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This study evaluated if the ventilatory response to exercise is
impaired by the cramp position of rowing. Maximal oxygen
uptake (

·
VO2max), maximal expiratory volume (

·
VEmax), and

maximal heart rate (HRmax) during rowing and running
were compared in 55 males (age, mean7SD, 2173 years;
height 17675 cm; body mass 7276 kg) and 18 females
(age 2072 years; height 16475 cm; body mass 6174 kg).
·
VEmax was larger during rowing than during run-
ning (males, 157716 vs. 147713Lmin� 1; 11479 vs.
105711Lmin� 1, Po0.01). Also

·
VO2max was larger

during rowing than during running (males, 4.570.5 vs.
4.370.4 Lmin� 1; females, 3.370.4 vs. 3.270.4 Lmin� 1,
Po0.01). However, HRmax was lower during rowing than
during running (males, 19478 vs. 198711 beatsmin� 1;

females, 19276 vs. 19678 beatsmin� 1, Po0.05).
·
VEmax

was correlated to body mass and fat-free mass, as was
·
VO2max. Thus, the oxygen pulse (

·
VO2max/HRmax) was larger

during rowing than during running, while the ventila-
tory equivalent for oxygen (

·
VEmax/

·
VO2max) was similar.

We showed that bending the body during rowing does not
seem to impair ventilation either in males or in females. The
results indicate that

·
VEmax and

·
VO2max relate to body

size and fat-free mass for both females and males. The
findings indicate that the involvement of more muscles,
the entrainment, and the body position during rowing
facilitates ventilation and venous return and lowers maximal
heart rate.

Periodic contraction of muscles and movement
during rowing elevates pleural pressure (Rosiello
et al., 1987; Siegmund et al., 1999). An increased
pleural pressure reduces venous return, end-diastolic
volume, and the stroke volume of the heart
(Cunningham et al., 1975; Rosiello et al., 1987;
Wilmore & Costill, 1999). Also the increased intra-
abdomen pressure impairs ventilation at stroke catch
(Cunningham et al., 1975) or stroke finish (Siegmund
et al., 1999). These physiological changes are con-
sidered to impair the expiratory volume (

·
VE) and

oxygen uptake (
·
VO2) at maximal rowing effort

(Cunningham et al., 1975; Rosiello et al., 1987).
On the other hand, during the drive phase the knee

and hips extend and ventilation is assisted (Siegmund
et al., 1999). During rowing a high ventilatory res-
ponse is elicited (Szal & Schoene, 1989) and ventila-
torylocomotion coupling appears to lead adequate
ventilation (Siegmund et al., 1999). Rowing involves
both upper- and lower-body exercise, while running
mainly involves the legs (Secher, 1983; Clifford et al.,
1994).

·
VO2 increases as the muscle mass involved

increases (Secher et al., 1974; Secher et al., 1977).
We hypothesized that ventilation and oxygen

consumption during rowing are larger than during
running.
Specifically,

·
VE is reported to be limited during

rowing in females (Mahler et al., 1987). As both the
maximal expiratory volume (

·
VEmax) and maximal

oxygen uptake (
·
VO2max) depend on body size

(Secher et al., 1983; Rodgers et al., 1995; Jensen
et al., 2001), the low

·
VE of females was considered to

reflect their small body size rather than the position
used during rowing.
In both males and females we examined

·
VEmax,

·
VO2max, and the maximal heart rate (HRmax) during
ergometer rowing and treadmill running. Also,
the maximal oxygen pulse (

·
VO2max/HRmax) was

calculated as an index of stroke volume of the heart
(Heath et al., 1981). We also hypothesized that the
cardiorespiratory response to exercise is similar
between males and females, but that body size
affects the response.

Methods

We studied 55 males (age mean7SD, 2173 years; height
17675 cm; body mass 7276 kg, percentage body fat 1173%)
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and 18 females (age 2072 years; height 16475 cm; body mass
6174 kg; percentage body fat 2274%). The subjects were
informed of the design and risks of the study and provided
written informed consent. This study was as approved by the
Ethical Committee of the National Institute of Health and
Nutrition, and provided written informed consent.

All subjects completed two bouts of exercise: progressive
running on a treadmill and rowing on an ergometer (Concept
II model C, Morrisville, VT, USA). All subjects are regularly
running on a treadmill and rowing on an ergometer and were
familiar with both type of exercise. During treadmill run-
ning, the initial speed was 160mmin� 1 for the males and
140mmin� 1 for the females, and it was increased by
20mmin� 1 every 2min with a 3.0% incline of the treadmill.
Exercise was terminated when the subjects could not complete
a given running speed. During ergometer rowing, the initial
load was 150W for the males and 125W for the females, and
it was increased by 50W for males and by 25W for females
every 2min. Exercise was terminated when the subjects were
no longer able to maintain the required intensity. It was
required that each subject met each of the following criteria to
ensure that

·
VO2max was reached: (1) a plateau in

·
VO2 against

exercise intensity; (2) a respiratory exchange ratio exceeding
1.15; (3) blood lactate concentration exceeding 8–9mmolL� 1;
(4) achievement of age-predicted HRmax; and (5) the rating of
perceived exertion of 19 or 20 (Bassett & Howley, 2000).

The expired gas was collected in Douglas bags during the
last 1min of each stage, and the volume was measured using a
dry gas meter and the concentrations of oxygen and carbon
dioxide were determined (Respiromonitor RM-300i, Minato
Medical Science Co., Tokyo, Japan). The HR was determined
electrocardiographically (Nihon Kohden Co., Tokyo, Japan).
The rating of perceived exertion was expressed every 2min
(Borg, 1982). Blood samples were taken using heparinized
glass capillaries from the fingertip at the termination of
exercise. Blood lactate concentration was analyzed by an
enzymatic membrane method using a 1500 Analyzer (Yellow
Springs, OH, USA).

Percentage body fat was derived according to the Brozek
equation (Brozek et al., 1963) using body density determined
by the BOD POD air displacement system (Life Measure-
ment Instruments, Concord, CA, USA; Dempster & Aitkens,
1995).

Data are reported as mean7standard deviations (SD). The
ventilatory equivalent for oxygen (

·
VEmax/

·
VO2max) was cal-

culated (Wilmore & Costill, 1999). Student’s t-test was perfor-
med for comparison of data obtained in males and females
between rowing and running. Linear regression analysis was
used to evaluate the relationship of each variable between row-
ing and running. The level of significance was set at Po0.05.

Results

The rating of perceived exertion during rowing
was similar to during running (19.571.2 vs. 19.471.3).
·
VEmax was larger during ergometer rowing than
during treadmill running (males, 157716 vs. 1477
13Lmin� 1; females, 11479 vs. 105711Lmin� 1,
Po0.05). Also

·
VO2max was larger during rowing

compared to during running (males, 4.570.5 vs. 4.37
0.4 Lmin� 1; females, 3.370.4 vs. 3.270.4 Lmin� 1,
Po0.05).

·
VEmax during rowing was correlated to

·
VEmax

during running (r5 0.74, Po0.001; Fig. 1).
·
VEmax

during rowing was correlated to body mass (r5
0.78, Po0.001; Fig. 2) and fat-free mass (r5 0.84,
Po0.001; Fig. 3). Also

·
VEmax during running was

correlated to body mass (r5 0.67, Po0.001) and fat-
free mass (r5 0.77, Po0.001).

·
VO2max during ergometer rowing was correla-

ted to
·
VO2max during treadmill running (r5 0.96,

Po0.001).
·
VO2max during rowing was related to

body mass (r5 0.82, Po0.001) and fat-free mass
(r5 0.86, Po0.001). Also

·
VO2max during running

was related to body mass (r5 0.80, Po0.001) and
fat-free mass (r5 0.89, Po0.001).
The ventilatory equivalent for oxygen during

rowing was similar to that derived during running
(males, 34.971.6 vs. 33.872.1; females, 34.172.2
vs. 32.673.7), and there was no significant gender
difference. Also, the ventilatory equivalent for oxy-
gen during rowing was correlated to that obtained
during running (r5 0.47, Po0.001; Fig. 1).
HRmax was lower during ergometer rowing than

during treadmill running (males, 19478 vs. 198711
beatsmin� 1; females, 19276 vs. 19678 beats
min� 1, all Po0.05), and there was no gender
difference. HRmax during rowing was correlated to
that obtained during running (r5 0.67, Po0.001;
Fig. 1).
Oxygen pulse was larger during rowing than

during running (males, 23.272.9 vs. 22.072.8mL �
beat� 1; females, 17.471.8 vs. 16.771.9mL �beat� 1,
Po0.05). The oxygen pulse during rowing was corre-
lated to that achieved during running (r5 0.95,
Po0.001; Fig. 1). Oxygen pulse during rowing was
correlated to body mass (r5 0.78, Po0.001; Fig. 2)
and fat-free mass (r5 0.86, Po0.001; Fig. 2). Also
oxygen pulse during running was correlated to body
mass (r5 0.76, Po0.001) and fat-free mass (r5 0.83,
Po0.001).

Discussion

It has been suggested that the cramp position of
rowing might impede the contraction of the dia-
phragm, attenuate the decrease in lung pressure
during inspiration, and thereby also decrease preload
of the heart, resulting in not only impaired breathing
but also a reduced cardiac output (Cunningham
et al., 1975; Rosiello et al., 1987). Also, during
rowing the Valsalva-like maneuver used to stabilize
the upper body while both legs are extended (Clifford
et al., 1994) could diminish the ventricular preload
during rowing (Cunningham et al., 1975; Rosiello
et al., 1987). However, the findings of a higher

·
VEmax

and
·
VO2max during rowing than running irrespective

of sex do not support these suggestions.
During rowing, locomotion drives ventilation and

this phenomenon is called entrainment (Siegmund
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et al., 1999). Rowing leads to a high ventilatory
response that is a product of a lower tidal volume
and a high respiratory frequency, resulting in a high
·
VE (Szal & Schoene, 1989). The position during
rowing increases in central respiratory drive (Szal &
Schoene, 1989). The entrainment as well as the
position used during rowing causes hyperventilation
(Szal & Schoene, 1989; Siegmund et al., 1999).
The Frank–Starling mechanism indicates that

enhanced venous return, i.e. enhanced preload,
stretches the ventricle and augments stroke volume
(Tate et al., 1994; Wilmore & Costill, 1999). The
oxygen pulse is an index of stroke volume of the
heart (Heath et al., 1981). Therefore, the higher
oxygen pulse during rowing than running does not
support the suggestion that preload of the heart is
lower during rowing than during running (Cunning-
ham et al., 1975; Rosiello et al., 1987).
HRmax is reported to be stable during rowing

(Secher, 1983). HRmax does not seem to be affected
by sex (Wilmore & Costill, 1999). In this study there
were no significant differences of HRmax between
females and males during the two types of exercise.
HRmax does not depend on the type of exercise
(Wilmore & Costill, 1999). However, we observed a
lower HRmax during ergometer rowing than during
treadmill running. During rowing the subjects use
both the lower and upper body, while during running
they use mainly their legs (Secher, 1983). A higher
·
VO2max during rowing than during running supports
the fact that rowing involved a larger muscle mass

than running (Secher et al., 1974; Secher et al., 1977;
Savard et al., 1989). During exercise, an increase in
active muscle mass enhances venous return and
central blood volume because of the muscle pump
(Davies & Sargeant, 1974; Klausen et al., 1982;
Toner et al., 1983), which enhances stroke volume
of the heart (Tate et al., 1994). Also, an elevated
central blood volume slows HR with a decrease
in sympathetic activity due to the cardiopulmo-
nary reflex (Ray et al., 1993; Van Lieshout et al.,
2001).
Body size affects

·
VE and aerobic capacity (Secher

et al., 1983; Rodgers et al., 1995; Jensen et al., 2001),
and this was observed regardless of sex. In this
study

·
VEmax and

·
VO2max increases as fat-free mass

increases. Fat-free mass is related to blood volume
and to stroke volume of the heart, indicating that a
large fat-free mass is associated with a high aerobic
capacity (Hunt et al., 1998). Also, oxygen pulse as
an indication of stroke volume of the heart (Heath
et al., 1981) was correlated to body mass and fat-free
mass independent of sex. The results are consistent
with the data from West et al. (1997).
For females their breast has been considered to

pressurize air in the lung while bending the body
forward during rowing (Cunningham et al., 1975;
Mahler et al., 1987). However, females possessed a
ventilatory equivalent for oxygen similar to that of
the males during both types of exercise, indicating
that a mechanical impairment on ventilation is not
substantiated.

Fig. 1. Relationship for maximal
minute ventilatory volume (

·
VEmax),

maximal oxygen uptake (
·
VO2max),

ventilatory equivalent for oxygen
(
·
VEmax/

·
VO2max), maximal heart rate,

and oxygen pulse (
·
VO2max/HRmax)

between rowing and running.

Body size, ventilation, and rowing

361



We showed that bending the body during rowing
does not seem to impair ventilation either in males or
in females. The findings suggest that ventilation,
oxygen consumption during exercise, and delivery of
blood to active muscles relate to body size and fat-
free mass rather than to the sex of the subjects. The
results of this study showed that the cardiorespi-
ratory response to (seated) ergometer rowing is
enhanced compared to (upright) treadmill running.
Also ergometer rowing attenuates an increase in
maximal heart rate compared to treadmill running.
The findings indicate that the involvement of more
muscles, the entrainment, and the position during
rowing facilitates ventilation and venous return for
both females and males.

Perspective

The present study indicates that rowing does not
impair the

·
VEmax,

·
VO2max, and oxygen pulse at

maximal effort. These findings do not support
suggestions that the contraction of the diaphragm
and abdominal muscles during rowing reduces
ventilation and oxygen consumption (Cunningham
et al., 1975; Rosiello et al., 1987). Our findings are in
part explained by the fact that the locomotion and
ventilation coupling elicits high ventilation during
rowing (Siegmund et al., 1999). This study also
indicates a lower HRmax and a higher oxygen pulse
during (seated) rowing compared to (upright) run-
ning. The findings are not in agreement with the fact
that the movement during rowing elevates a pleural
pressure and reduces venous return and the stroke
volume of the heart (Rosiello et al., 1987). Our results
appear to be responsible for the fact that the
involvement of more muscles increases venous return
as a muscle pump (Klausen et al., 1982), enhances the
stroke volume (Tate et al., 1994), and slows HR due
to the cardiopulmonary response (Ray et al., 1993;
Van Lieshout et al., 2001). The current study also
showed that cardiorespiratory response to rowing
related to body size irrespective of the sex of subjects.

Key words: rowing, cardiorespiratory responses, heart
rate, oxygen pulse, venous return, muscle pump,
locomotion and ventilation coupling, body size.

Fig. 2.Maximal minute ventilatory volume (
·
VEmax), max-

imal oxygen uptake (
·
VO2max), and oxygen pulse (

·
VO2max/

HRmax) during rowing related to body mass.

Fig. 3.Maximal minute ventilatory volume (
·
VEmax), max-

imal oxygen uptake (
·
VO2max), and oxygen pulse (

·
VO2max/

HRmax) during rowing related to fat-free mass.
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