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Chapter 25

Objective Assessment of Surgical Skills

Jacob Rosen, Mika Sinanan, and Blake Hannaford

Abstract Minimally invasive surgery (MIS) involves a multi-dimensional series

of tasks requiring a synthesis between visual information and the kinematics and

dynamics of the surgical tools. Analysis of these sources of information is a key step

in mastering MIS but may also be used to define objective criteria for characterizing

surgical performance. The BlueDRAGON is a new system for acquiring the

kinematics and the dynamics of two endoscopic tools synchronized with the visual

view of the surgical scene. It includes passive mechanisms equipped with position

and force torque sensors for measuring the position and the orientation (P/O) of two

endoscopic tools along with the force and torque (F/T) applied on them by the

surgeon’s hands. The analogy between Minimally Invasive Surgery (MIS) and

human language inspires the decomposition of a surgical task into its primary

elements in which tool/tissue interactions are considered as “words” that have

versions pronunciations defined by the F/T signatures applied on the tissues and

P/O of the surgical tools. The frequency of different elements or “words” and their

sequential associations or “grammar” both hold critical information about

the process of the procedure. Modeling these sequential element expressions using

amulti finite states model (Markovmodel –MM) reveals the structure of the surgical

task and is utilized as one of the key steps in objectively assessing surgical perfor-

mance. The surgical task is modeled by a fully connected, 30 state Markov model

representing the two surgical tools where each state corresponds to a fundamental

tool/tissue interaction based on the tool kinematics and associated with unique F/T

signatures. In addition to the MM objective analysis, a scoring protocol was used by

an expert surgeon to subjectively assess the subjects’ technical performance.

The experimental protocol includes seven MIS tasks performed on an animal
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model (pig) by 30 surgeons at different levels of training including expert surgeons.

Analysis of these data shows that the major differences between trainees at different

skill levels were: (a) the types of tool/tissue interactions being used, (b) the transi-

tions between tool/tissue interactions being applied by each hand, (c) time spent

while performing each tool/tissue interaction, (d) the overall completion time, and

(e) the variable F/Tmagnitudes being applied by the subjects through the endoscopic

tools. An objective learning curve was defined based on measuring quantitative

statistical distance (similarity) between MM of experts and MM of residents at

different levels of training. The objective learning curve (e.g. statistical distance

between MM) was similar to that of the subjective performance analysis. The MM

proved to be a powerful and compact mathematical model for decomposing a

complex task such as laparoscopic suturing. Systems like surgical robots or virtual

reality simulators in which the kinematics and the dynamics of the surgical tool are

inherently measured may benefit from incorporation of the proposed methodology

for analysis of efficacy and objective evaluation of surgical skills during training.

Keywords Dynamics � Human Machine Interface � Haptics � Kinematics � Manip-

ulation � Markov Model � Minimally Invasive � Simulation � Surgery � Surgical Skill
Assessment � Soft Tissue � Surgical Tool � Robotics � Vector Quantization

25.1 Introduction

Evaluation of procedural skills in surgery can be performed utilizing three different

modalities: during actual open or minimally invasive clinical procedures; in physi-

cal or virtual reality simulators with or without haptic feedback; and during

interaction with surgical robotic systems (Fig. 25.1). In each of these interactions,

Fig. 25.1 Modalities for performing surgery
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the surgeon is separated from the treated tissue or medium by an instrument, an

interface that is at least mechanical, but may be a combination of mechanical and

virtual representation of the anatomy (simulator). The intermediate modality in all

of these options can be considered interchangeable.

During open or minimally invasive surgical (MIS) procedures, the surgeon

interacts with the patient’s tissue either directly with his/her hands or through the

mediations of tools. Surgical robotics enables the surgeon to operate in a

teleoperation mode with or without force feedback using a master/slave system

configuration. In this mode of operation, visualization is obtained from either an

external camera or an endoscopic camera. Incorporating force feedback, allows the

surgeon to feel through the master console the forces being applied on the tissue by

the surgical robot, the slave, as he/she interacts with it from the master console. For

training in a simulated virtual environment, the surgical tools, the robot – slave, and

the anatomical structures are replaced with virtual counterparts. The surgeon

interacts with specially-designed input devices, haptic devices when force feedback

is incorporated, that emulate surgical tools, or with the master console of the robotic

system itself, and perform surgical procedures in virtual reality.

One element that all these modalities have in common is the human–machine

interface in which visual, kinematic, dynamic, and haptic information are shared

between the surgeon and the various modalities. This interface, rich with multi-

dimensional data, is a valuable source of objective information that can be used to

objectively assess technical surgical and medical skill within the general framework

of surgical and medical ability. Algorithms that are developed for objective

assessment of skill are independent of the modality being used, and therefore, the

same algorithms can be incorporated into any of these technologies.

Advances in surgical instrumentation have expanded the use of minimally

invasive surgical (MIS) techniques over the last decade. Using a miniature video

camera and instruments inserted through small incisions, operations previously

performed through large incisions are now completed with MIS techniques leading

to a much shorter recovery time and decreased risk of surgical site infections.

However from surgeon’s perspective, this new technology requires a new set of

skills. The new human–machine interface, the associated loss of 3-D vision, and

degraded haptic sensation introduce new challenges. Moreover, the use of this

technology has also presented a new dilemma – namely the training of individuals

to perform surgical procedures that require a new set of skills. This is especially

problematic in the field of MIS where the teacher is one step removed from the

actual conduct of the operation.

Developing objective methodology for surgical competence and performance are

paramount to superior surgical training. Moreover, alternatives to the traditional

apprenticeship model of surgical training are necessary in today’s emphasis on cost

containment and professional competency and patient safety. There is a need to

demonstrate continuing competency among practicing surgeons as well as confirming

competency in trainees early on, before surgical trainees are thrust into the role of

primary assistant or surgeon in the operating room. Inherent difficulties in evaluating

clinical competence for physicians and physicians-in-training have spawned the wide
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use of various assessment techniques including Objective Structured Clinical Exam-

inations (OSCE), oral examinations, standardized patient examinations, and simula-

tion technology. While successful evaluation of cognitive skills using these methods

have been reported, objective evaluation of procedural skills remains difficult. As the

medical profession is facedwith demands for greater accountability and patient safety,

there is a critical need for the development of consistent and reliable methods for

objective evaluation of clinician performance during procedures.

Objective assessment of surgical competence during MIS procedures, defined as

caring out the surgical procedure in a minimally invasive surgical setup, is a multi-

dimensional problem. MIS performance is comprised of physiological constraints

(stress fatigue) equipment constraints (camera rotation and port location), team

constraints (nurses) and MIS ability. Ability when referred to surgery, is defined as

the natural state or condition of being capable; innate aptitude (prior to training)

which an individual brings for performing a surgical task [1]. MIS ability, by itself,

includes cognitive factors (knowledge and judgment) and technical factors

(psychomotor ability, visio-spatial ability and perceptual ability). By definition,

fundamental psychometric abilities are fixed at birth or early childhood and show

little or no learning effect [2]. However training enables the subject to perform as

close as possible to his or her inherent psychometric abilities.

The methodology for assessing surgical skill as a subset of surgical ability, is

gradually shifting from subjective scoring of an expert which may be a variably

biased opinion using vague criteria, towards a more objective, quantitative analysis.

This shift is enabled by using instrumented tools [3–7], measurements of the

surgeon’s arm kinematics [8], gaze patterns [9], physical simulators [10], a variety

of virtual reality simulators with and without haptics [1, 11–32], and robotic

systems. Regardless of the modality being used or the clinical procedure being

studied, task deconstruction or decomposition is an essential component of a

rigorous objective skills-assessment methodology. By exposing and analyzing the

internal hierarchy of tasks a broader understanding of procedures is achieved while

providing objective means for quantifying training and skills acquisition.

Task decomposition is associated with defining the prime elements of the

process. In surgery, a procedure is traditionally and methodologically divided into

steps, stages, or phases with well-defined intermediate goals. Additional hierarchi-

cal decomposition is based upon identifying tasks or subtasks [33] composed of

sequence of and actions or states [3–7]. In addition, other measurable parameters

such as workspace [34] completion time, tool position, and forces and torques

were studied individually [3–7]. Selecting low-level elements of the task decompo-

sition allows one to associate these elements with quantifiable and measurable

parameters. The definition of these states, along with measurable, quantitative

data, are the foundation for modeling and examining surgical tasks as a process.

In the current study, an analogy between (MIS) and the human language inspires

the decomposition of a surgical task into its primary elements. Modeling the

sequential element expressions using a multi states model (Markov model) reveals

the internal structure of the surgical task, and this is utilized as one of the key steps

in objectively assessing surgical performance. Markov Modeling (MM) and its
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subset – Hidden Markov Modeling (HMM) were extensively developed in the area

of speech recognition [35] and further used in a broad spectrum of other fields, e.g.

human operator modeling, robotics, and teleoperation [36–40], gesture recognition

and facial expressions [41, 42] DNA and protein modeling [43], and surgical tools

in MIS setup [5, 44]. These studies indicate that MMs and HMMs provide adequate

models to characterize humans operating in complex interactive tasks with

machines among other applications.

The aim of the study was to develop a system of acquiring data in a real MIS

setup using an animal model and a methodology for decomposing two-handed

surgical tasks using Markov models (MM) based on the kinematics and the dynam-

ics of the surgical tools. Measuring the statistical similarity between the models

representing subjects at different levels of their surgical training enables an objec-

tive assessment of surgical skills.

25.2 Tools and Methods

A novel system named the BlueDRAGON was designed, constructed and used for

acquiring the kinematics (position and orientation) and the dynamics (force and

torque) of two endoscopic tools during MIS procedures in real-time. The data were

acquired during a surgical task performed by 30 subjects at different levels of

surgical training followed by objective and subjective surgical skill analysis based

on task decomposition. The novel objective methodology was based upon a multi-

state Markov model whereas the subjective methodology utilized a standard scoring

system for analyzing the videotapes of the surgical scene recorded during the

experiment. The following subsections describe the system and the methodologies

that were used in the current study.

25.2.1 Tools: The BlueDRAGON System

TheBlueDRAGON is a system for acquiring the kinematics and the dynamics of two

endoscopic tools along with the visual view of the surgical scene while performing a

MIS procedure (Fig. 25.2). The system includes two four-bar passive mechanisms

attached to endoscopic tools [4]. The endoscopic tool in minimal invasive surgery is

inserted into the body through a port located for example in the abdominal wall. The

tool is rotated around a pivot point within the port that is inaccessible for sensors

aimed to measure the tool’s rotation. The four bar mechanism is one of several

mechanisms that allows mapping of the tool’s rotation around the port’s pivot point.

This mapping is enabled by aligning a specific point on the mechanism, where all its

rotation axes are intersecting, with the pivot point of the endoscopic tool

(Fig. 25.2b). The tool’s positions and orientations, with respect to the port, are

then tracked by sensors that are incorporated into the mechanism’s joints. Moreover,
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the mechanism’s axes alignment with the pivot point in the port prevents the

application of additional moments applied on the skin and internal tissues that

may result from misalignment and the fact that an external mechanism is used and

Fig. 25.2 The BlueDRAGON system (a) The system integrated into a minimally invasive surgery

operating room (b) CAD drawing of the BlueDRAGON four bar mechanism and its coordinate

system properly aliened with the MIS port. (c) Graphical user interface (GUI) incorporating visual

view of the surgical seen acquired by the endoscopes video camera (bottom right) and real-time

information measured by the BlueDRAGONs. On the top right side of the GUI, a virtual

representation of the two endoscopic tools are shown along with vectors representing the instanta-

neous velocities. On the bottom left a three dimensional representation of the forces and torque

vectors are presented. Surrounding the endoscopic image are bars representing the grasping/

spreading forces applied on the handle and transmitted to the tool tip via the tool’s internal

mechanism, along with virtual binary LED indicating contact between the tool tips and the tissues
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attached to the tools. On the other hand, this setup makes the mechanism totally

transparent to the moments that are generated intentionally by using the tools.

Substantial effort was made, during the design process, to minimize the weight

and the inertia of the mechanism. This was accomplished by using carbon fibers

tubes for the links, and by optimizing the shapes of the links for minimizing the

mass distribution. The mass of the mechanism’s moving parts is 1.36 kg and its

maximal moment of inertia relative to the X-axis (Ixx) depicted in Fig. 25.2b is

0.157 kg m2. Moreover, the gravitational forces applied on the surgeon’s hand when

the mechanism is placed away from its neutral position are compensated by an

optimized spring connecting the base with the first two coupled links.

The two mechanisms are equipped with three classes of sensors: (a) position

sensors (potentiometers – Midori America Corp.) are incorporated into four of the

mechanisms’ joints for measuring the position, the orientation and the translation of

the two instrumented endoscopic tools attached to them. In addition, two linear

potentiometers (Penny & Giles Controls Ltd.) that are attached to the tools’ handles

are used for measuring the endoscopic handle and tool tip angles; (b) three-axis

force/torque (F/T) sensors with holes drilled at their center (ATI-Mini sensor) are

inserted and clamped to the proximal end of the endoscopic tools’ shafts.

In addition, double beam force sensors (Futak) were inserted into the tools’ handles

for measuring the grasping forces at the hand/tool interface; and (c) contact sensors,

based on RC circuit, provided binary indication of any tool-tip/tissue contact.

Data measured by the BlueDRAGON sensors are acquired using two 12-bit USB

A/D cards (National Instruments) sampling the 26 channels (four rotations, one

translation, one tissue contact, and seven channels of forces and torques from each

instrumented grasper) at 30 Hz. In addition to the data acquisition, the synchronized

view of the surgical scene is incorporated into a graphical user interface displaying

the data in real-time (Fig. 25.2c).

25.2.2 Experimental Protocol

The experimental protocol included 30 surgeons at different levels of expertise

from surgeons in training to surgical attendings skilled in laparoscopic surgery.

There were five subjects in each group representing the 5 years of surgical training,

(5 � R1, R2, R3, R4, R5 – where the numeral denotes year of training) and five

expert surgeons. Each subject was given instruction on how to perform an

intracorporeal knot through a standard multimedia presentation. The multimedia

presentation included a written description of the task along with a video clip of the

surgical scene and audio explanation of the task. Subjects were then given a

maximum of 15 min to complete this task in a swine model. This complex,

integrative task includes many of the elements of advanced MIS techniques.

In addition to the surgical task, each subject performed 15 predefined tool/tissue

and tool/needle-suture interactions (Table 25.1). The kinematics (the position/
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orientation – P/O of the tools in space with respect to the port) and the dynamics

(forces and torque F/T applied by the surgeons on the tools) of the left and right

endoscopic tools along with the visual view of the surgical scene were acquired by a

passive mechanism that is part of the BlueDRAGON. The aim of this experimental

segment was to study the F/T and velocity signatures associated with each interac-

tion that were further used as the model observations associated with each state of

the model. All animal procedures were performed in an AALAC-accredited surgi-

cal research facility under an approved protocol from the institutional animal care

committee of the University of Washington.

25.2.3 Objective Analysis: MIS Task Decomposition
and Markov Model

25.2.3.1 Surgery as a Language: The Analogy and The State Definitions

The objective methodology for assessing skill while performing a procedure is

inspired by the analogy between the human language and surgery. Further analysis

of this concept indicates that these two domains share similar taxonomy and

internal etymological structure that allows a mathematical description of the pro-

cess by using quantitative models. Such models can be further used to objectively

assess skill level by revealing the internal structure and dynamics of the process.

This analogy is enhanced by the fact that in both the human language and in

surgery, an idea can be expressed and a procedure can be preformed in several

different ways while retaining the same cognitive meaning or outcome. This fact

suggests that a stochastic approach might describe the surgical or medical exami-

nation processes incorporating the inherent variability better then a determinist

approach.

Table 25.2 summarizes the analogy between the two entities, human language

and surgery, along with the corresponding modeling elements in a hierarchal

fashion. The critical step in creating such an analogy is to identify the prime

elements. In the human language, the prime element is the ‘word’ which is

analogous to a ‘tool/tissue interaction’ in surgery. This prime element is modeled

by a ‘state’ in the model. As in a spoken language, words have different ‘pronun-
ciations’ and yet preserve their meaning. In surgery, various ‘force/torque

Table 25.2 The analogy between the human language and surgery as

manifested it self in a similar taxonomy and sub structures along with the

corresponding element of the finite state Markov model

Language Surgery Model

Book Operation/Procedure Multiple Models
Chapter Step of the Operation Model
Word Tool/Tissue Interaction State
Pronunciation Force Torque Velocity magnitude Observation
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magnitudes’ can be applied on the tissues and still be classified under the same tool/

tissue interaction category. These various force/torque magnitudes are simulated by

the ‘observations’ in the model. In a similar fashion to the human language in which

a sequence of words are comprised into a sentence, and sentences create a book

‘chapter’, a sequence to tool/tissue interactions form a step of an operation in which

an intermediate and specific outcome can be completed. Each step of the operation

is represented by a single model. ‘Multiple models’ can be further describing a

multi-step ‘surgical operation’ that is analogous to a ‘book’. One may note that the

sub-structures like a sentence and a section were omitted in the current analogy;

however, identifying the corresponding elements in surgical procedure may

increase the resolution of the model.

Analyzing the degrees of freedom (DOF) of a tool in MIS indicates that the due

to the introduction of the port through which the surgeon inserts tools into the body

cavity, two DOF of the tool are restricted. The six DOF of a typical open surgical

tool is reduced to only four DOF in a minimally invasive setup (Fig. 25.3). These

four DOF include rotation along the three orthogonal axes (x,y,z) and translation

along the long axis of the tool’s shaft (z). A fifth DOF is defined as the tool-tip jaws

angle, which is mechanically linked to the tool’s handle, when a grasper or a scissor

is used. Additional one or two degrees of freedom can be obtained by adding a wrist

joint to the MIS tool. The wrist joint has been incorporated into commercially

available surgical robots in order to enhance the dexterity of the tool within the

body cavity.

Surgeons, while performing MIS procedures, utilize various combinations of the

tools’ DOF while manipulating them during the interaction with the tissues or other

items in the surgical scene (needle, suture, staple etc.) in order to achieve the desire

outcome. Quantitative analysis of the tool’s position and ordination during surgical

procedures revealed 15 different combinations of the tool’s five DOF, while inter-

acting with the tissues and other objects. These 15 DOF combinations will be

further referred to, and modeled as states (Table 25.1). The 15 states can be grouped

into three types, based on the number of movements or DOF utilized simulta-

neously. The fundamental maneuvers are defined as Type I. The ‘idle’ state was

defined as moving the tool in space (body cavity) without touching any internal

organ, tissue, or any other item in the scene. The forces and torques developed in

this state represent the interaction with the port and the abdominal wall, in addition

to the gravitational and inertial forces. In the ‘grasping’ and ‘spreading’ states,

compression and tension were applied on the tissue through the tool tip by closing

and opening the grasper’s handle, respectively. In the ‘pushing’ state, the tissue was

compressed by moving the tool along the Z axis. ‘Sweeping’ consisted of placing

the tool in one position while rotating it around the X and/or Y axes or in any

combination of these two axes (port frame). The rest of the tool/tissue interactions

in Types II and III were combinations of the fundamental ones defined as Type I.

The only one exception was state 15 that was observed only in tasks involved

suturing when the surgeon grasps the needle and rotates it around the shaft’s long

axis to insert it into the tissue. Such a rotation was never observed whenever direct

tissue interaction was involved.
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25.2.3.2 Vector Quantization (VQ)

Each one of the 15 states was associated with a unique set of forces, torques angular

and linear velocities, as indicated in Table 25.2. Following the language analogy, in

the same way as a word is correlated to a state may be pronounced differently and still

retains the same meaning, the tool might be in a specific state while infinite combina-

tions of force, torque angular and linear velocities may be used. A significant data

reduction was achieved by using a clustering analysis in a search for discrete number

of high concentration cluster centers in the database for each one of the 15 states.

As part of this process, the continuous 12 dimensional vectors were transformed into

one dimensional vector of 150 symbols (ten symbols for each state).

Fig. 25.3 Definition of the five degrees of freedom – DOF (marked by arrows) of a typical MIS

endoscopic tool. Note that two DOF were separated into two distinct actions (Open/Close handle

and Pull/Push), and the other two were lumped into one action (Rotate) for representing the tool tip

tissue interactions (omitted in the illustration). The terminology associated with the various DOF

corresponds with the model state definitions (Table 25.1)
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The data reduction was performed in three phases. During the first phase a

subset of the database was created appending all the 12 dimensional vectors

associated with each state measured by the left and the right tools and pre-

formed by all the subjects (see Sect. 25.2.2 for details). The 12 dimensional

subset of the database ( _yx, _yy, _yz, _yg;Fx;Fy;Fz; Tx; Ty; Tz;Fg) was transformed into

a 9 dimensional vector ( _yxy; _yz; _yg;Fxy;Fz; Txy; Tz;Fg) by calculating the magni-

tude of the angular velocity, and the forces and torques in the XY plane. This

process canceled out differences between surgeons due to variations in position

relative to the animal and allowed use of the same clusters for the left and the

right tools.

As part of the second phase, a K-means vector quantization algorithm [48] was

used to identify ten cluster centers associated with each state. Given M patterns
�X1; �X2; �XM contained in the pattern space �S, the process of clustering can be

formally stated as seeking the regions �S1; �S2; �SK such that every data vector �Xi

(i ¼ 1; 2M) falls into one of these regions and no �Xi is associated in two regions, i.e.

�S1 [ �S2 [ �S3 . . . [ �SK ¼ �S ðaÞ
�Si \ �Sj ¼ 0 8 i 6¼ j ðb) (25.1)

The K-means algorithm, is based on minimization of the sum of squared distances

from all points in a cluster domain to the cluster center,

min
X

X2Sj kð Þ
�X � �Zj
� �2

(25.2)

where Sj kð Þ was the cluster domain for cluster centers �Zj at the kth iteration, and �X
was a point in the cluster domain.

The pattern spaces �S in the current study were composed from the F/T applied on

the surgical tool by the surgeon along with the tool’s angular and linear velocities

for different states. A typical data vector �Xi, was a 9 dimensional vector defined as

{ _yxy, _yz, _yg,Fxy,Fz,Txy,Tz,Fg}. The cluster regions �Si represented by the cluster cen-

ters �Zj, defined typical signatures or codeword (pronunciations in the human

language realm) associated with a specific state (e.g. PS, PL, GR etc.). The number

of clusters identified in each type of state was based upon the squared error

distortion criterion (25.3). As the number of clusters increased, the distortion

decreased exponentially. Following this behavior, the number of clusters was

constantly increased until the squared error distortion gradient as a function of k
decreased below a threshold of 1% that results in ten cluster centers for each state.

d �X; �Zð Þ ¼ �X � �Zj
�� ��2¼Xk

i¼1

�X � �Zið Þ2 (25.3)

In the third phase, the ten cluster centers �Zj for each state (Table 25.2) forming a

codebook of 150 discrete symbols were then used to encode the entire database of
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the actual surgical tasks converting the continuous multi-dimensional data into a

one-dimensional vector of finite symbols. This step of the data analysis was

essential for using the discrete version of Markov Model.

25.2.3.3 Markov Model (MM)

The final step of the data analysis was to develop a model that represents the process

of performing MIS along with the methodology for objectively evaluating surgical

skill. The Markov Model was found to be a very compact statistical method to

summarize a relatively complex task such as a step or a task of a MIS procedure.

Moreover, the skill level was incorporated into the MM by developing different

MMs based on data acquired for different levels of expertise starting from a first

year residents up to a level of expert surgeons.

The modeling approach underling the methodology for decomposing and statis-

tically representing a surgical task is based on a fully connected, symmetric 30

states MM where the left and the right tools are represented by 15 states each

(Fig. 25.4). In view of this model, any MIS task may be described as a series of

states. In each state, the surgeon is applying a specific force/torque/velocity signa-

ture, out of ten signatures that are associated with that state, on the tissue or on any

other item in the surgical scene by using the tool. The surgeon may stay within same

state for specific time duration using different signatures associated with that state

and then perform a transition to another state. The surgeon may utilize any of the 15

states by using the left and the right tools independently. However, the states

representing the tool/tissue or tool/object interactions of the left and the right

tools are mathematically and functionally linked.

The MM is defined by the compact notation in (25.4). Each Markov sub-model

representing the left and the right tool is defined by lL and lR (25.4). The sub model

is defined by: (a) The number of states –N whereas individual states are denoted as

S ¼ s1; s1; . . . sNf g, and the state at time t as qt
(b) The number of distinct (discrete) observation symbol –Mwhereas individual

symbols are denoted as V ¼ v1; v1; . . . vMf g
(c) The state transition probability distribution matrix indicating the probability

of the transition from state qt ¼ si at time t to state qtþ1 ¼ sj at time t þ 1 -

A ¼ aij
� �

, where aij ¼ P½qtþ1 ¼ sjjqt ¼ si� 1bi; jbN.
Note that A ¼ aij

� �
is a non-symmetric matrix (aij 6¼ aji) since the probability of

performing a transition from state i to state j using each one of the tools is different

from the probability of performing a transition from state j to state i.
(d) The observation symbol probability distribution matrix indicating the proba-

bility of using the symbol vk while staying at state sj at time t � B ¼ bjðkÞ� �
, where

for state j bjðkÞ ¼ P½vkat tjqt ¼ sj�1bjbN; 1bkbM.

(e) The initial state distribution vector indicating the probability of starting the

process with state si at time t ¼ 1 � p where pi ¼ P½q1 ¼ si�1bibN.
The two sub models are linked to each other by the left-right interstate transition

probability matrix or the cooperation matrix indicating the probability for staying
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Fig. 25.4 Finite State Diagrams (FSD) – (a) Fully connected FSD for decomposing MIS. The

tool/tissue and tool/object interactions of the left and the right endoscopic tools are represented by

the 15 fully connected sub-models. Circles represent states whereas lines represent transitions

between states. Each line, that does not cross the center-line, represents probability value defined

in the state transition probability distribution matrixA ¼ aij
� �

. Each line that crosses the center-
line, represents probability for a specific combination of the left and the right tools and defined by

the interstate transition probability distribution matrix, or the cooperation matrixC ¼ clrf g. Note
that since the probability of performing a transition from state i to state j by each one of the tools is
different from probability of performing a transition from state j to state i, these two probabilities

should have been represented by two parallel lines connecting state i to state j and representing the
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in states sl with the left tool sr with the right tool at time t –C ¼ clrf g, where
clr ¼ P½qtL ¼ sl [ qtR ¼ sr� 1bl; rbN

Note that C ¼ clrf g is a non-symmetric matrix clr 6¼ crl since it representing the
combination of using two states simultaneously by the left and the right tools.

The probability of observing the state transition Q ¼ q1; q2; . . . qTf g and the

associated observation sequence O ¼ o1; o2; . . . oTf g, given the two Markov sub

models (25.4) and interstate transition probability matrix, is defined by (25.5)

lL ¼ ðAL;BL; pLÞ lR ¼ ðAR;BR; pRÞ (25.4)

PðQ;OjlL; lR;CÞ ¼ pqLpqR
YT
t¼0

aqtqtþ1LbqtLðotÞaqtqtþ1RbqtRðotÞcqtLqtR (25.5)

Since probabilities by definition have numerical value in the range of 0–1, for a

relatively short time duration, the probability calculated by (25.5) converges expo-

nentially to zero; and therefore exceeds the precision range of essentially any

machine. Hence, by using a logarithmic transformation, the resulting values of

(25.5) in the range of [0 1] are mapped by (25.6) into [�1 1].

LogðPðQ;OjlL; lR;CÞÞ ¼ LogðpqLÞ þ LogðpqRÞ þ
XT
t¼1

Logðaqtqtþ1LÞ þ LogðbqtLðotÞÞþ; Logðaqtqtþ1RÞ þ LogðbqtRðotÞÞ þ LogðcqtLqtRÞ

(25.6)

Due to the nature of the process associated with surgery in which the procedure,

by definition, always starts at the idle state (state 1), the initial state distribution

vector is defined as follows:

p1L ¼ p1R ¼ 1

piL ¼ piR ¼ 0 2bibN
(25.7)

Once the MMs were defined for specific subjects with specific skill levels,

it became possible to calculate the statistical distance factors between them.

These statistical distance factors are considered to be an objective criterion for

two potential transitions. However for simplifying the graphical representation ofA ¼ aij
� �

only

one line is plotted between state i to state j. (b) Each state out of the 15 states of the left and the

right toolbðL;RÞi is associated with the ten force/torque/velocity signature or discrete

observationbið1Þ . . . bið10Þ. Each line, that connects the state with a specific observation represents
probability value defined in observation symbol probability distribution matrixB ¼ bjðkÞ� �

. The

sub-structure appeared in (b) that is associated with each state was omitted for simplifying the

diagram in (a)
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evaluating skill level if for example the statistical distance factor between a

trainee (indicated by index R) and an expert (indicated by index E) is being

calculated. This distance indicates how similar is the performance of two subjects

under study. Given two MMs lE (Expert) and lR (Novice) the nonsymmetrical

statistical distances between them are defined as D1ðlR; lEÞ and D2ðlE; lRÞ.
The natural expression of the symmetrical statistical distance version DER is

defined by (25.8).

DER ¼ D1ðOE;QE;OR;QR; lEÞ þ D2ðOE;QE;OR;QR; lRÞ
2

¼ logPðOR;QRjlEÞ
logPðOE;QEjlEÞ þ logPðOR;QRjlRÞ

logPðOE;QEjlRÞ
� �	

2

(25.8)

Setting an expert level as the reference level of performance, the symmetrical

statistical distance of a model representing a given subject from a given expert

(DER) is normalized with respect to the average distance between the models

representing all the experts associated with the expert group ( �DEE) and expressed

in (25.9). The normalized distance DERk k represents how far (statistically) is the

performance of a subject, given his or her model, from the performance of the

average expert.

DERk k ¼ DER

�DEE
¼ DER

1
l

Pu¼l;v¼l

u¼1;v¼1

DEuEv

for u 6¼ v (25.9)

For the purpose of calculating the normalized learning curve, the 20 distances

between all the expert subjects was first calculated DEuEv
– (for five subjects in

the expert group –u ¼ v ¼ 1:::5 – l ¼ 20) using (25.8). The denominator of (25.9)

was then calculated. Once the reference level of expertise was determined, the

statistical distances between each one of the 25 subjects, grouped into five levels of

training (R1, R2, R3, R4, R5), and each one of the experts was calculated (five

distances for each individual, 25 distances for each group of skill level and 125

distances for the entire data base) using (25.8). The average statistical distance and

its variance defines the learning curve of a particular task.

25.2.3.4 Complimentary Objective Indexes

In addition to the Markov models and the statistical similarity analysis, two other

objective indexes of performance were measured and calculated, including the task

completion time and the overall length (L) of the path of the left and the right tool

tips. Where dL; dR are the distances between two consecutive tool tip positions
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PLðt � 1Þ;PRðt � 1Þ and PLðtÞ;PRðtÞ as a function of time of the left and the right

tools respectively.

L ¼
XT
t¼1

dLðPLðt � 1Þ;PLðtÞÞ þ dRðPRðt � 1Þ;PRðtÞÞ (25.10)

25.2.4 Subjective Analysis: Scoring

The subjective performance analysis was based on an off-line unbiased expert

surgeon review (blinded to the subject and training level of each individual) of

digital videos recorded during the experiment. The review utilized a scoring system

of four equally weighted criteria: (a) overall performance (b) economy of move-

ment (c) tissue handling (d) number of errors including drop needle, drop suture,

lose suture loop, breaking suture, needle injury to adjacent tissue, inability to

puncture bowel with needle. Criteria (a), (b), and (c) included five levels. The

final scores were normalized to the averaged experts scoring.

25.3 Results

25.3.1 Force and Torque Position and Orientation

Typical raw data of forces and torques (F/T) and tool tip position were plotted using

three dimensional graphs. The graphs show the kinematics and dynamics of the left

and right endoscopic tools as measured by the Blue DRAGON while performing

MIS intracorporeal knot by junior trainee (R1 – Fig. 25.5a, c) and expert surgeon

(E – Fig. 25.5b, d). The F/T vectors can be depicted as arrows with origins located at

the port, changing their lengths and orientations as a function of time and as a result

of the F/T applied by the surgeon’s hand on the tool. In a similar fashion, the traces of

the tool tips with respect to the ports were plotted in Fig. 25.5c, d as their positions

changed during the surgical procedure.

The forces along the Z axis (in/out of the port) were higher compared to the

forces in the XY plane. On the other hand, torques developed by rotating the tool

around the Z axis were extremely low compared to the torques generated while

rotating the tool along the X and Y axis while sweeping the tissue or performing

lateral retraction. Similar trends in terms of the F/T magnitude ratios between the X,

Y, and Z axes were found in the data measured in other MIS tasks.

These raw data demonstrate the complexity of the surgical task and the multi-

dimensional data associated with it. This complexity can be resolved in part by

decomposing the surgical task into its primary elements enabling profound under-

standing of the MIS task.
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Fig. 25.5 Kinematics and dynamic data from left and the right endoscopic tools measured by the

Blue DRAGON while performing MIS suturing and knot tying by a trainee surgeon (a, c) and an

expert surgeon (b, d) – (a, b) Forces; (b, c) tool tip position. The ellipsoids contain 95% of the data

points



25.3.2 Cluster Centers and Markov Models

A cluster analysis using the K-means algorithm was performed to define typical

cluster centers in the database. These were further used as code-words in the MM

analysis. A total of 150 cluster centers were identified, ten clusters centers for each

type of tool/tissue/object interaction as defined in Table 25.1. Figure 25.6 depicts the

ten cluster centers associated with each one of the 15 states identified in the data. For

example, Fig. 25.6 (13) represents ten cluster centers associated with the state defined

by Grasping-Pushing-Sweeping (Table 25.1 – State No. 13). Grasping-Pushing-

Sweeping is a superposition of three actions. The surgeon grasps a tissue or an object

which is identified by the positive grasping force (Fg) acting on the tool’s jaws and the

negative angular velocity of the handle (og) indicating that the handle is being closed.

At the same time the grasped tissue or object is pushed into the port indicated by

positive value of the force (Fz) acting along the long shaft of the tool and negative

linear velocity (Vr) representing the fact the tool is moved into the port. Simulta-

neously, sweeping the tissue to the side manifested by the force and the torque in the

XY plane (Fxy; Txy) that are generated due to the deflection of the abdominal wall, the

lateral force applied on the tool by the tissue or object being swept along with the

lateral angular velocity (oxy) indicating the rotation of the tool around the pivot point

inside the port.

Both static, quasi-static and dynamic tool/tissue or tool/object interactions are

represented by the various cluster centers. Even in static conditions, the forces and

torques provide a unique and un-ambivalent signature that can be associatedwith each

one of the 15 states.

The 150 cluster centers (Table 25.1 and Fig. 25.6) form a code-book that is used

to encode the entire database of the actual surgical procedure converting the

continuous multi-dimensional data into a one-dimensional vector of finite symbols.

It should be noted that since each state is associated with a unique set of ten cluster

centers and vice versa, a specific cluster center was associated with only one state,

and as a by-product of the encoding process, the states were also identified.

25.3.3 Objective and Subjective Indexes of Performance

Given the encoded data, the MM for each subject was calculated defining the

probabilities for performing certain tool transitions ([A] matrix), the probability

of combining two states ([C] matrix), and the probability of using the various

signatures in each state ([B] matrix) – Fig. 25.7. The highest probability values in

the [A] matrix usually appeared along the diagonal. These results indicate that a

transition associated with staying at the same state is more likely to occur rather

than a transition to any one of the other 15 potential states. In minimally invasive

surgical suturing, the default transition between any state is to the grasping state (state

number 2) as indicated by the high probability values along the second column

of the [A] matrix. Probability of using one out of the 150 cluster centers defined

in Fig. 25.7 is graphically represented by the [B] matrix. Each line of the [B] matrix is
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Fig. 25.6 Cluster centers definition – Ten signatures of forces torques linear and angular veloci-

ties associated with the 15 types of states (tool/tissue or tool/object interaction) defined by

Table 25.1. In these graphs each one of the ten polar lines represent one cluster. The clusters were

normalized to a range of [�1 1] using the following min/max values:oxy ¼ 0.593[r/s], oZ ¼ 2.310

[r/s], Vr ¼ 0.059[m/s], og ¼ 0.532[r/s], Fxy ¼ 5.069[N], FZ ¼ 152.536[N], Fg ¼ 33.669[N], Txy ¼
9.792[Nm], TZ ¼ 0.017[Nm]. The numbers correspond to the 15 states as defined by Table 25.1



associated with one of the ten states. The clusters were ranked according to the

mechanical power. The left and the right tool used different distribution of the clusters.

Whereas with the left tool the most frequent clusters that were used are related to mid-

range power with the right tool the cluster usage is more evenly distributed among the

different power levels. The collaboration matrix [C] indicates that the most frequently

used state with both the left and the right tools are idle (state 1), grasping (state 2)

grasping pulling and sweeping (state 12) and grasping rotating (state 15) with the left

tool. Once one of the tools utilizes one of these states, the probability of using any of

the states by the other tool is equally distributed between the states which is indicated

by the bright horizontal stripes in the graphical representation of the [C] matrix.

The Idle state (state 1) in which no tool/tissue interaction is performed, was mainly

used by both expert and novice surgeons, to move from one operative state to the

another. However, the expert surgeons used the idle state only as a transition state

while the novices spent a significant amount of time in this state planning the next tool/

tissue or tool/object interaction. However, in case of surgical suturing and knot tying,

the grasping state (state 2) dominated the transition phases since grasping state

maintained the operative state in which both the suture and the needle were held by

the two surgical tools.

Figure 25.8a–c represent the normalized MM-based statistical distance as a

function of the training level, the normalized completion time, and the normalized

path length of the two tool tips respectively. The subjective normalized scoring is

Fig. 25.7 A typical Markov Model where the matrices [A], [B], [C], are represented as color-

coded probabilistic maps
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Fig. 25.8 Objective and subjective assessment indexes of minimally invasive suturing learning

cure. The objective performance indexes are based on: (a) Markov model normalized statistical

distance, (b) normalized completion time, and
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Fig. 25.8 (continued) (c) normalized path length of the two tool tips. The average task completion

time of the expert group is 98 s and the total path length of the two tools is 3.832 m. The subjective

performance index is based on visual scoring by an expert surgeon normalized with respect to

experts’ performance (d)
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depicted in Fig. 25.8d. The data demonstrate that substantial suturing skills are

acquired during the first year of the residency training. The learning curves do not

indicate any significant improvement during the second and the third years of

training. The rapid improvement of the first year is followed by lower gradient of

the learning curve as the trainees progress toward the expert level. However, the

MM based statistical distance along with the completion time criteria show yet

another gradient in the learning curve that occurs during the fourth year of the

residency training followed by slow conversion to expert performance. Similar

trends in the learning curve are also demonstrated by the subjective assessment.

One of the subjects in the R2 group outperformed his peers in his own group and

some subjects in a more advanced groups (R3, R4). Although, statistically insignif-

icant, the performance slightly altered the overall trend of the learning curves as

defined by the different criteria.

A correlation analysis was performed between the means of the objective normal-

ized MM based statistical distance and the subjective normalized scoring. The corre-

lation factor R2 was found to be 0.86. This result established the linkage between

objective and subjective methodologies for assessing surgical skill (Fig. 25.9).

Fig. 25.9 Linear correlation between the normalized mean performance obtained by a subjective

video analysis and objective analysis using Markov models and the statistical distance between

models of trainees (R1–R5) and experts (E). The notations R1, R2, R3, R4, R5 represent the

various residence groups where the number denotes year of training and E indicate expert

surgeons. The values in the brackets represent the normalized mean scores using the subjective

and the objective methodologies respectively
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Detailed analysis of the MM shows that major differences between surgeons at

different skill levels were: (a) the types of tool/tissue/object interactions being used,

(b) the transitions between tool/tissue/object interactions being applied by each

hand, (c) time spent while performing each tool/tissue/object interaction, (d) the

overall completion time, (e) the various F/T/velocity magnitudes being applied by

the subjects through the endoscopic tools, and (f) two-handed collaboration. More-

over, the F/T associated with each state showed that the F/T magnitudes were found

to be task-dependent. High F/T magnitudes were applied by novices compared to

experts during tissue manipulation, and vice versa during tissue dissection. High

efficiency of surgical performance was demonstrated by the expert surgeons and

expressed by shorter tool tip displacements, shorter periods of time spent in the ‘idle’

state, and sufficient application of F/T on the tissue to safely accomplish the task.

25.4 Discussion

Minimally invasive surgery, regardless of the performance modality, is a complex

task that requires synthesis between visual and kinesthetic information. Analyzing

MIS in terms of these two sources of information is a key step towards developing

objective criteria for training surgeons and evaluating the performance in different

modalities including real surgery, master/slave robotic systems or virtual reality

simulators with haptic technology.

Following two steps of data reduction, data that was collected by the Blue

DRAGON were further used to develop models representing MIS as a process.

In any data reduction there is always a compromise between decreasing the input

dimensionality while retaining sufficient information to characterize and model the

process under study. Utilizing the VQ algorithm the 13 dimensional stream of

acquired data were quantized into 150 symbols with nine dimensions each.

The data quantization included two substeps. In the first steps the cluster centers

were identified. As part of the second step the entire database was encoded based on

the cluster centers defined in the first step. Every data point needs to meet two

criteria in order to be associated with one of the 150 cluster centers defined in the

first step. The first criterion is to have the minimal geometrical distance to one of the

cluster centers. Once the data point was associated with a specific cluster center it is

by definition associated with a specific state out the 15 defined. Based on expert

knowledge of surgery, Table 25.1 defines the 15 states and unique sets of individual

vector components. The second criterion is that given the candidate state and the

data vector, the direction of each component in the vector must match the one

defined by the table for the selected state. It was indicated during the data proces-

sing that these two criteria were always met suggesting that the data quantization

process is very robust in it nature. Following the encoding process a 2 dimensional

input (one dimension for each tool) was utilized to form a 30 state fully connected

Markov model. The coded data with their close association to the measured data, as

well as the Markov model using these codes as its observations distributed among
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its states, retain sufficient multi model information in a compact mathematical

formulation for modeling the process of surgery at different levels.

MIS is recognized both qualitatively and quantitatively as multidimensional

process. As such, studying one parameter e.g. completion time, tool-tip paths, or

force/torque magnitudes reveals only one aspect of the process. Only a model that

truly describes MIS as a process is capable of exposing the process internal

dynamics and provides wide spectrum information about it. At the high level, a

tremendous amount of information is encapsulated into a single objective indicator

of surgical skill level and expressed as the statistical distance between the surgical

performance of a particular subject under study from a surgical performance of an

expert. As part of an alternative approach a combined score could be calculated by

studying each parameter individually (e.g. force, torque, velocity, tool path, com-

pletion time etc.), assigning a weight to each one of these parameters, which is a

subjective process by itself, and combining them into a single score. The assump-

tion underlying this approach is that a collection of aspects associated with surgery

may be used to assess the overall process. However this alternative approach

ignores the internal dynamics of the process that is more likely to be revealed by

a model such as the Markov model. In addition, as opposed to analyzing individual

parameters, studying the low levels of the model provides profound insight into the

process of MIS in a way that allows one to offer constructive feedback for a trainee

regarding performance aspects like the appropriate application of F/T, economy of

motion, and two handed manipulation.

The appropriate application of F/T on the tissue has a significant impact on the

surgical performance efficiency and outcome of surgery. Previous results indicated

that the F/T magnitudes are task dependent [3–7]. Experts applied high F/T

magnitudes on the tissues during tissue dissection as apposed to low F/T magni-

tudes applied on the tissues by trainees that were trying to avoid irreversible

damage. An inverse relationship regarding the F/T magnitudes was observed during

tissue manipulation in which high F/T magnitudes applied on the tissue by trainees

exposed them to acute damage. It is important to point out that these differences

were observed in particular states (e.g all the states including grasping for tissue

manipulation and all the state that involved spreading for tissue dissection). Due to

the inherent variance in the data even multidimensional ANOVA failed to identify

this phenomena once the F/T magnitudes are removed from the context of the multi

state model. Given the nature of surgical task, the Markov model [B] Matrix,

encompassing information regarding the frequency in which the F/T magnitudes

were applied, may be used to assess whether the appropriate magnitudes F/T were

applied for each particular state. For obvious reasons, tissue damage is correlated

with surgical outcome, and linked to the magnitudes and the directions in which F/T

were applied on the tissues. As such, tissue damage boundaries may be incorporated

into the [B] matrix for each particular state. Given the surgical task, this additional

information may refine the contractive feedback to the trainee and the objective

assessment of the performance.

The economy of motion and the two hand collaboration may be further assessed

by retrieving the information encapsulated into the [A], and [C] matrices. The
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amount of information incorporated into these two data structures is well beyond

the information provided by a single indicator such as tool-tip path length, or

completion time for the purpose of formulating constructive feedback to the trainee.

Given a surgical task, utilizing the appropriate sets of states and state transitions are

skill dependent. This information is encompassed in the [A] matrix indicating that

states that were in use and the state transitions that were performed. Moreover, the

ability to refine the time domain analysis using the multi state Markov model

indicated, as was observed in previous studies, that the ‘idle’ state is utilized as a

transition state by expert surgeons whereas a significant amount of time is spent in

that state by trainees [3–7]. In addition, coordinated movements of the two tools is

yet another indication of high skill leveling MIS. At a lower skill level the dominant

hand is more active than the non-dominant hand as opposed to a high skill level in

which the two tools are utilized equally. The collaborated [C] matrix encapsulates

this information and quantifies the level of collaboration between the to tools.

In conclusion, the MM model provides insight into the process of performing

MIS. This information can be translated into a constructive feedback to the trainee

as indicated by the model three matrices [A], [B] and [C]. Moreover, the capability

of running the model in real-time and its inherent memory allows a senior surgeon

supervising the surgery or an artificial intelligent expert system incorporated into a

surgical robot or a simulator provides an immediate constructive feedback during

the process as previously described.

A useful analogy of the proposed methodology for decomposing the surgical task

is the human spoken language. Based on this analogy, the basic states – tool/tissue

interactions are equivalent to ‘words’ of the MIS ‘language’ and the 15 states form
theMIS ‘dictionary’ or set of all available words. In the same way that a single word

can be pronounced differently by various people, the same tool/tissue or tool/object

interaction can be performed differently by different surgeons. Differences in F/T

magnitudes account for this different ‘pronunciation’, yet different pronunciation of
a ‘word’ have the same meaning, or outcome, as in the realm of surgery. The cluster

analysis was used to identify the typical F/T and velocities associated with each one

of the tool/tissue and tool/object interactions in the surgery ‘dictionary’, or using the
language analogy, to characterize different pronunciations of a ‘word’. Utilizing the
‘dictionary’ of surgery, the MM was then used to define the process of each task or

step of the surgical procedure, or in other words, ‘dictating chapters’ of the surgical
‘story’. This analogy is reinforced by an important finding in the field of Phonology

suggesting that all human languages use a limited repertoire of about 40–50 sounds

defined as phones [45] e.g. the DARPA phonetic alphabet, ARPAbet used in

American English or the International Phonetic Alphabet (IPA). The proposed

methodology retains its power by decomposing the surgical task to its fundamental

elements – tool/tissue and tool/object interactions. These elements are inherent in

MIS no matter which modality is being used.

One may note that although the notations and the model architecture of the

proposed Markov model (MM) and the hidden Markov model (HMM) approach are

similar, there are several fundamental differences between them. Strictly speaking,

the proposed MM is a white box model in which each state has a physical meaning
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describing a particular interaction between the tools and tissue or other objects in

the surgical scene like sutures and needles. However, the HMM is a black box
model in which the states are abstract and are not related to a specific physical

interaction. Moreover, in the proposed white box model, each state has a unique set

of observations that characterize only the specific state. By definition, once the

discrete observation is matched with a vector quantization code-word the state is

also defined. States in the HMM share the same observations, however different

observation distributions differentiate between them. The topology of the proposed

MM suggests a hybrid approach between the two previously described models.

It adds to the classic Markov model another layer of complexity by introducing

the observation elements for each state. The model also provides insight into

the process by linking the states to physical and meaningful interactions. This

unique quality adds to the classic notation of the introduction of the collaboration

matrix [C]. This matrix is not present in either the MM or the HMM. The [C] matrix

was introduced as a way to link between the models representing the left and right

hand tools since surgery is a two-handed task.

Quantifying the advantages and the disadvantages of each modeling approach

(MM or HMM) is still a subject for active research. Whereas the strength of the MM

is expressed by providing physical meaning to the process being modeled, devel-

opment of HMM holds the promise for more compact model topology which avoids

any expert knowledge incorporated into the model. Regardless of the type of the

model, defining the scope of the model and its fundamental elements, the state and

the observation are subjects of extensive research. In the current study the entire

surgical task is modeled by a fully connected model topology were each tool/tissue/

object interaction is modeled as a state. In a different approach, using a state of the

art methodology in speech recognition in which each phenomenon is represented by

a model with abstract states, each tool/object interaction is modeled by entire model

using more generalized definitions for these interactions e.g. place position, insert

remove [46, 47]. This approach may require additional model with a predetermined

overall structure that will represent the overall process.

The scope of the proposed model is limited to objectively assess technical factors

of surgical ability. Cognitive factors per se cannot be assessed by the model unless a

specific action is taken as a result of a decision making process. In any case, the

model is incapable of tracing the process back to its cognitive origin. In addition, the

underlying assumption made by using a model is that there is a standard technique

with insignificant variations by which expert surgeons perform a surgical task. Any

significant variation of the surgical performance, regardless of the surgical outcome,

is penalized by the model and associated with low scores. If such a surgical

performance variation from the standard surgical technique is associated with a

better outcome for the patient the model is incapable of detecting it.

Decomposing MIS and analyzing it using MM is one approach for developing

objective criteria for surgical performance. The availability of validated objective

measures of surgical performance and competency is considered critical for training

surgeons and evaluating their performance. Systems like surgical robots or virtual

reality simulators that inherently measure the kinematics and the dynamics of the
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surgical tools may benefit from inclusion of the proposed methodology. Using this

information in real-time during the course of learning as feedback to the trainee

surgeons or as an artificial intelligent background layer, may increase performance

efficiency in MIS and improve patient safety and outcome.
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