left of the shoulder than for the targets to the right
of the shoulder. Note that in the workspace, target 3, 5 and 7 (called ”right targets”)
are to the right of shoulder, target 2, 4, 6 (called ”left targets”) are to the left of
shoulder, and target 1 and 8 (called ”middle targets”) are aligned with the shoulder.
The systematic overestimation related to the horizontal position of the targets can be
found by comparing target postures at the left target and at right target of the same
height in pairs (e.g., target 2 VS target 3, target 4 VS target 5; and target 6 VS target
7). Note that the arm postures at target 1 are more overestimated than at target 8.

The systematic estimation error of Criterion I may be explained by the following
fact: when reaching to the targets to the right of shoulder, the right arm moves in
free space and therefore the effect of gravity is more significant, while reaching to
the targets to the left of the shoulder, the movements of right arm will be blocked
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(a) Criterion I: start posture. (b) Criterion II: start posture.

(c) Criterion I: end posture. (d) Criterion II: end posture.

Fig. 14 Systematic error in swivel angle estimation for different criteria

by the torso and the lap. The effect of gravity is partially countered by the force
produced by joint limits and workspace constraints.

In general, Criterion II tends to underestimate the swivel angle and expect lower
elbow positions compared to those measured in the experiments. Figure 14(d) shows
that the underestimation of swivel angles is related to the heights of targets with
respect to the height of the shoulder, targets 1, 2, and 3 (called ”higher targets”)
are above the shoulder, targets 6, 7, and 8 (called ”lower targets”) are below the
shoulder, and targets 4 and 5 (called ”middle targets”) are aligned at the same height
as the shoulder. In Figure 14(d), it is shown that the swivel angles at the higher
targets and middle target 4 are more underestimated, while the lower targets and
middle target 5 may be slightly underestimated, with the estimated swivel angles
close to measured swivel angles.

5.2 Estimation Error during Reaching Movements

As noted in the experimental protocol, each subject conducted five repeats of each
trajectory (i.e. reaching movements starting from the same target and ending at the
same target). The estimation performance of different criteria are further evaluated
by the standard deviation of estimation errors during the movements.
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(a) Good swivel angle estimation. (b) Bad swivel angle estimation.

Fig. 15 Example of the different performance of swivel angle estimation. pTJ is calculated
by first-order regression to represent how well the estimated swivel angle fits the measured
swivel angle along a trajectory. In (a) PTJ = 0.92, indicating the estimated swivel angle fits
the measured swivel angle well; in (b) PTJ = −0.66, indicating the estimated swivel angle
does not fit the measured swivel angle.

Figure 15 shows examples of evaluating the performance of a criterion on the
swivel angle estimation along a trajectory. For different trajectories created by the
same subject, the same criterion may produce swivel angle estimations that are bet-
ter for some trajectories than for others. The evaluation of estimation performance
is conducted by linear regression of the estimated swivel angle versus the measured
swivel angle along a trajectory. The slope of linear regression (pTJ) shows how
much the estimated swivel angle fits the measured swivel angle. In the best case, the
slope of linear regression is supposed to be 1, indicating that the estimated swivel
angle fits the measured swivel angle all along the trajectory.

As shown in Figure 16, all the trajectories of reaching movements are further
categorized by the slope pT J of the first order regression of the measured swivel
angles with respect to the estimated swivel angles along a trajectory. In Figure 16,
the targets are numbered in sequence and trajectories are denoted by colored vectors:
trajectories with pTJ <−0.6 are in red; trajectories with pTJ > 0.6 are in green; and
trajectories with 0.6 < pT J < 0.6 are in yellow. The estimation performance at each
target, measured by MEANTarget and calculated by averaging the absolute values of
the estimation errors at a target, are also categorized and marked by different colors.

The targets with MEANTarget < 10◦ are green, the targets with MEANTarget > 20◦
are red, and the targets with 10◦ < MEANTarget < 20◦ are yellow. By comparing the
estimation performance of the two criteria, it can be found that Criterion II outper-
forms Criterion I, indicating that the control strategy for human arm movements
has is linked to energy, which is mostly related to the effect of gravity. Therefore,
a pure kinematic model such as Criterion I can not estimate the swivel angle very
well by itself. On the other hand, the estimation performance of Criterion I shows
the blocking effect of the human body on human arm movements, particularly for
the trajectories with poor swivel angle estimation (the cluster on the left side of the
workspace, mostly related to Target 4). (Note that when reaching to Target 4, the
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(a) Subject 1. (b) Subject 1.

(c) Subject 3. (d) Subject 4.

(e) Subject 5.

Fig. 16 Criterion I: categorization of reaching movement trajectories by estimation per-
formance. The performance of estimation is evaluated by the slope pTJ of the first
order regression between measured swivel angles and estimated swivel angles along a tra-
jectory. Colored vectors connecting targets denote the corresponding trajectories of move-
ments: trajectories with pT J < −0.6 are in red; trajectories with pT J > 0.6 are in green;
and trajectories with 0.6 < pTJ < 0.6 are in yellow. The estimation performance at each
target, measured by MEANTarget and calculated by averaging the absolute values of estima-
tion errors at a target, are also categorized and marked by different colors: the targets with
MEANTarget < 10◦ are green, the targets with MEANTarget > 20◦ are red, and the targets with
10◦ < MEANTarget < 20◦ are yellow.
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(a) Subject 1. (b) Subject 1.

(c) Subject 3. (d) Subject 4.

(e) Subject 5.

Fig. 17 (Continue Figure 16) Criterion II: categorization of reaching movement trajectories
by estimation performance

right human arm is blocked by torso to the largest extent.) The estimation perfor-
mance of Criterion I also demonstrates the effect of gravity, since the poor estima-
tion of target posture happens for the lower targets on the right of the workspace (i.e.
Target 5 and Target 7). There, the human arm moves in free space, and the measured
swivel angles are much lower than the estimated swivel angles.
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Comparing Figure 16 and Figure 17, Criterion II demonstrates a better perfor-
mance for the estimation of arm postures at targets and along trajectories. This ex-
perimental result may seem to contradict the results of [23], in which Criterion I
provided a better swivel angle estimation than Criterion II. However, this appar-
ent contradiction can be explained by the difference in the experimental protocol.
In [23], the targets are on the surface of the table and on frames, and the subjects are
asked to touch the targets slightly with their hands. During the experiments, subjects
touched the targets with the finger pads of the three middle fingers. The orientation
of the hand affected the elbow position and resulted in a larger swivel angle. In addi-
tion to the hand orientation, the subjects avoided collision with the table surface and
therefore chose higher elbow positions unconsciously. In addition, note that under
Criterion II, the swivel angle estimation algorithm takes the measured swivel angle
at the start target as an initial condition, which contributes to a higher performance
of swivel angle estimation for the whole trajectory. At the same time, Criterion I
estimates the initial swivel angle and does not require measuring the initial swivel
angle.

6 Conclusion

Posture consistency is an important characteristic of human arm movements. With-
out intent to manipulate, a subject tends to use the same arm posture to reach the
same target in a 3D free space, regardless of whether the subject is moving toward
or moving away from the target. This regularity in human arm movements, previ-
ously revealed by Donders’ law, is confirmed by the experimental data presented in
this chapter. The subjects involved in the reaching experiments have their posture
difference median at the targets smaller than 5◦, and posture difference maximum
across all the targets less than 10◦. This posture consistency implies that given the
kinematic redundancy in the human arm, human motor control chooses a unique
arm posture associated with a 3D hand position.

Previously proposed control strategies for controlling the redundant degree of
freedom provide different predictions of the arm postures corresponding to the same
wrist position in a 3D space. This chapter examined the arm posture predictions of
two control strategies: one that maximizes the movement efficiency towards the
head, particularly toward the mouth (Criterion I); and the other that minimizes the
energy consumption in joint space at each time step (Criterion II). The predictions
of arm postures by the two control strategies are compared and the prediction er-
rors for each control strategy are analyzed: posture consistency is a better addressed
by Criterion I, while Criterion II has smaller estimation error along the arm move-
ment trajectories and therefore demonstrates better performance when predicting
the ”movement trend”. Further work will evaluate arm posture predictions based
on other criteria or based on their combinations to achieve improved arm posture
predictions.
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