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A model for the ergometer rowing exercise is presented in this paper. From the quantitative observations of a particular
trajectory (motion), the model is used to determine the moment of the forces produced by the muscles about each joint.
These forces are evaluated according to the continuous system of equations of motion. An inverse dynamics analysis is
performed in order to predict the joint torques developed by the muscles during the execution of the task. An elementary
multibody mechanical system is used as an example to discuss the assumptions and procedures adopted.
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1. Introduction

In recent years, ergometer rowing has become a new

competitive sport, a training for on-water race pace rowers or

simply an indoor exercise for healthy purposes. This rowing

motion is a continuous movement consisting of a stroke

phase and a recovery phase, during which the rower glidingly

returns to the initial position. To perform this movement,

several factors contribute to minimise the energy (see

Baudouin and Hawkins (2004) and the references therein).

The main objective of this work is to provide a better

understanding of the correlation between the human skeletal

data, the initial position and the torques imposedon the joints.

Then the necessary intra-muscular control can be identified.

The force generated by the biological system has been

evaluated by the analysis of experimental data for the

rowing exercise (see Pudlo et al. (2005) and the references

therein). Non-invasive techniques cannot estimate the

muscle forces accurately, and mathematical models are

required to predict such forces. In spite of the uncertainty of

the anthropometric and kinematic input data needed for the

inverse dynamics procedure, due to inaccuracies of the

testing equipment (see Riemer et al. (2008), Robert et al.

(2007) and the references therein), it is essential that a

correct model exists in order to evaluate the internal

moments about the various body joints. Indeed, the

development of computational methods in the last few

decades produced a large impact in the assessment of

theoretical models. The need for adoption of non-linear

behaviours is also indisputable. Here a non-linear

mathematical model is adopted, and dynamic descriptions

and interpretations are presented for a simple performance

of the referred activity. The Lagrangean method is applied

to both 2D and 3D segment representations. The comparison

with the classical Newton–Euler recursive procedure makes

it possible to assess the simplicity of this method.

In this paper, a mathematical model defined by a system

of ordinary differential equations (ODEs) is proposed and

implemented. The aim is to study the coupled system of

equations of motion describing body-segmental dynamics.

To establish the best performance during ergometer rowing,

it is important to collect all the corresponding data in order to

determine the torques at the joints generated to maintain the

movement.

In previous works an algorithm for a 2D inverse

problem was presented (see Hahn et al. (2005), for

instance). A simple 2D model for rowing seems to be

adequate when the study is restricted to the performance of

the legs in a planar configuration.

The equations of motion of the constrained biomecha-

nical system are assembled using rigid bodies describing

the anatomical segments interconnected by ideal joints.

In our rigid segment assumptions, the shoulder and elbow

joints have three rotational degrees of freedom, and the

other joints are represented by hinges with one degree of

freedom in flexion and extension in the sagittal plane.

The movement is assumed to have a bilateral symmetry.

The torso is not described by a unique rigid body but it is

decomposed into the pelvis and the thorax, and care is

taken of their interaction (the thoraco-lumbar angle).

The pattern of extension/flexion of each joint is precisely

studied. Kinematic data are acquired from the literature.

In the next section, the dynamical model characterised

by the system of equations of motion is stated. Section 3
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presents and discusses the numerical results. The response

of the model when some data are taken into account is then

analysed. In Section 4 some conclusions are drawn and

some open problems are listed. The ability of the model to

evaluate the contribution of each torque joint is compared

with the predictions. Finally, explicit formulas are

presented in the Appendix.

2. Model

Ergometer rowing is a cyclic movement in which the

subject pulls a handle that is connected to the flywheel that

generates the rowing resistance. The rowing cycle is formed

by the rower sliding back and forth along a monorail

through the action of cyclical extension and flexion of the

lower limbs. The propulsion phase begins at the catch

position (i.e. full flexion of the lower limb and lumbar joints,

and full extension of the upper limb joints, see Figure 1) and

ends when the configuration characterised by full extension

of the lower limb joints and full flexion of the upper limb

joints is reached (see Figure 2). This phase is followed by

the return of the rower to the catch position of the next cycle,

known as the recovery phase. It is assumed that the friction

forces generated at the sliding seat during the rowing cycle

are minimal, and are thus neglected.

The movement is formed by the trajectories of the

joints in the Cartesian space. The human body model can

be described by the feet at the cradle and by eight segments

(the shank, the thigh, the pelvis, the head–trunk, the two

upper arms and the two forearms including the hands).

This 3D articulated linkage has its rigid body segments

joined together by frictionless revolutes. The problem can

be formulated, in matrix form, as

IðqÞ€q ¼ Bðq; _qÞ þ GðqÞ þ T ; ð1Þ

where q ¼ ðq1; . . . ; q8Þ are the generalised variables, I(q)

is the inertia mass matrix, Bðq; _qÞ represents Coriolis and

centrifugal effects, G(q) gravitational and external effects

and T the internal moments of force.

2.1 Kinematic equations

Since the exercise is symmetric at any instant of time t . 0,

the movement can be considered to take place in the plane

0yz, except for the set shoulder–elbow–wrist/hand (see

Figure 3). However, the initial position of the human body,

which corresponds to the beginning of the rowing exercise,

can be completely described in the plane 0yz (Figure 1).

The origin of the 3D Cartesian reference frame is

considered to be located at the ankle articulation

(Figure 1(b)), and the position of each centre of mass is

denoted by (xi, yi, zi) where i ¼ 1; . . . ; 6 correspond,

respectively, to the segments: (1) shank, (2) thigh, (3)

pelvis, (4) head–trunk, (5) right upper arm and (6) right

forearm–hand. The angles formed by the segments are

Figure 1. Schematic representations of the catch position.

Figure 2. Schematic representation of the final position of the
drive phase which coincides with the initial position of the
recovery phase.
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denoted by uankle, uknee, ulumbo-sacral, uthoraco-lumbar and

uelbow (see Figure 1). For each i ¼ 1; . . . ; 6, mi denotes the

mass of segment i, ri the distance between the centre of

mass of each segment and the distal end and li the length of

segment i from the distal to the proximal end. Notice that

m5 and m6 are the masses of the two upper arms and

forearms, respectively. Since the hand is closed, it is

assumed to be without length. The centre of mass of the

shank is given by

x1 ¼ 0

y1 ¼ r1cos q1

z1 ¼ r1sin q1; q1 ¼ uankle þ a;

8>><
>>:

where a is the fixed angle of the foot’s support. The centre

of mass of the thigh is given by

x2 ¼ 0

y2 ¼ l1cos q1 2 r2cos q2

z2 ¼ l1sin q1 2 r2sin q2; q2 ¼ uankle þ a2 uknee:

8>><
>>:

The seat position yields the following constraint which

is introduced by the position of the hip at the horizontal

level z ¼ 0 and the fixed length of the thigh

l1sin q1 ¼ l2sin q2;

and consequently

cos q2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2

l21
l22

sin2q1

s
:

These conditions lower the problem’s dimension by

one unit, but the last equation poses some difficulties to the

calculations. So q2 will be kept as an unknown variable and

only z3 is simplified in the following kinematic equations

of the centre of mass of the pelvis

x3 ¼ 0

y3 ¼ l1cos q1 2 l2cos q2 þ r3cos q3

z3 ¼ r3sin q3; q3 ¼ q2 þ ulumbo–sacral:

8>><
>>:

Also z4, in the kinematic equations of the centre of

mass of the head–trunk, is taken as

x4 ¼ 0

y4 ¼ l1cosq1 2 l2cosq2 þ l3cosq3 þ r4cosq4

z4 ¼ l3sinq3 þ r4sinq4; q4 ¼ q3 21808þuthoraco–lumbar:

8>><
>>:

The position (x5, y5, z5) of the centre of mass of the

right upper arm is given, as a function of the spherical

coordinates q5 and q6, by

x5¼r5 sinq5 sinq6

y5¼ l1cosq12l2cosq2þl3cosq3þl4cosq4þr5sinq5 cosq6

z5¼ l3sinq3þl4sinq42r5cosq5:

8>><
>>:

The centre of mass of the left upper arm is positioned at

(2x5, y5, z5). The position (x6, y6, z6) of the centre of mass

of the right forearm is given, as a function of the spherical

coordinates q7 and q8, by

x6¼ l5sinq5sinq6þr6sinq7sinq8

y6¼ l1cosq12l2cosq2þl3cosq3þl4cosq4þl5sinq5cosq6

þr6sinq7cosq8

z6¼ l3sinq3þl4sinq42l5cosq52r6cosq7:

8>>>>><
>>>>>:

ð2Þ

The centre of mass of the left forearm is positioned at

(2x6, y6, z6).

If we consider x7 ¼ 0, so that the movement is

correctly executed, the angles measured at the elbow

between the two segments are known since the complex

shoulder–elbow–wrist/hand is well defined by the angles

q5 and q6, and the wrist–hand position (0, y7, z7). Indeed

the right forearm segment is also constrained by the

position of the complex wrist–hand at the handle

Figure 3. Schematic representation of an intermediate position.
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displacement (0, y7, z7), i.e.

x6¼ 12 r6

l6

� �
l5sinq5sinq6

y6¼ 12 r6

l6

� �
½l1cosq12 l2cosq2þ l3cosq3þ l4cosq4

þl5sinq5cosq6�þ
r6

l6
y7

z6¼ 12 r6

l6

� �
½l3sinq3þ l4sinq42 l5cosq5�þ

r6

l6
z7:

8>>>>>>>>><
>>>>>>>>>:

ð3Þ

Moreover, the wrist – hand position at the handle

displacement (0, y7, z7) belongs to the spherical surface

centered at the elbow articulation with radius l6:

ðl5sin q5sin q6Þ
2 þ ðl1cos q1 2 l2cos q2 þ l3cos q3

þ l4cos q4 þ l5sin q5cos q6 2 y7Þ
2

þ ðl3sin q3 þ l4sin q4 2 l5cos q5 2 z7Þ
2 ¼ l26:

Although this constraint also lowers another dimension

to the problem, q7 and q8 are kept as unknown variables in

order to simplify the calculations.

2.2 Motion equations

The equations of motion can be derived by means of the

Lagrange method. With q ¼ ðq1; . . . ; q8Þ and (xi, yi, zi) as

above, consider the Lagrangean operator

Lðq1; . . . ; q8Þ ¼
X6

i¼1

1

2
mi ð_xiÞ

2 þ ð_yiÞ
2 þ ð_ziÞ

2
� �

2 migzi

� �

þ
X8

j¼1

Ijð_qjÞ
2;

representing the algebraic sum of the kinetic and the

potential energies. The problem is defined by the equations

ðk ¼ 1; . . . ; 8Þ

d

dt

›L

›_qk

� �
2

›L

›qk
¼ Fk ð4Þ

with

F ¼

T1 2 T2

T2 2 T3 2 ðl2cos q2 2 l1cos q1ÞFseat

T3 2 T4 þ ðl2cos q2 2 l1cos q1ÞFseat

T4 2 T5

T5 2 T7

T6 2 T8

T7 þ y7F7z 2 z7F7y

T8

2
66666666666666664

3
77777777777777775

where each Tk denotes the kth joint torque in the

x-direction ðk ¼ 1; . . . ; 5Þ, T6 the fifth joint torque in

the z-direction, and T7 and T8 the sixth joint torque in the

x- and z-directions, respectively, which are assumed constant

and independent of the angular displacement of the joint.

The vector (0, 0, Fseat) denotes the vertical force applied by

the sliding seat on the rower ischia, and Fhandle ¼

ð0;F7y;F7zÞ represents the external force generated by

the flywheel’s mechanism and the air resistance trans-

mitted to the two hands. Note that the moment of the

reaction force at the foot cradle, Fstretcher ¼ ð0;F1y;F1zÞ,

vanishes because this force is located at the origin of the

coordinate system.

Indeed, rewriting the Lagrangean operator as

Lðq1; . . . ; q8Þ ¼
1

2

X8

i; j¼ 1

_qiIijðqÞ_qj 2 g
X6

i¼1

miziðqÞ;

and observing that the inertia mass matrix I is symmetric,

it is possible to obtain (1) from (4) providing that

Bðq; _qÞ ¼ 2
X8

i; j¼1

_qi
›Iik

›qj
2

1

2

›Iij

›qk

� �
_qj

" #
k¼1; ... ;8

CðqÞ ¼ 2
X6

i¼1

mig
›zi

›qk

" #
k¼1; ... ;8

GðqÞ ¼ CðqÞ þ

0

2ðl2cos q2 2 l1cos q1ÞFseat

ðl2cos q2 2 l1cos q1ÞFseat

0

0

0

y7F7z 2 z7F7y

0

2
666666666666666666664

3
777777777777777777775

:

Explicit expressions are given in the Appendix.

Then the inverse multibody dynamics analysis can be

stated as

T1

T2

..

.

T8

2
6666664

3
7777775
¼

1 1 ... 1 0 1 0

0 1 ... 1 0 1 0

..

. . .
. . .

. ..
. ..
. ..
. ..
.

0 0 . .
.

1 0 1 0

0 0 ... 0 1 0 1

0 0 ... 0 0 1 0

0 0 ... 0 0 0 1

2
666666666666664

3
777777777777775

· IðqÞ€q2Bðq; _qÞ2GðqÞ
� �

: ð5Þ
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3. Results

This section is divided into theoretical and numerical

results.

3.1 Theoretical results

At the initial drive phase (0–20%), both the upper limbs

are fully extended ðuelbow ¼ 1808Þ and located at the

sagittal plane ðq6 ¼ 0Þ, i.e. x ¼ 0. Thus it follows that

ðl5 þ l6Þ
2 ¼ ðY4ðtÞ2 y7ðtÞÞ

2 þ ðZ4ðtÞ2 z7ðtÞÞ
2; ð6Þ

where (0, Y4, Z4) denotes the 3D-position of the shoulder

articulation:

Y4 ¼ l1cos q1 2 l2cos q2 þ l3cos q3 þ l4cos q4

Z4 ¼ l3sin q3 þ l4sin q4:

(
ð7Þ

Note that, at the initial instant, the position of the complex

wrist–hand is known

x7ð0Þ ¼ 0:0

y7ð0Þ ¼ l1cos q1ð0Þ2 l2cos q2ð0Þ þ l3cos q3ð0Þ

þ l4cos q4ð0Þ þ ðl5 þ l6Þsin q5ð0Þ

z7ð0Þ ¼ l3sin q3ð0Þ þ l4sin q4ð0Þ2 ðl5 þ l6Þcos q5ð0Þ

8>>>>><
>>>>>:
which coincides with the initial position ðx7; y7; z7Þð0Þ ¼

ð0; y7ð0Þ; hÞ, where h ¼ z7ð0Þ. During the rowing cycle,

the vertical coordinate of the wrist–hand complex should

remain constant and equal to h for the exercise to be

correctly performed. Consequently the upper limbs should

satisfy the constraints

q5ðtÞ ¼ arccos
Z4ðtÞ2 h

l5 þ l6

� �
; ð8Þ

y7ðtÞ ¼ Y4ðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl5 þ l6Þ2 2 ðZ4ðtÞ2 hÞ2

p
: ð9Þ

At the final instant of the drive stage, i.e. at the final instant

of the stroke phase ðt ¼ 40%Þ, both the upper limbs are

assumed to be in the sagittal plane ðx ¼ 0Þ and the

following constraint arises

y7ðtÞ$2l1 2 l2 þ l3cosq3ðtÞþ ðh2 l3sinq3ðtÞÞ=tanðq4ðtÞÞ:

Table 2. Upper limbs segment parameters (McConville et al.
1980).

Upper arm ði ¼ 5Þ Forearm–hand ði ¼ 6Þ

mi (kg) 3.5 2.3
ri (m) 0.15 0.12
li (m) 0.33 0.27
Ixx (kg m) I5 ¼ 0:01 I7 ¼ 0:006
Izz I6 ¼ 0:01 I8 ¼ 0:006

Table 1. Body segment parameters (McConville et al. 1980).

Shank
ði ¼ 1Þ

Thigh
ði ¼ 2Þ

Pelvis
ði ¼ 3Þ

Head–trunk
ði ¼ 4Þ

mi (kg) 7.5 15.2 10.5 31.3
ri (m) 0.274 0.251 0.1 0.143
li (m) 0.435 0.4 0.2 0.475
Ii (kg m) 0.065 0.126 0.08 1.39

Figure 4. Example of phasic angular displacement patterns normalised in time as percentage of the cycle of the ergometer rowing.
(a) Lower limbs: ankle angle uankle ¼ q1 2 a and knee angle uknee ¼ q1 2 q2. (b) Trunk: lumbo-sacral angle ulumbo�sacral ¼ q3 2 q2, and
thoraco-lumbar angle uthoraco�lumbar ¼ q4 2 q3 þ 1808.
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This inequality means that at the instant t ¼ 40% the

handle is at most positioned at the rower’s torso.

Moreover, from the human body constraints (2)–(3), it

is possible to obtain explicit expressions for the elbow

angles. More precisely, it follows from (2)–(3) that

q7 ¼ arccos
1

l6
ðl3sin q3 þ l4sin q4 2 l5cos q5 2 hÞ

� �
;

q8 ¼ arcsin 2
l5sin q5sin q6

l6sin q7

� �
:

Once the elbow angle uelbow is known it is possible to

calculate y7.

Finally, from Equations (2)–(3) it follows that

ðl6 sin q7 sin q8Þ
2 ¼ ð2l5 sin q5 sin q6Þ

2

ðl6 sin q7 cos q8Þ
2 ¼ ð2l5 sin q5 cos q6 2 ðY4 2 y7ÞÞ

2

(

and summing, it results that

ðl6sin q7Þ
2 ¼ ðl5sin q5Þ

2 þ 2l5ðY4 2 y7Þsin q5cos q6

þ ðY4 2 y7Þ
2:

Then, we conclude that

q6 ¼ arccos
ðl6sin q7Þ

2 2 ðl5sin q5Þ
2 2 ðY4 2 y7Þ

2

2l5ðY4 2 y7Þsin q5

� �
:

3.2 Numerical results

In this section, numerical results of the system (5) are

presented for the two different initial conditions of the

handle position:

A : y7ð0Þ ¼ 0:2; h¼ 0:17 and B : y7ð0Þ ¼ 0:33; h¼ 0:3:

In Tables 1 and 2 the data parameters for a subject with

weight 70 kg and height 1.70 m are listed. Notice that

neither the weight of the feet, because they do not interfere

in the rowing movement, nor the height of the complex

neck–head are considered.

Figure 4 shows the profiles of uankle and uknee

performed by the lower limbs, and the profiles of ulumbo-

sacral and uthoraco-lumbar performed by the trunk (adapted

from Bull and McGregor (2000)). Figure 5 displays the

profile of the elbow angle uelbow for the two cases A and

B. Under the constraints stated in Section 3.1, it is possible

to obtain the profiles of y7 (Figure 6) and of the spherical

coordinates q6, q7 and q8 (Figure 7). Notice that q5 has the

explicit formula (8) at the initial drive phase (0–20%).

Indeed, q5 is given if q6, q7 and q8 are considered

constrained.

The sliding seat load has a bell shape (see Figure 8,

adapted from Colloud et al. (2006)), reaching its maximum

when the lower limbs and trunk are fully extended.

The anterior–posterior handle force has a bell-shaped

profile (see Figure 9, adapted from Colloud et al. (2006))

with a rapid increase in the magnitude of the force until

a peak is reached, followed by a decrease. After this

decrease a constant value is reached, which is found to be

equal to the traction force provided by the elasticity of the

self-recoiling system. The vertical handle force also shows

a reverse bell shape in the propulsion phase (see Figure 9,

adapted from Colloud et al. (2006)).

The contribution of each joint torque to the action of

the muscles is obtained from the calculation of the whole

system of ODEs (5). Figure 10 shows the profiles in the

Figure 6. Antero-posterior handle displacement (y7), while the
A- and B-cycles of the ergometer rowing are performed during
the time duration (0–100%).

Figure 5. Elbow angle profile (uelbow), while the A- and
B-cycles of the ergometer rowing are performed during the time
duration (0–100%).
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z-direction of the torques, T8 (about the elbow joint) and T6

(about the shoulder joint), corresponding to the B-cycle,

which practically coincide with the profiles for the other

cycle (A). The remaining torques in the x-direction are

shown in Figure 11 (A-cycle), Figure 12 (B-cycle) and

Figure 13 (both cycles).

4. Conclusions and open problems

In this paper, the full cycle for the exercise in a rowing

ergometer was reconstructed by assuming bilateral sym-

metry. The initial antero-posterior position y7 of the handle

relative to the stretcher in the reference frame is slightly

positive at the catch because the handle was located ahead of

the stretcher (see Figures 1 and 6). At the first phase (0–20%)

the rower cycle is performed at the sagittal plane ðq8 ¼

q6 ¼ 0Þ with the upper limbs fully extended (uelbow ¼ 1808,

cf. Figure 5). Then T8 ¼ T6 ¼ 0 as expected. No significant

values in magnitude are revealed in the remaining patterns of

T6 and T8, although the existence of a peak for the shoulder

joint torque T6 in the z-direction, at the final instant of the

stroke phase ðt ¼ 40%Þ, is consistent with the position of the

upper arm in relation to the torso. The profiles obtained for

the torques are as predicted: the maximum and minimum

values occur at the same instants as the peaks of the external

forces. Indeed, for the joints of the upper body, the peaks

Figure 7. Spherical coordinates q5 and q6 for the shoulder and q7 and q8 for the elbow, while the A- and B-cycles of the ergometer
rowing are performed.

Figure 8. Vertical seat force (Fseat) as a function of percentage
of time.

Figure 9. Antero-posterior and vertical handle forces (F7y and
F7z, respectively) as functions of percentage of time. A negative
value indicates that the body is pushing backwards (F7y) or
downwards (F7z) during the driving phase.

Computer Methods in Biomechanics and Biomedical Engineering 475



of T4, T5 and T7 match the ones of the handle forces

(see Figure 9). The activity of T5 and T7 ends when the drive

phase finishes. In the recovery phase, T5 and T7 show no

significant activity. The profiles of T1, T2 and T3,

corresponding to the joints of the lower extremity, have

their maximum in accordance with the peaks of the handle

forces at the propulsion phase and have their minimum in

accordance with the peak of the seat force at the remaining

drive and recovery phases.

These results are consistent with the muscle activity

patterns of experienced rowers on the Concept 2C

(cf. Nowicky et al. 2005), and they support the hypothesis

of a minimum-metabolic-energy in rowing.

The agreement between the torques for the A- and

B-cycles is also as expected. The relevant differences are: (1)

the maximum values obtained for T4, T5 and T7, (A-cycle:

.150 N m, B-cycle: .300 N m); and (2) the profiles of T1,

T2 and T3 differ at the initial phase. These variations reflect

Figure 10. The joint torques T6 and T8 corresponding to the shoulder and elbow joints in the z-direction, under different scales
(a) ,0.013 N m and (b) ,0.1 N m.

Figure 11. The joint torques in the x-direction while the A-cycle of the ergometer rowing is performed during the time duration
(0–100%). (a) The joint torques T1, T2 and T3 corresponding to the ankle, knee and lower torso, respectively. (b) The torques T4, T5 and T7

corresponding to the lumbar, shoulder and elbow joints, respectively.
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the fact that the activity of the moments of force is lower in

the A-cycle than in the B-cycle which is consistent with the

initial positions y7ð0Þ ¼ 0:2 and y7ð0Þ ¼ 0:33, respectively.

In conclusion, an appropriate initial position of the upper

limbs decreases the risk factors for injuries.

A statistical analysis describing the motion and load

characteristics of ergometer rowing is used to test the

hypothesis that the rowing stroke technique is associated

with the incidence of low back pain (see O’Sullivan et al.

(2003)). Indeed, the use of the values obtained for the

torques may improve the performance and prevent injuries

such as back pain.

The present theoretical model was numerically exam-

ined by solving the two examples (cf. Section 3.2), but it can

be applied to a large number of rower’s performances since

the assumptions considered correspond to the exercise in

a rowing ergometer (cf. Section 2.1). For instance, the seat

slides along the central bar or the two hands of the rower

grasp the handle that is attached by a chain to the flywheel

which in turn puts a fan in motion. Only the bilateral

symmetry of the rowing movement and the correctness of

the horizontal trajectory of the handle were assumed in order

to simplify the presentation. Also the data taken from the

literature have these same characteristics corresponding

Figure 12. The joint torques in the x-direction while the B-cycle of the ergometer rowing is performed. (a) The joint torques T1, T2 and
T3 corresponding to the ankle, knee and lower torso, respectively. (b) The torques T4, T5 and T7 corresponding to the lumbar, shoulder and
elbow joints, respectively.

Figure 13. The joint torques in the x-direction during the time duration (0–100%). (a) The joint torques T1, T2, T3, T4, T5 and T7 for the
A-cycle. (b) The torques T1, T2, T3, T4, T5 and T7 for the B-cycle.
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to the stable base of the ergometer. Notice that these two

limitations can be removed with the obvious implication of

having to deal with a more complex model. Future work

should exclude these two limitations in order to provide

a complete study on the relation between involuntary

inaccurate movements and lumbar pains (see Pudlo et al.

(2005) and the references therein). Moreover, a 3D

asymmetric model may be applied to rowing in water, in

which the oarsman is subjected to different loads.

To study the contribution of the joint torques in human

movements it is imperative that accurate mathematical

models (see Consiglieri and Pires (2007), for instance)

exist. We believe that the ability to predict internal

moments is particularly important because it offers the

possibility of investigating the impacts of the coordination

and function of the movements on the human structure.

The results obtained with different sets of data can lead to

improvements in the procedures for the correction of joint

performances and in the prevention of injuries.
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Appendix

The coefficients of the symmetric inertia matrix I in Equation (1)
are:

I11 ¼ I1 þ m1r
2
1 þ m2l

2
1 þ ðm3 þ m4 þ m5 þ m6Þl

2
1sin2q1

I12 ¼ 2m2l1r2cosðq1 2 q2Þ

2 ðm3 þ m4 þ m5 þ m6Þl1l2sin q1sin q2

I13 ¼ c3l1sin q1sin q3

I14 ¼ c4l1sin q1sin q4

I15 ¼ 2c5l1sin q1cos q5cos q6

I16 ¼ c5l1sin q1sin q5sin q6

I17 ¼ 2c6l1sin q1cos q7cos q8

I18 ¼ c6l1sin q1sin q7sin q8

I22 ¼ I2 þ m2r
2
2 þ ðm3 þ m4 þ m5 þ m6Þl

2
2sin2q2

I23 ¼ 2c3l2sin q2sin q3

I24 ¼ 2c4l2sin q2sin q4

I25 ¼ c5l2sin q2cos q5cos q6

I26 ¼ 2c5l2sin q2sin q5sin q6

I27 ¼ c6l2sin q2cos q7cos q8

I28 ¼ 2c6l2sin q2sin q7sin q8

I33 ¼ I3 þ m3r
2
3 þ ðm4 þ m5 þ m6Þl

2
3

I34 ¼ c4l3cosðq3 2 q4Þ

I35 ¼ c5l3ðcos q3sin q5 2 sin q3cos q5cos q6Þ

I36 ¼ c5l3sin q3sin q5sin q6

I37 ¼ c6l3ðcos q3sin q7 2 sin q3cos q7cos q8Þ

I38 ¼ c6l3sin q3sin q7sin q8

I44 ¼ I4 þ m4r
2
4 þ ðm5 þ m6Þl

2
4

I45 ¼ c5l4ðcos q4sin q5 2 sin q4cos q5cos q6Þ

I46 ¼ c5l4sin q4sin q5sin q6

I47 ¼ c6l4ðcos q4sin q7 2 sin q4cos q7cos q8Þ

I48 ¼ c6l4sin q4sin q7sin q8

I55 ¼ I5 þ m5r
2
5 þ m6l

2
5

I56 ¼ 0

I57 ¼ c6l5ðcos q5cos q7cosðq6 2 q8Þ þ sin q5sin q7Þ

I58 ¼ c6l5cos q5sin q7sinðq6 2 q8Þ

I66 ¼ I6 þ m5r
2
5 þ m6l

2
5

� �
sin2q5

I67 ¼ c6l5sin q5cos q7sinðq8 2 q6Þ

I68 ¼ c6l5sin q5sin q7cosðq8 2 q6Þ

I77 ¼ I7 þ m6r
2
6

I78 ¼ 0

I88 ¼ I8 þ m6r
2
6sin2q7

where

c3 ¼ m3r3 þ ðm4 þ m5 þ m6Þl3

c4 ¼ m4r4 þ ðm5 þ m6Þl4

c5 ¼ m5r5 þ m6l5

c6 ¼ m6r6:
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The (8 £ 1) Coriolis matrix takes the form

Bðq; _qÞ ¼

B11 . . . B19 B10

..

. ..
. ..

.

B81 . . . B89 B80

2
6664

3
7775
ð8£10Þ

_q2
1

..

.

_q2
8

_q5 _q6

_q7 _q8

2
6666666664

3
7777777775

where

B33 ¼ B44 ¼ B55 ¼ B59 ¼ B65 ¼ B66 ¼ B77 ¼ B70 ¼ B87

¼ B88 ¼ B80 ¼ 0;

B11 ¼ 2
1

2

›I11

›q1

¼ 2ðm3 þ m4 þ m5 þ m6Þl
2
1sin q1cos q1

B12 ¼ 2
›I12

›q2

¼ m2l1r2sinðq1 2 q2Þ

þ ðm3 þ m4 þ m5 þ m6Þl1l2sin q1cos q2

B1j ¼ 2
›I1j

›qj
¼ 2cjl1sin q1cos qj; j ¼ 3; 4

B15 ¼ B16 ¼ 2
›I1j

›qj
¼ 2c5l1sin q1sin q5cos q6; j ¼ 5; 6

B17 ¼ B18 ¼ 2
›I1j

›qj
¼ 2c6l1sin q1sin q7cos q8; j ¼ 7; 8

B19 ¼ 2
›I15

›q6

þ
›I16

›q5

� �
¼ 22c5l1sin q1cos q5sin q6;

B10 ¼ 22c6l1sin q1cos q7sin q8;

B21 ¼ 2
›I21

›q1

¼ m2l1r2sinðq2 2 q1Þ

þ ðm3 þ m4 þ m5 þ m6Þl1l2cos q1sin q2

B22 ¼ 2
1

2

›I22

›q2

¼ 2ðm3 þ m4 þ m5 þ m6Þl
2
2sin q2cos q2

B2j ¼ 2
›I2j

›qj
¼ cjl2sin q2cos qj; j ¼ 3; 4

B25 ¼ B26 ¼ 2
›I2j

›qj
¼ c5l2sin q2sin q5cos q6; j ¼ 5; 6

B27 ¼ B28 ¼ 2
›I2j

›qj
¼ c6l2sin q2sin q7cos q8; j ¼ 7; 8

B29 ¼ 2
›I25

›q6

þ
›I26

›q5

� �
¼ 2c5l2sin q2cos q5sin q6;

B20 ¼ 2c6l2sin q2cos q7sin q8;

Bi1 ¼ 2cil1cos q1sin qi; i ¼ 3; 4

Bi2 ¼ cil2cos q2sin qi; i ¼ 3; 4

B34 ¼ 2
›I34

›q4

¼ c4l3sinðq4 2 q3Þ

Bi5 ¼ 2c5liðcos qicos q5 þ sin qisin q5cos q6Þ; i ¼ 3; 4

Bi6 ¼ 2c5lisin qisin q5cos q6; i ¼ 3; 4

Bi7 ¼ 2c6liðcos qicos q7 þ sin qisin q7cos q8Þ; i ¼ 3; 4

Bi8 ¼ 2c6lisin qisin q7cos q8; i ¼ 3; 4

Bi9 ¼ 22c5lisin qicos q5sin q6; i ¼ 3; 4

Bi0 ¼ 22c6lisin qicos q7sin q8; i ¼ 3; 4

B43 ¼ 2
›I43

›q3

¼ c4l3sinðq3 2 q4Þ

B51 ¼ 2
›I51

›q1

¼ c5l1cos q1cos q5cos q6

B52 ¼ 2
›I52

›q2

¼ 2c5l2cos q2cos q5cos q6

B5j ¼ c5ljðsin qjsin q5 þ cos qjcos q5cos q6Þ; j ¼ 3; 4

B56 ¼ 2
›I65

›q6

2
1

2

›I66

›q5

� �
¼ m5r

2
5 þ m6l

2
5

� �
sin q5cos q5

B57 ¼ 2
›I57

›q7

¼ 2c6l5ð2cos q5sin q7cosðq6 2 q8Þ þ sin q5cos q7Þ

B58 ¼ c6l5cos q5sin q7cosðq6 2 q8Þ;

B50 ¼ 2c6l5cos q5cos q7sinðq8 2 q6Þ;

B61 ¼ 2c5l1cos q1sin q5sin q6

B62 ¼ c5l2cos q2sin q5sin q6

B6j ¼ 2c5ljcos qjsin q5sin q6; j ¼ 3; 4

B67 ¼ B68 ¼ c6l5sin q5sin q7sinðq8 2 q6Þ;

B69 ¼ 2
›I66

›q5

¼ 22 m5r
2
5 þ m6l

2
5

� �
sin q5cos q5

B60 ¼ 22c6l5sin q5cos q7cosðq8 2 q6Þ

B7j ¼ 2
›I7j

›qj
¼ c6ljcos qjcos q7cos q8; j ¼ 1; 3; 4

B72 ¼ 2c6l2cos q2cos q7cos q8

B75 ¼ 2
›I75

›q5

¼ c6l5ðsin q5cos q7cosðq8 2 q6Þ2 cos q5sin q7Þ;

B76 ¼ c6l5sin q5cos q7cosðq8 2 q6Þ;

B78 ¼ m6r
2
6sin q7cos q7;

B79 ¼ 2
›I75

›q6

þ
›I76

›q5

� �
¼ 2c6l5cos q5cos q7sinðq6 2 q8Þ;

B8j ¼ 2
›I8j

›qj
¼ 2c6ljcos qjsin q7sin q8; j ¼ 1; 3; 4

B82 ¼ c6l2cos q2sin q7sin q8

B85 ¼ B86 ¼ c6l5sin q5sin q7sinðq6 2 q8Þ;

B89 ¼ 22c6l5cos q5sin q7cosðq6 2 q8Þ:

The gravitational (8 £ 1) matrix is

CðqÞ ¼

2ðm1r1 þ m2l1Þg cos q1

m2r2g cos q2

2ðm3r3 þ ðm4 þ m5 þ m6Þl3Þg cos q3

2ðm4r4 þ ðm5 þ m6Þl4Þg cos q4

2ðm5r5 þ m6l5Þg sin q5

0

2m6r6g sin q7

0

2
66666666666666664

3
77777777777777775

:
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