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Abstract

We have devised a simple, yet predictive model of the mechanics of both sculling and sweep row-
ing that reasonably mimics observed kinematic and force data. Our physical model is largely based
upon the model proposed by Alexander [Alexander, F. H. (1925). The theory of rowing. In Proceed-

ings of the University of Durham Philosophical Society (pp. 160–179).]. The model’s primary features
include: one dimensional momentum balance, a point mass rower, infinitely stiff oars with inertia and
non-infinitesimal stroke angles, and quadratic relationships between force and velocity for the boat
and oar blade. Using an inverse dynamics approach, we are able to construct reasonable fits to force
and kinematic data of real rowing. We show that the model is able to reasonably well predict boat
velocity even when we do not fit for it. A sensitivity analysis shows that the quality of fit is more
sensitive to the boat and oar drag coefficients than to other physical parameters. Allowing oar slip
(CD < 1) proves to be a necessary model ingredient but, for example, allowing for oar flexibility
does not improve the quality of fit. The model seems to have the key terms and a minimum of super-
fluous terms for investigations of rowing.
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1. Introduction

Coordination strategies used by competitive rowers seem to be rather stereotypical.
Starting in a crouched position with legs fully bent and arms outstretched (a position
called frontstops), the rower accelerates herself towards the front of the boat, ending in
a leaned-back position with legs fully extended and arms fully contracted (a position called
backstops) by generally sequencing her body motions in the following order: (1) leg exten-
sion, (2) back rotation, and (3) arm retraction. The oars are put in the water just after the
legs begin to extend and are removed from the water just before the arms are fully
retracted. The opposite sequencing (arm extension, back rotation, and leg retraction) is
used upon returning to frontstops. Of the many possible coordination patterns one can
use to propel a boat, why do rowers tend to use this particular one? If the choice of coor-
dination is determined by optimization, what kind of performance criterion will predict
observed rowing patterns? Before getting to this optimization approach one needs a model
that can reasonably match observed behavior.

In this paper, we present what we believe to be the most accurate model of rowing to
date and which also has minimal complexity. The model is validated for both sculling and
sweep rowing using numerical fitting to match on-water force and kinematic data. Hope-
fully, this model can also be used to answer such questions applicable to rowing as: How
can rigging be adjusted for various strength and height rower to row together optimally?
Can a moving coxswain make a boat go faster? How much do oar blade properties affect
boat speed, etc.?

1.1. Previous research

Starting with Alexander (1925), a handful of attempts have been made to accurately
model the mechanics of sculling/sweep rowing. In his model, Alexander assumed one
dimensional (1D) mechanics, a point mass rower, an infinitely stiff oar, and quadratic
force–velocity relationships to model drag forces on the boat and oar blade. Alexander
assumes that the resultant force on the oar blade is perpendicular to the blade and that
its magnitude is proportional to the square of the blade’s slip velocity (i.e., the component
of the blade velocity relative to the water that is perpendicular to the blade). He accounted
for the 2D (as viewed from above) kinematics of the oar, the oar’s inertia, and also for
boat ‘‘added-mass’’ (an effective additional boat mass due to the oscillating kinetic energy
of fluid moving around the boat). Alexander prescribed fictitious (but plausible) coordina-
tion patterns for the rower’s legs, back, and arms as well as the angular velocity of the oar
to predict the motions of the system using numerical integration (note the date). Compar-
ison with the scant data available was somewhat favorable in that there was some agree-
ment with the measured oar handle force profile and with the path traced out by the tip of
the oar blade. However, only qualitative kinematics data was available so Alexander did
not quantitatively verify his made-up coordination and boat velocity curves.
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More recent models resembling those of Alexander have been posed (Atkinson, 2004;
Pope, 1973; Van Holst, 2004) as well as other simpler models (Brearley & De Mestre,
1996; Lazauskas, 1997; Millward, 1987; Sanderson & Martindale, 1986; Simeoni, Barrett,
& Manning, 2002). See Appendix A.1 for a discussion of these models. With the exception
of Atkinson who accurately predicts boat velocity, none of these models is shown to accu-
rately predict observed forces and motions.

2. Methods

2.1. Model description

The gross features of our model are similar to those of Alexander’s. A schematic of the
model is shown in Fig. 1. All rowers are assumed to be identical in size, strength, and coor-
dination; they row together in perfect synchrony. For fluid forces we take into account
large angular displacements of the oar in a plane parallel to the water surface. We consider
leg, back, and arm motions in the fore-aft direction. We neglect the pitching and yawing
motions of the boat and assume that the rower keeps the boat balanced using zero effort.
In our idealization, the rower’s center of mass and shoulder height from the sliding seat are
constant, the rower’s mass is concentrated in her gut, the oars have inertia and are per-
fectly rigid, the force on the oar blade is normal to the oar axis, the water is still, and there
is no air resistance.
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Fig. 1. The model. A geometric schematic and free body diagrams of the model used for both sculling and sweep
rowing. Mass is located in the rower’s gut, the oar, and the boat. Geometric constants are s, ‘, d, hR, hS, and dL/F.
Time-dependent geometric quantities are xR, xb (=xF), xO, xB/F, xS/B, xH/S, h, vb, vO, and vO/b. vb is the boat
velocity, vO is the oar blade velocity, and vO/b is the velocity of the blade with respect to the boat and is in
the êh-direction (see text for model details).
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2.2. Governing equations

The model is governed by the laws of classical rigid-body mechanics. Because we
assume identical and perfectly synchronous rowers, we analyze the mechanics of a single
rower while scaling masses accordingly. We evaluate linear momentum balance for the
rower, oar, and boat in the fore-aft direction and angular momentum balance for the
oar about the oarlock to determine the equations of motion for each phase of the stroke:
drive and recovery. The drive is defined as the portion of the stroke when the oars are in the
water while the recovery is the remainder of the stroke when the oars are in the air. (Note
that this definition differs slightly from the definition of drive and recovery as _h < 0 and
_h > 0, respectively.) Sculling can be modeled by changing geometric parameters and
multiplying the oar force and mass by 2.

For the drive, linear momentum balance in the x-direction for the rower givesX
F x ¼ mR€xR; €xR � d2xR

dt2

� �
� F handx þ F footx ¼ mR€xR;

ð1Þ

where F handx ¼ F handh cos h is the component of the force at the oar handle in the x-direc-
tion, F footx is the force at the foot stretcher in the x-direction, mR is the rower’s mass, and
xR is the absolute x-position of the rower’s center of mass relative to the starting line.

Linear momentum balance in the x-direction for the boat givesX
F x ¼ mb€xb;

� F boat � F footx þ F lockx ¼ mb€xb;
ð2Þ

where Fboat is the magnitude of boat drag, F lockx is the force at the oarlock in the x-direc-
tion, mb is the boat’s mass, and xb is the absolute x-position of the foot stretcher (fixed on
the boat) relative to the starting line.

Linear momentum balance in the x-direction for the oar givesX
F x ¼ mO€xO;

F handx � F lockx þ F oarh cos h ¼ mO€xO;
ð3Þ

where F oarh is the êh-component of the force at the oar blade, h is the oar angle in a plane
parallel to the water, mO is the oar’s mass, and xO is the absolute x-position of the oar’s
center of mass relative to the starting line.

Finally, angular momentum balance for the oar about a non-accelerating point instan-
taneously coincident with the oarlock givesX

M=L

n o
� k ¼ _H=L

� �
� k;

rH=L � Fhand þ rO=L � Foar

� �
� k ¼ rG=L � mOaG þ IG€hk

n o
� k;

� F handx s cos hþ F oarh‘ ¼ mOd cos h€xb þ ðIG þ mOd
2Þ€h;

ð4Þ

where
P

M=L are the moments about the oarlock due to the forces at the oar handle and
oar blade, H/L is the oar’s angular momentum about the oarlock, k is the unit vector in the
z-direction, rH/L is the position of the rower’s hands relative to the oarlock, rO/L is the po-
sition of the oar blade relative to the oarlock, rG/L is the position of the oar’s center of
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mass relative to the oarlock, aG is the absolute acceleration of the oar’s center of mass, IG
is the polar moment of inertia of the oar about its center of mass, s is the inboard oar
length, ‘ is the outboard oar length, and d is the distance from the oarlock to the oar’s
center of mass. We assume that the hand force is in the x-direction.

Rower and oar center of mass positions, xR and xO, are given by the kinematic relations

xR ¼ xb þ xB=F þ rxS=B;

xO ¼ xb þ dL=F þ d sin h;
ð5Þ

where xB/F is the hip position with respect to the feet, r = hR/hS is the ratio of rower center
of mass height to shoulder height from the seat, xS/B is the shoulder position with respect
to the hips, and dL/F is the fore-aft position of the oarlock with respect to the feet. Their
accelerations are found by twice differentiating the positions with respect to time

€xR ¼ €xb þ €xB=F þ r€xS=B; ð6Þ
€xO ¼ €xb þ d€h cos h� d _h2 sin h. ð7Þ

In our model, oar rotation is known once the rower’s coordination and the oarlock
fore-aft positioning are specified. Since the rower always has a grip on the oar handle,
the fore-aft positions of the rower’s hand and the oar handle relative to the foot stretcher
are the same. So, we have:

dL=F � s sin h ¼ xB=F þ xS=B � xH=S; ð8Þ

where the left- and right-hand sides are the oar handle and rower hand position with re-
spect to the foot stretcher, respectively. The term xH/S is the hand position with respect to
the shoulders. Here, we are only considering the movement of the arm in the fore-aft direc-
tion even though the actual path of the hands relative to the boat nearly follows the arc of
a circle. In effect, we are neglecting the projected arm shortening due to the arms not being
parallel to the boat. Rewriting the above expression and differentiating twice with respect
to time we get:

s€h cos h ¼ €xH=S � €xB=F � €xS=B þ s _h2 sin h. ð9Þ

For the recovery, the governing equations are the same as for the drive except that the
force of the water on the oar blade is zero and that of the air is neglected.

2.3. Drag on the boat

The drag force (D) on an object (e.g., oar or boat) moving at constant velocity in a sta-
tionary medium (or, equivalently, a stationary object in a constant far field velocity cross-
flow) is typically written as a function of fluid density (q), a characteristic area (A), and
velocity (v). D = (1/2)qCAv2 where (non-dimensional) C is typically dependent on Rey-
nolds number (ratio of inertial to viscous forces) as well as the object’s shape (e.g., see
Fox & McDonald, 1992). Drag tests performed by Hoerner (1965) and Wellicome
(1967) further support this suggested quadratic relationship for rowing boats. Therefore,
we use the following expression for boat drag in our model:

F boat ¼ C1 _x2b; ð10Þ
where C1 = (1/2)qCA is the boat drag coefficient. Fluctuations in boat velocity during a
stroke are typically on the order of ±25% of the average velocity. So the Reynolds
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number, defined by Re = vL/m (where L is a characteristic length and m is the fluid’s kine-
matic viscosity), does not vary much during the stroke. Therefore, C should mostly depend
on boat shape. Furthermore, in his study of the relationship between boat speed and num-
ber of oarsman, McMahon (1971) noted that big and small boats have the same shape; the
ratio of boat length to width is relatively constant for all boat types. Lazauskas (1998) also
reports relatively constant ratios of boat length to width and boat length to depth for sev-
eral boat types, further supporting this notion of geometric similarity. Based on these find-
ings, one can take C to be roughly constant across all boat types. C1 is then approximately
just a function of the boat’s characteristic area, A, which then varies with the square of
boat length. A could be wetted area or the projected cross-sectional area. A more accurate
value of C or C1 could be determined for a given boat using drag data where the boat
speed fluctuates rather than being pulled at a constant speed.

2.4. Models of the oar blade force

We tried two different force–velocity relationships to model the oar–fluid interaction,
finding F oarh from the blade velocity, vO ¼ vb sin hêr þ ð‘ _hþ vb cos hÞêh.

Model 1 is that of Pope. Pope assumes that the resultant force is only in the êh-direction
and that the magnitude of the force is proportional to the square of the component of
blade velocity in the êh-direction

F oarh ¼ C2ðvO � êhÞ2 ¼ C2ð‘ _hþ _xb cos hÞ2; ð11Þ
where C2 = (1/2)qC 0A 0 is the equivalent blade force coefficient, A 0 is the area of the face of
the oar blade, and C 0 is a shape-determined constant.

Model 2 of the oar blade force is based on the quasi-steady model used by Wang, Birch,
and Dickinson (2004) for predicting the forces on a hovering insect wing. This model takes
into account lift and drag forces on the blade, where drag opposes the blade velocity and
lift is perpendicular to drag as depicted in Fig. 2. The magnitudes of the lift and drag
forces, Flift and Fdrag, are proportional to the square of blade velocity, vO

F lift ¼ CLjvOj2; ð12Þ
F drag ¼ CDjvOj2; ð13Þ

where the lift and drag coefficients, CL and CD, are functions of the angle of attack, /, the
angle between the blade velocity relative to the fluid and the êr-direction as shown in
Fig. 2. The relationships between CL, CD, and / are shown in the lift-drag polar (the plot
of CL versus CD) in Fig. 2. In particular, we have:

CL ¼ Cmax
L sin 2/; ð14Þ

CD ¼ Cmax
L ð1� cos 2/Þ; ð15Þ

where Cmax
L is the maximum lift coefficient. This force turns out to be orthogonal to the

blade. In the end we found the model results from this model similar enough to those from
Model 1 that we used Model 1 for most of our calculations.

2.5. Transition rule at catch and finish

Rowers avoid splash at the catch (when the oars are put in the water). Too much
backsplash is naturally considered bad and a late catch results in ‘‘missed water’’. We



CL

CD

C L
max

Model 2

Model 1

* **

φ = 45

φ = 90

φ = 0

blade
φ

Fdrag

F
lift

(relative to fluid)

φ = 45

C D
max

vbladev   v
O =

Fig. 2. Oar force models. In Model 2 of the oar blade force, the resultant fluid force on the oar blade is broken up
into lift and drag as shown on the left. The angle of attack, /, is the angle between vblade and the axis of the plate.
The relationship between the lift and drag coefficients is shown on the right for both models of the oar blade
force. The equivalent lift and drag forces of Model 1 are the forces in Model 2 multiplied by sin/. When / = 0 or
180� (marked with a * in the plot of CL versus CD), there is no lift and the drag force is at a minimum (zero in this
case as we neglect the thickness of the plate). When / = 90� (marked with a **) the plate is perpendicular to the
flow and the lift is zero but the drag now attains its maximum value. In aerodynamics, the region near / = 0�(*) is
of central importance. In rowing, near / = 90�(**) is most relevant.

D. Cabrera et al. / Human Movement Science xxx (2006) xxx–xxx 7

ARTICLE IN PRESS
assume a priori that the rowers perfectly avoid backsplash and missed water. The
drive starts when the velocity of the oar blade’s absolute velocity normal to the blade is
zero, i.e.,

vO � êh ¼ 0. ð16Þ

Note that the reaction force on a submerged blade is zero at the start of the drive for both
models of the blade dynamics. In Model 1 we define the force as being proportional to the
square of the normal velocity so the force will be zero at the catch. In Model 2, when there
is no êh component to the blade velocity, the angle of attack is 0� and the lift and drag
coefficients are both 0 (point * in Fig. 2).

Rowers also avoid an early and a late release (when the oars are removed from the
water). Finishing late results in a braking effect while finishing early results in missed
water. Therefore, we end the drive when the force on the blade is exactly zero which, again,
corresponds to vO � êh ¼ 0 in both oar models.

2.6. Model summary

Eqs. (1)–(4), (6), (7), and (9) and the boat and oar drag laws (Eqs. (10) and (11))
completely define the state of the system of rower, boat, and oar. These equations are
linear in the forces and accelerations. Therefore, at any time t we have a linear system
of 7 equations in 10 unknowns. We can write this system in the following matrix
form:

½A�z ¼ b; ð17Þ
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where

A ¼

mr 0 0 0 0 0 0 1= cos h �1 0

0 mb 0 0 0 0 0 0 1 �1

0 0 mO 0 0 0 0 �1= cos h 0 1

0 mOd cos h 0 0 0 0 IL s 0 0

�1 1 0 1 r 0 0 0 0 0

0 1 �1 0 0 0 d cos h 0 0 0

0 0 0 1 1 �1 s cos h 0 0 0

2
6666666666664

3
7777777777775
;

z ¼ €xR €xb €xO €xB=F €xS=B €xH=S
€h F handh F footx F lockx

� �T
;

b ¼ 0 �F boat F oarh ‘F oarh 0 d _h2 sin h s _h2 sin h
� �T

.

In order to solve the above system we generally need to know 10 � 7 = 3 of the 10 forces
and accelerations in z. (Note: Specifying x(t) implicitly specifies €xðtÞ.) Prescribing more
than three variables leads to an overdetermined system and no solutions (unless the pre-
scribed functions are perfect) while prescribing less than three variables leads to an under-
determined system and an infinite number of solutions. However, there are instances
where non-unique solutions exist even when we specify three variables. Specifically, if none
of the body positions (xB/F, xS/B, and xH/S) is one of the three specified variables, then any
vector [xB/F,xS/B,xH/S] that satisfies [A]z = b can have any vector proportional to
[�r, 1,1 � r] added to it without affecting any other forces and accelerations. That is,
the rank of A reduces from 7 to 6 if 3 columns are removed and none of the 3 are columns
4, 5, or 6. The reason for this redundancy is due to the fact that we use three variables
(xB/F,xS/B,xH/S) to characterize 2 dynamic degrees of freedom (xH/R,xR/F). The extra body
degree of freedom is left in for better comparison with data.

A common practice in the modelling of biomechanical tasks is to drive the model with
muscle forces, joint torques, or muscle activation patterns (e.g., Atkinson). Instead, we
drive our model by prescribing the rower’s coordination (xB/F, xS/B, and xH/S) as functions
of time (e.g., Alexander). In the end, the ability of the model to fit data does not depend on
whether forces or motions are prescribed in the differential equation solutions.

Once the body positions are prescribed we also know their accelerations by twice dif-
ferentiating the positions. Furthermore, the equations for boat drag and oar blade force
(being dependent on velocity and not on acceleration) are uncoupled from the remaining
equations. Thus, the system of governing equations reduces to seven equations in seven
unknowns whose solution may be obtained at any time t by a matrix inversion. Thus,
Eq. (17) can be solved at each instant in time for use in a numerical ordinary differential
equation (ODE) solver to find all variables as functions of time. For convenience, we fur-
ther simplify the set of equations by combining them to eliminate all of the unknown
forces (F handh , F footx , F lockx ) and the rower and oar center of mass accelerations (€xR, €xO).
Furthermore, since we prescribe the body positions, h and its derivatives are known at
any time from Eq. (8). Therefore, we are left with a single, second order ODE in boat
position (or, equivalently, a first order ODE in boat velocity)

€xb ¼
�F drag þ F oarh cos h� mRð€xB=F þ r€xS=BÞ � mOdð€h cos h� _h2 sin hÞ

mR þ mb þ mO

; ð18Þ
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where Fdrag and F oarh are quadratic in boat velocity, _xb. After solving this ODE we can
determine all of the forces, accelerations, velocities, and positions needed to compare with
documented data.

For each numerical integration the body coordination is given (xi(t) given). However,
we allow the coordination to vary from one simulation to the next when we minimize
errors between the model and on-water data.

2.7. Model constants

Listed in Table 1 are the values of the model constants used in our simulations. The
values of stroke period (T), rower mass (mR), inboard oar length (s), outboard oar length
(‘), and oar mass (mO) are measured off of the water. The values of s are 6 cm and 15 cm
less than the actual inboard oar lengths, s*, assuming that the rower applies a force at the
oar handle 6 cm and 15 cm from the end for sculls and sweeps, respectively. Also, ‘ is half
of the blade length (21.5 cm for sculls, 26 cm for sweeps) less than the actual outboard oar
length, ‘*. Boat mass, mb, is the sum of the fully rigged boat mass and the mass of the data
collection equipment. Boat added-mass is neglected because, using the relation ma/md = a/
(3h � a) for a ‘‘Rankine ovoid’’ (taken as roughly the shape of a rowing shell) from Light-
hill (1986) where ma is the added mass, md is the displaced mass, a is boat width, and h is
(roughly) boat length, the added mass is only 0.0065 of the displaced water mass. (Alex-
ander assumed an overly large added mass of 0.2 of the displaced water mass.)

The boat drag coefficient, C1, used in Eq. (10) is computed as C1 = (1.07)(1/2)qC*D2/3

where D is displaced volume (assuming D2/3 is proportional to the boat’s wetted area) and
C* is a non-dimensional shape factor. The factor of 1.07, suggested by Pope, accounts for
the additional (wave) drag due to the deformation of the water surface. For eights we have
drag test data that gives C1 = 11.8N/(m/s)2 (from Lazauskas, 1998). We compute C1 for
fours and singles using geometric similarity, i.e., we take C* as constant for all boat
types. For fours, C1 is divided by 4 since we only consider the motion of a single rower.
Table 1
Listed are the values of the variables fixed in the simulations

Variable Value Description

T 1.94, 1.65 s Stroke period
mR 75, 92 kg Rower mass
s* 0.89, 1.16 m Actual inboard oar length
s 0.83, 1.01 m Modified inboard oar length (s* � 0.06 m, sculls; s* � 0.15 m, sweeps)
‘* 2.02, 2.62 m Actual outboard oar length
‘ 1.805, 2.36 m Modified outboard oar length (‘* � (blade length)/2)
mO 1.2, 2.6 kg Oar mass
mb 19.7, 14.475 kg Boat mass
C1 3.16, 1.99 N/(m/s)2 Boat drag coefficient (F boat ¼ C1v2b)
C2 58.7, 84.5 N/(m/s)2 Oar drag coefficient (F oarh ¼ C2ðvO � êhÞ2)
r 0.4, 0.4 Ratio of shoulder height to center of mass height (hR/hS)
d 0.565, 0.73 m Distance from oarlock to oar center of mass
IG 0.85, 3.1 kg m2 Oar moment of inertia (mO(‘* + s*)2/12)

The first value listed is for singles while the second is for fours. The resulting mass is divided by four for the
simulation of fours.
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Therefore, for fours we have C1 = (1.07)(11.8)/(4 · 22/3) = 1.99N/(m/s)2 and for singles we
have C1 = (1.07)(11.8)/(82/3)N/(m/s)2 = 3.16N/(m/s)2.

The oar drag coefficient, C2, is computed as C2 = (1/2)qC 0A 0. The blade area, A 0, is
0.0903 m2 for sculls and 0.13 m2 for sweep oars (from measurements of the oar blades).
The value of C 0 is obtained from a plot in Hoerner (1965) showing the drag coefficient
as a function of Froude number, Fr, for a stationary flat plate perpendicular to a constant
velocity crossflow. The plate is completely submerged but the top of edge of the plate is
just below the free surface. The Froude number is computed as Fr ¼ V =

ffiffiffiffiffi
gh

p
where V is

the blade velocity, g is the acceleration of gravity, and h is the width of the blade. Using
V = 1 m/s, g = 9.81 m/s2, and h = 25cm, we obtain Fr � 0.64 which corresponds to
roughly C 0 = 1.3 from the Hoerner plot.

The ratio of rower center of mass height to shoulder height, r, is estimated from mea-
surements of the masses and center of mass locations of a human (Zatsiorsky, 2002). Oar
center of mass distance from the oarlock, d, and the oar’s moment of inertia about its cen-
ter of mass, IG, are calculated assuming that the oar is a uniform rigid rod (d = (‘* � s*)/2
and IG = mO(‘* + s*)2/12).

2.8. Model analysis

2.8.1. Parameterization of the body position functions

The method of parameterizing the body position functions is somewhat arbitrary. The
only properties we require of the functions are that they be periodic (assuming that the
rower reaches a steady-state) and twice differentiable (because we want continuous accel-
erations and forces). Periodic cubic splines satisfy both of these requirements and they also
allow us to parameterize the curves using as many parameters as we desire. We have tried
other parameterizations (Fourier Series, for example) and found the present choice
adequate. The numerical procedure used to construct the splines is discussed in Appendix
A.2.

2.8.2. Integration of the governing equations

The non-linear ODE that governs boat position (Eq. (18)) cannot be solved analytically.
Therefore, to integrate the equation we use a 4-stage, Runge–Kutta method where the inte-
gration step size is held constant except near the spline knot times and near the transition
times from recovery to drive and vice versa. In order to maintain the desired integration
accuracy over the entire stroke period, we avoid integrating over the knot times (where
the boat acceleration is non-differentiable since the body accelerations are piecewise linear
functions of time) by adjusting the integration step size so that we integrate to exactly these
times. As a matter of convenience, the integration step size is chosen so that the integration
times coincide exactly with the times at which the raw data is interpolated. Since the raw
data we use is interpolated over fifty equal time intervals, we use an integration step size
of h = T/(2 · 50) where T is the stroke period. Using this step size and an arbitrary set
of knot ordinates, convergence tests show that we are able to integrate boat velocity to
within an absolute numerical error of 10�6 m/s. Transition times between drive and recov-
ery are determined accurately by an iterative process outlined in Appendix A.3.

We seek steady-state motions of the rower–boat–oars system since the data collected is
more-or-less periodic. Since the coordination is parameterized by periodic cubic splines,
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periodicity of the rower–boat–oars system will occur with the proper choice of boat
velocity at the start of one stroke (see Appendix A.4).

2.8.3. Data collection

The measurements were conducted during on-water rowing in a competitive single scull
and four without coxswain (Jeff Sykes & Associates Pty Ltd.) The fully rigged boat masses
were 15.8 and 52 kg, respectively, and Dreissigacker racing oars were used (CONCEPT2
Inc., Vermont, USA). See Appendix A.5 for detailed descriptions of the measurement
techniques and data analysis.

Two data sets are used to validate the model:

(1) a set of women’s singles; measured were five functions of time: ~xB=FðtÞ, ~xS=BðtÞ, h(t),
F handhðtÞ, and _xbðtÞ and

(2) a set of men’s fours (without coxswain); measured were four functions of time:
~xB=FðtÞ, h(t), F handhðtÞ, and _xbðtÞ. We think of all derivatives and integrals of the
measured quantities as measured data.

The functions ~xB=FðtÞ and ~xS=BðtÞ are the leg and back displacements from their positions
at t = 0. That is, ~xB=FðtÞ ¼ xB=FðtÞ � xB=Fð0Þ and ~xS=BðtÞ ¼ xS=BðtÞ � xS=Bð0Þ.

2.8.4. Measurement of model versus data error
We validate the model by showing how closely it can simulate the observed forces and

motions. We quantify how well the simulated variables compare with the measured data
using an analysis similar to that of McLean, Su, and Van den Bogert (2003) wherein both
kinematic and dynamic consistency between model and data is desired. The data collected
have different scales and units and we have more data for singles than we do for fours.
Therefore, we construct a measurement of error, J, between the model and on-water data
that is unit-independent, reasonably scaled, and independent of the number of curves to be
fit. See Appendix A.6 for a detailed description of the function, J, used to quantify the net
error. Appendix A.6 also describes how the coordination patterns (motions and, thus,
through the governing equations, forces) are found.

2.9. Root finding versus minimization

Minimizing the net error, J, may turn out to be a root finding problem (with J = 0 as a
solution) depending on how many variables we fit. For definiteness we define the
following:

• nf = number of functions of time in the model. We count x(t), _xðtÞ, and €xðtÞ together as
one function of time. For this model, nf = 10 and the functions are listed in Eq. (17).

• ne = number of independent equations to solve. These include momentum balance and
kinematic constraint equations (as well as drag laws). We do not count v(t) = dx/dt and
a(t) = dv/dt as equations for any kinematic variable x. For this model, ne = 7 and the
equations are given by Eqs. (1)–(4), (6), (7) and (9).

• nv = number of variables (functions of time) measured in each data set. For data set 1
we have nv = 4 and for data set 2 we have nv = 5.
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• nu = number of measured variables used to evaluate the ultimate error. We will always
evaluate the ultimate error using all nv measured variables so nu = nv.

• nm = number of measured variables used in the evaluation of J, i.e., used in the mini-
mization of model versus on-water data error. We do not necessarily use all data for
assessment of J because we want to know what data predicts what other data so
nm 6 nu.

• ns = number of functions prescribed for the ODE solution. To obtain a unique, exact
solution to the governing equations of our model, ns � nf � ne = 10 � 7 = 3. We always
solve the ODE using ns = 3. An alternative we do not use is to not solve the ODE
explicitly and include the degree of ODE satisfaction as part of the error to be mini-
mized in the curve fitting. Instead, we always solve the ODE exactly (to numerical pre-
cision) using prescribed functions (xB/F(t), xS/B(t), xH/S(t)) whether or not we have data
for these functions. In other words, periodic ODE solution is a (pre-satisfied) constraint
in our error minimization problem.

Since we need to specify 3 forces and/or accelerations (or positions/velocities) in order
to solve the governing equations (Eq. (17)) we can generally fit the data exactly if we fit no
more than three data variables (nm 6 3) and we parameterize each input function with at
least as many parameters, n, as we have data points, N. The J-minimizing solutions will be
unique if we fit at least three variables (nm P 3) and at least one of these variables is one of
the three body position functions (xB/F,xS/B,xH/S). The latter condition is necessary due to
the existence of a non-zero vector in the null space of the A-matrix in Eq. (17) as men-
tioned earlier. If we fit more than 3 variables (nm > 3) we cannot expect to drive J to zero
no matter how many parameters we use to parameterize our input functions, unless the
model and reality coincide exactly.

In all but one of our simulations we use n < N so in these cases we will always have
J > 0. Furthermore, we always fit at least three variables and one of these variables is
always ~xB=F so we always have a unique minimal-J solution.

3. Results

Plots of force and motion time histories from the best fit simulation of singles using
nm = 5 and n = 16 (see Appendix A.7 for a discussion of the choice of n) along with the
measured data are shown in Fig. 3 for Model 1. Agreement with the measured data is
apparent in both the shape and magnitude of the time histories. The contributions to
the fit error, J, are shown in the first row of Table 2 (trial a). The largest error is due to
differences in oar angle while the smallest error is in the prediction of back position.
The averages of the magnitudes of the residuals, RðbY jÞ ¼

PN
j¼1jY ij � bY ijj=N , are also

shown in the first row of Table 2. Using both models of the oar blade force, the residuals
are less than 2.1� for oar angle, 0.35 cm for seat slide, 0.13 m/s for boat velocity, 11 N for
oar handle force, and 0.11 cm for back position.

The average residual magnitudes and the error contributions to J from the best fit sim-
ulation of fours using nm = 4 and n = 16 are shown in the fourth row of Table 2 (trial d).
Again, the largest error contribution is from differences in oar angle while the best fit var-
iable is leg position. As in the simulation of singles, we also find good agreement for fours.
The averages of the residual magnitudes in this case are less than 2.2�, 0.26 cm, 0.15 m/s,
and 26 N for oar angle, seat slide, boat velocity, and oar handle force, respectively. Given
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Fig. 3. Best fit. Comparison of the simulated and measured curves for the best fit simulation of singles where we
fit all of the measured variables (see Table 2 (trial a)). Here, we use Model 1 for the oar blade force and 16
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the good agreement for both models, we use Model 1 in all subsequent simulations as it is
conceptually simpler than Model 2.

4. Discussion

4.1. Predicting unfit variables

A measure of the model’s ability to well simulate observed forces and motions is how
well it can predict unfit variables. We test the model’s ability to do this by (1) fitting for all
variables except for boat velocity (nm = 4 for singles, nm = 3 for fours) and (2) fitting for
~xB=F, ~xS=B, and h for singles (nm = 3).

Fig. 4 shows the simulated and measured boat velocity resulting from fitting ~xB=F, h, ~xS=B,
and F handh for singles. The resulting errors are listed in the second row of Table 2 (trial b).
We notice from the table that, compared with the case when we fit all measured variables,
the fits to ~xB=F, h, ~xS=B, and F handh are slightly better while the error contribution due to dif-
ferences in boat velocity more than doubles. Despite the increased error in the prediction of
boat velocity, the average of the residual magnitudes are still small (�0.08 m/s ) � 2%). In
fact, the differences between the predicted velocities for these cases are almost indistinguish-
able (compare the predicted velocity curves in Figs. 3 (nm = 5) and 4 (nm = 4)).



Table 2
Listed are the errors, RðbY jÞ and EðbY jÞ, in the prediction of the measured variables, bY j, for all minimizations
performed to validate the model

Trial Data set bY j RðbY jÞ EðbY jÞ Fitted? Ultimate error

a 1 _xb 0.053048 m/s 0.00023121 Fit 0.00024192
~xB=F 0.003162 m 0.00004363 Fit
h 2.01887� 0.00065243 Fit
F handh 6.43392 N 0.00027439 Fit
~xS=B 0.000925 m 0.00000797 Fit

b 1 _xb 0.079532 m/s 0.00050840 Predicted 0.00027935
~xB=F 0.001194 m 0.00000932 Fit
h 1.87307� 0.00055312 Fit
F handh 7.76152 N 0.00032128 Fit
~xS=B 0.000600 m 0.00000462 Fit

c 1 _xb 0.392070 m/s 0.00904122 Predicted 0.00353617
~xB=F 0.000451 m 0.00000127 Fit
h 0.099239� 0.00000138 Fit
F handh 36.0826 N 0.00865295 Predicted
~xS=B 0.000580 m 0.00000407 Fit

d 2 _xb 0.145617 m/s 0.00072300 Fit 0.00096626
~xB=F 0.002577 m 0.00003078 Fit
h 2.18270� 0.00101337 Fit
F handh 25.5341 N 0.00213842 Fit

e 2 _xb 1.74873 m/s 0.04726161 Predicted 0.02284396
~xB=F 0.002577 m 0.00003112 Fit
h 0.552746� 0.00006355 Fit
F handh 17.9031 N 0.00148194 Fit

f 2 _xb 0.361990 m/s 0.00439295 Predicted 0.0038239*

~xB=F 0.012922 m 0.00059961 Fit
h 1.90408� 0.00069936 Fit
F handh 23.9773 N 0.00196224 Fit

RðbY jÞ is the average residual magnitude and EðbY jÞ is the error contribution to J for variable bY j (see Appendix
A.6). The penultimate column indicates which variables are fitted in each minimization. The ultimate error is the
weighted sum of the errors, EðbY jÞ, divided by the number of measured variables. (Note: * is the error when a
penalty is added for roughness in the leg and back position curves.)
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The results after fitting ~xB=F, h, and F handh for fours are listed in the fifth row of Table 2
(trial e). As explained in Section 2.9, the fits to ~xB=F, h, and F handh are good, with the fit to h
being much better than that obtained when we fit all measured variables. However, the
boat velocity is predicted rather poorly. The predicted back velocity and acceleration
curves contain several oscillations which contribute greatly to the poor prediction of boat
velocity. The seat slide velocity and accelerations curves also contain oscillations, although
they are not as pronounced as those in the back kinematic profiles. To get rid of these
oscillations we added a penalty for non-smooth curves by minimzing J* (see Appendix
A.6). The model now does a reasonable job of predicting boat velocity (see plots in Cab-
rera, 2005). However, the predicted average boat velocity differs from the measured aver-
age velocity by about 0.37 m/s (�5% of 5.90 m/s). This discrepancy is most likely due to
our choices of model constants, in particular, the oar drag coefficient and assumed
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Fig. 4. Predicting boat velocity. Comparison of simulated (thin curves) and measured (heavy curves) results from
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location of the resultant blade force. Our predictions of all other variables are slightly
worse as a result of penalizing roughness.

Another test of the model is to fit only three variables for singles and to see how well the
model can predict the remaining measured variables. The resulting errors after fitting ~xB=F,
h, and ~xS=B for singles (and trying to predict boat velocity and hand force) are shown in the
third row of Table 2 (trial c). The largest error contribution is from differences in F handh .
This error represents deficiencies in our model and/or parameter values. The shape of the
velocity curve matches the measured curve well but the simulated average speed is less
than the measured average speed (3.83 m/s compared to 4.18 m/s). The peak oar handle
force and the magnitude of the force during the recovery are matched well by the model
but the shape and magnitude of the time histories during the drive do not agree well.

4.2. Fitting false data

If the fits we obtain are a result of good curve fitting (as opposed to good modelling)
then we should be able to obtain good fits to false data. We test the model in this manner
by adding a sine wave to the boat velocity data for singles and finding best fits to this cor-
rupted data for various amplitudes of the sine wave. Fig. 5a shows the value of Jmin versus
the amplitude of the corrupting sine wave. In general, perturbations to the velocity data
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decrease the quality of fit. We see in Fig. 5b that the minimization ignores the corrupted
velocity (despite the penalty for lack of fit) and captures the original uncorrupted velocity.
These results suggest that the fits we obtain are not the result of performing good curve
fitting but rather the result of having a good model.

4.3. Sensitivity analysis: How the fit depends on mechanical constants

Some model parameters (Table 1) are estimated since they were not measured when the
force and kinematic measurements were taken. These estimates seem to be reasonable as
we observe good agreement between simulation and measurements. However, it is possible
that even better agreement may be achieved if we use different and, perhaps, more accurate
values for these parameters. Fig. 6 shows plots of net error, Jmin, versus select model
parameters for the simulation of singles. A single point on any one of these plots is gen-
erated by minimizing J, letting the rower’s coordination and the oarlock fore-aft position-
ing be variable while fixing all other parameters to their values as listed in Table 1, except
for the parameter indicated on the horizontal axis in each plot. The value of this parameter
is held fixed during the minimization but is different from its nominal value. The filled cir-
cles in each plot correspond to the value of Jmin when using the parameter listed in Table 1.
The choices of C1, r, and mb appear to be nearly optimal. If we do not account for wave
drag (i.e., we take out the factor of 1.07 when calculating C1), the boat drag coefficient
reduces to C1 = 2.95 N/(m/s)2 and we obtain slightly worse fits to oar handle force and
oar angle. So it seems that accounting for wave drag is somewhat important.
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We can achieve a slightly better fit if we choose mb = 24kg (instead of 19.7 kg). This
change corresponds to a boat added-mass of 4.3kg which is about 4.3% of the displaced
mass but, still, a small percentage. Alternatively, instead of considering boat added-mass
being due to fluid effects, we can think of it as being a fraction of the rower’s mass put into
the boat rather than into the rower’s gut (not all of the rower’s mass moves with the gut;
for example, the rower’s feet are attached to the boat and, thus, should probably be con-
sidered part of the boat). Taking 3.25 kg (� 35% of the foot and calf mass) of the rower’s
mass and putting it into the boat gives us a slightly better fit (Jmin = 0.0002323654).

However, the value of C2 which minimizes the net error is about 2.4 times the nominal
value we used. Using this near-optimal value of C2, the best fit simulation results in a bet-
ter prediction of oar angle (E(h) is halved). Fig. 7 shows the path of the oar blade tip for
three cases: (1) using the measured data, (2) using the nominal value of C2, and (3) using a
value of C2 that is 2.4 times the nominal value. Using a larger C2, we see that the model
does a better job of predicting the actual path of the blade tip. Wang (2005) notes that
during the transient motion of a plate accelerated from rest to a constant velocity, the
maximum lift force is about 50% greater than the average lift force during steady-state.
This suggests that larger values for C2 and Cmax

L should be used in our model. However,
it is not certain that the lack-of-fit of the oar angle is necessarily due to a poor choice
of C2. The fact that the deviations between the predicted and measured angle are greatest
near the catch and release indicate that perhaps our enforcement of the instantaneous
transition from drive to recovery (and vice versa) when the blade normal velocity is zero
is imperfect.

4.4. Unnecessary improvements and destructive simplifications

4.4.1. Use CD = 1?

If the blade did not slip during the drive, it would cut through the water (following a
tractrix) so that its velocity has a component only in the êr-direction (see Fig. 1). Since
the êh-component of the blade velocity would be zero, we would have
vO � êh ¼ ‘ _hþ _xb cos h ¼ 0. Differentiating this equation with respect to time gives us the
following expression for the boat’s acceleration, €xb:
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€xb ¼
_xb _h sin h� ‘€h

cos h
. ð19Þ

This would be equivalent to setting CD =1 for the oar blade. So, enforcing the no-slip
condition leads to the boat’s motion being determined by the kinematics of the oar rather
than the oar blade force, boat drag, or any masses. We determine the best fit to the singles
data while enforcing the no-slip condition to determine whether or not the simplification
produces similar results as the case when we allow for slip. The resulting best fit to all of
the data (nm = 5) for singles is shown in Fig. 8. The force applied at the oar handle is pre-
dicted rather poorly during the drive phase even though the remaining variables are well
predicted throughout the stroke. The predicted peak force applied at the oar handle is
nearly twice that of the maximum measured force and there is a marked rise and fall of
the force during the initial moments of the drive that is not seen in practice. Thus, the
no-oar-slip simplification would prove to have a high cost in terms of model error.

4.4.2. Allowing for oar flexibility

In our model we assume a rigid oar. However, a study performed by Brearley and De
Mestre (1998) shows that oars may bend anywhere from 2� to 7� during on-water rowing,
depending on oar type (sculls/sweeps) and stroke rate. We investigate the possible
improvement of our model (better fits) by allowing for oar flexibility. We assume the
oar is composed of two rigid rods (the inboard and outboard) with inertia, hinged together
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Fig. 8. Comparison of the simulated (thin curves) and measured (heavy curves) results from the best fit
simulation of singles while enforcing no-slip of the oar blade. The oar handle force is poorly predicted in this case
while the remaining variables are still well predicted.
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at the hinge with a torsional spring. The moment, M, applied to each rod by the spring is
modeled as M = KDh where K is a constant and Dh is the relative angle between the
inboard and outboard. Due to the additional degree of freedom (the relative angle), there
is an additional governing equation which is derived by taking angular momentum bal-
ance for the outboard portion of the oar about the oarlock. This gives us an equation
for the relative angular acceleration of the two rods, D€h. Since the spring constant, K, is
not known, it is included as a variable parameter. Fig. 9 shows the resulting best fits to
all of the data for singles using n = 16. The value of the minimized cost function is
Jmin = 0.00038239 and the error contributions to J are Eð _xbÞ ¼ 0:00004755, EðF handhÞ ¼
0:00009349, Eð~xB=FÞ ¼ 0:00000730, E(h) = 0.00006123, and Eð~xS=BÞ ¼ 0:00000160. Com-
paring these errors with those of the best fit simulation using a stiff oar (Table 2 (trial
a)) we conclude that the addition of oar flexibility is an unnecessary improvement for
fitting purposes.

4.5. Kinematic complexity

One of the major simplifications is the pair of assumptions that (a) the resultant oar
handle force is parallel to the boat and (b) the arms are parallel to the boat. Observation
of real rowers shows this to be a drastic (perhaps over-) simplification. However, introduc-
ing force and motion of the arms not parallel to the boat would require more new assump-
tions than we thought would be useful.
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5. Conclusion

We have constructed a model of rowing that does a reasonable job of imitating the
forces and kinematics observed in actual rowing through comparison with documented
data. The model accurately reproduces these forces and motions, even those not included
in the fit. Allowing oar slip proves to be necessary for accurately predicting the force
generated at the oar handle. Allowing for oar flexibility, while making the model more
realistic, does not result in better predictions.

The model seems promising for various rowing investigations such as: (1) using optimi-
zation to predict the coordination patterns that maximize boat speed subject to various
biological constraints, (2) to determine the broadness of coordination and other system
variables near an optimum to see what additional ingredients must be included in our opti-
mization problem to predict the stereotypical legs-back-arms coordination pattern in row-
ing, and (3) to determine rigging changes for a boat with differently sized rowers or how
coxswain motions might make a boat go faster.
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Appendix A

A.1. Previous rowing models

Recent rowing models that resemble Alexander’s are those of Pope (1973), Van Holst
(2004), and Atkinson (2004). All of these models assume 1D momentum balance (yet
account for large oar angles) and quadratic force–velocity relationships to model boat drag.
To model the oar blade force, Pope uses Alexander’s model which only considers drag while
Van Holst and Atkinson consider both lift and drag forces on the blade. The lift and drag
forces are assumed to be proportional to the square of velocity, F = Cv2, where v is the
absolute blade velocity and C is the lift/drag coefficient which is a function of water density,
blade surface area, and the angle of attack, i.e., the angle between the blade velocity and the
oar longitudinal axis. Both Van Holst and Atkinson consider boat added-mass as well as
the oar’s inertia in their models. Atkinson’s model also accounts for oar flexibility, blade
cant angle (angle between the oar shaft and the blade), and variation of the boat drag coef-
ficient with water temperature and Reynolds number.

Like Alexander, Atkinson prescribes velocities of the rower’s legs, back, and arms rela-
tive to the boat. However, Atkinson prescribes the force applied by the rower perpendicular
to the oar handle as a function of time whereas Alexander prescribes oar angle. Because,
ultimately, both force and kinematic data are used in model fits, the difference between
kinematic control (Alexander) and force control (Atkinson) is a matter of researcher taste,
numerical convenience, and so on. In Pope’s model, oar angular velocity and rower center
of mass velocity relative to the boat are the dynamic degrees of freedom. Pope assumes that
oar angular velocity is linearly proportional to the rower’s center of mass velocity relative to
the boat. He also assumes a constant instantaneous ‘‘propulsive efficiency’’ which he defines
as the ratio of the rate at which ‘‘useful’’ work is done at the oar blade (the component of
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force at the oar blade in the direction of boat motion times boat velocity) to the power sup-
plied by the rower at the oar handle. This second energetic assumption results in another
kinematic coupling between oar angular velocity and rower velocity relative to the boat
which then allows for the (numerical) solution of the boat’s equation of motion. Van Holst
prescribes both the component of the oar blade force in the direction of boat motion and
the rower’s center of mass position as functions of oar angle.

The above models are relatively simple and mechanically complete. Atkinson’s and Van
Holst’s models are more complex than the others in that they incorporate a slightly more
complicated oar blade force law, requiring a look-up table or mathematical relationship to
determine the lift and drag coefficients once the angle of attack has been calculated. These
models require an iterative procedure to determine the oar angle once the blade force (in
Van Holst’s model) or the force at the oar handle (in Atkinson’s model) is specified. Also,
in Atkinson’s model, it is unknown whether oar flexibility, cant angle, and Reynolds num-
ber and temperature-dependent boat drag coefficient are necessary model ingredients.
Although these models are mostly simple, none of them has been shown to accurately pre-
dict the forces and motions observed in actual rowing (with the exception of Atkinson who
is able to accurately predict boat velocity). Alexander was presumably limited by the lack of
data and computational power. Pope’s model, while simple and easy to implement on a
computer, is too simple to accurately model actual rowing. Instead of allowing his dynamic
degrees of freedom (rower position relative to the boat and oar angle) to be freely selected,
Pope assumes (but does not justify) a linear coupling between the two and provides another
coupling based on his (flawed) measure of efficiency. Furthermore, due to his fixed duty
cycle (ratio of the time when the oar is in the water to the period of the stroke), his model
necessarily results in an (unrealistic) infinite acceleration and deceleration of the boat at the
moments when the oar is inserted into and removed from the water, respectively. Atkin-
son’s and Van Holst’s models, even with documented data to compare with, are limited
in their predictive capabilities by the assumed forms of their dynamic degrees of freedom
(force and rower velocity relative to the boat). Because no quantitative comparisons were
made with measured variables (other than boat velocity in Atkinson’s study), it is not
known whether any of the assumptions used in the above models prevent the models from
accurately predicting the forces and motions experienced in an actual boat.

Our group at Cornell (Cardhana, Santos, Mukherjee, and Ruina, unpublished) also
posed several models in the spirit of Alexander’s. However, until now, no results were
objectively compared with on-water data, so no conclusions were reached about the verac-
ity of the various assumptions.

Other simpler models posed by Sanderson and Martindale (1986), Millward (1987),
Brearley and De Mestre (1996), Lazauskas (1997), and Simeoni et al. (2002) were devel-
oped to predict race times for various boat types. These models assume force and/or kine-
matic profiles that differ in many respects from those observed in real rowing. For
example, Millward assumes that the force at the oarlock in the direction of boat motion
has the shape of the square of a sine curve as a function of time and that this force acts
for exactly half of the stroke period. None of these models is useful towards predicting
forces and motions experienced during actual rowing. However, these models show that
modelling the boat and rowers together as a single point mass can reasonably predict race
times based on measured oar forces. That is, balancing average oar propulsive force with
boat drag, based on average boat speed, gives reasonable predictions for average boat
speed.
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A.2. Constructing the body position splines

We construct a spline by first selecting a set of points (ti,xi) (where i = 1, . . . ,n + 1),
called knots, through which we want the curve, x(t), to pass. For convenience, we space
the knots evenly in time starting at t1 = 0 and ending at tn+1 = T where ti+1 = ti + Dt =
ti + T/n for i = 1, . . . ,n. By spacing the knots evenly, our freedom in manipulating the
spline is restricted to choosing only the knot ordinates, xi, rather than both the ordinates,
xi, and the abscissae, ti. We then construct a cubic function, yi(t), over each time interval
[ti, ti+1] for i = 1, . . . ,n. The cubic functions are given by yi(t) = Ait

3 + Bit
2 + Cit + Di

where the constants Ai, Bi, Ci, and Di are to be determined from the points (ti,xi) for
i = 1, . . . ,n. Since each cubic, yi(t), is defined by four coefficients (Ai,Bi,Ci,Di), and there
are n cubic functions, we must determine a total of 4n constants to completely define the
spline which is a concatenation of the n cubics. The constants are determined by satisfying
the following 4n conditions:

• Each cubic passes through its endpoints: yi(ti) = xi and yi(ti+1) = xi+1 for i = 1, . . . ,
n ) 2n conditions.

• Adjacent cubics maintain continuity in their first and second derivatives at their points
of intersection: _yi�1ðtiÞ ¼ _yiðtiÞ and €yi�1ðtiÞ ¼ €yiðtiÞ for i = 2, . . . ,n ) 2n � 2 conditions.

• To enforce periodicity, the first and last cubics maintain continuity in their first and
second derivatives at t = 0 and t = T, respectively: _y1ðt1Þ ¼ _ynðtnþ1Þ, and €y1ðt1Þ ¼ €yn
ðtnþ1Þ ) 2 conditions.

The above 4n conditions result in a linear system of 4n equations with 4n unknown
spline coefficients which are found with a standard linear solver.

A.3. Procedure for determining the recovery-to-drive and drive-to-recovery transition times

We enforce the transition from recovery to drive (and vice versa) to occur when the slip
velocity goes to zero (see Eq. (16)). The time when this transition occurs is calculated using
an iterative procedure. Let si be the time when the sign of the slip velocity changes and let
vslipi be the slip velocity at this time. Then, using (si; vslipi) and the two integration times and
slip velocities prior to the sign change ((si�1; vslipi�1

) and (si�2; vslipi�2
)), we form a quadratic

approximation of vslip as a function of time

vslipðtÞ ¼ at2 þ bt þ c; ðA:1Þ
where the constants a, b, and c are found by solving the following system of three
equations in three unknowns:

s2i si 1

s2i�1 si�1 1

s2i�2 si�2 1

2
664

3
775

a

b

c

2
664

3
775 ¼

vslipi

vslipi�1

vslipi�2

2
664

3
775. ðA:2Þ

We then find the time, s*, when the minimum of this quadratic occurs (i.e., when dvslip/
dt = 0) and is given by s* = �b/2a. We then integrate one time step from si�1 to s*. If
the slip velocity at t = s* has a magnitude that is less than the integration tolerance we then
take s* as the transition time. Otherwise, we form successive quadratic approximations of
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vslip as above, each time replacing the point with the largest slip velocity magnitude with
the newest point, until the newest slip velocity is less than the integration tolerance.

A.4. Procedure for finding a periodic motion

We find the steady-state of the rower–boat–oars system for given coordination splines
using an iterative process. Because periodicity only depends on the choice of initial boat
velocity, the process of finding a periodic motion is simply a one-dimensional root find.
The function whose root we seek, g, is the difference between the initial and final boat
velocities over a stroke. That is, we seek the value of v which makes g(v) = V � v = 0
where v = vb(0) is the boat velocity at t = 0 and V = vb(T) is the boat velocity at t = T.
The root finding is carried out using a secant method. Starting with an initial boat velocity,
v1, we integrate for two consecutive strokes. The initial boat velocity used for the second
stroke, v2, is the boat velocity at t = T for the first stroke (i.e., v2 = V1). If jgij = jvi � Vij is
less than the integration tolerance, we determine that steady-state has been reached. If not,
which is usually the case, we use the points (v1,g1) and (v2,g2) to construct a linear approx-
imation of g(v)

gðvÞ ¼ g2 � g1
v2 � v1

ðv� v2Þ þ g2. ðA:3Þ

The next guess to the initial boat velocity is then found by determining the root of the
linear approximation given by

v3 ¼ v2 � g2
g2 � g1
v2 � v1

. ðA:4Þ

We then check the value of jg3j = jv3 � V3j to determine whether steady state has been
reached. If not, further linear approximations of g are formed until jgij is less than the inte-
gration tolerance. The procedure normally requires five or six iterations to make
jgij < 10�6. A numerically slower method would be to integrate forward in time over many
strokes until steady-state is accurately enough reached.
A.5. Measurement techniques and data analysis

A radio telemetry system was used for data acquisition. The system had 12 bit resolu-
tion, 32 channels, and the sampling frequency was 51.9 Hz. The data was telemetered from
the rowing boat to the motor-boat, where it was collected in real time using a notebook PC
(Compaq N800w).

The oar angles in horizontal and vertical planes were measured using servo potentiom-
eters (Bourns 6538, linearity 1%) connected with a light arm and bracket to the oar shaft
(Kleshnev, 1999). Force applied to the oar handle was defined by means of measurement
of the oar shaft deflection using removable strain-gauges connected in a Wheatstone
bridge (Vishay Micro-Measurements 250BB, accuracy ±0.5%). Each oar was calibrated
with a force applied 0.06 m from the handle top for sculling and 0.15 m for sweep rowing.
Boat velocity was measured using a micro-impeller (Nielsen-Kellerman Co.). Seat position
was measured using a multi-turn potentiometer (Bourns 3540, linearity 0.25%) connected
to the seat with low stretchable fishing line. The position of the top of the trunk was mea-
sured using the same potentiometer as for the seat position (Kleshnev, 2000). The device
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Fig. A.1. Shown is a sketch of the setup used to collect seat slide and back position data. In the case of fours,
back position data was not collected due to the difficulty in setting up the equipment.
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was attached to the boat deck and the fishing line went through a pulley mounted on a
mast and attached to the trunk at the level of the joint Sternum and Clavicle (C7). See
Fig. A.1 for a schematic of the setup used to measure seat and trunk position. Note that
trunk position was not measured for fours due to the difficulty in connecting the fishing
line to the middle rowers. The total masses of the data acquisition system including
sensors, cables, and electronics were 3.9 and 6 kg for singles and fours, respectively.

The average stroke period and its standard deviation are calculated over several cycles
in the sample. Cycles deviating from the average by more than three standard deviations
(plus or minus) are excluded. After the filtering described above, each cycle is normalized
in time, i.e., stretched or compressed to make each cycle time equal to the average cycle
time. The moment when the right oar crossed zero angle value during recovery is chosen
as the cycle start. Each cycle time is then divided into 50 equal time intervals. Values at the
start of the cycle and at the end of these intervals are calculated from the raw data using
cubic interpolation. These values are then averaged over the sample period. The amount of
points per stroke cycle (50) was chosen as a compromise between data accuracy and
volume.

A.6. Quantification and minimization of difference between model and data

Given model parameters we can solve the governing equations to a high numerical
accuracy (say, 1 part in 10�6) for the prediction of all force and motion quantities. Simi-
larly, we can imagine that we have precise data for the same quantities measured for a real
boat with real people. The error in our prediction of the forces and motions for given
model values for the coordination pattern, u(t), can be quantified using the following
function, J0, describing the net error in the various curve predictions

Measure of fit� error ¼ J 0½uðtÞ� ¼
Pnm

j¼1wjEðY jÞPnm
j¼1wj

; ðA:5Þ

where

• u(t) = ð~xB=FðtÞ;~xS=BðtÞ;~xH=SðtÞÞ is the list of body displacements as functions of time,
• nm is the number of measured variables to be fit,
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• Yj[u(t), t] is the simulated value of variable j and is a function of the coordination and
(possibly) time,

• bY jðtÞ is the measured value of variable j and is a function of time,
• wj are weights in the error assessment,
• EðY jÞ ¼ ð1=T Þ

R T
0 ðY j½uðtÞ; t� � bY jðtÞÞ2=ðY �

j Þ
2 dt is the weighted error contribution to J0

for the variable Yj, and
• Y �

j is a characteristic value of variable j.

The integrals in J0 are commonly referred to as the ‘‘L2-norms’’ of the dimensionless resid-
uals, ðY j½uðtÞ; t� � bY jðtÞÞ=Y �

j . We use the average boat velocity, peak oar handle force, and
peak-to-peak amplitudes of seat slide, oar angle, and back position as the characteristic
values, Y �

j . We also use equal weights, wj = 1 for all j, in the error assessment. Note thatP
EðY jÞ � 1 if all errors are about as big as the curve magnitudes.
We cannot measure the forces and motions in a continuous manner and the governing

equations cannot be solved exactly. Therefore, we can only obtain an approximation of J0
which we find by evaluating its discretized form in which the Yj are determined by numer-
ical integration of the equations of motion and in which the integrals become summations
of the squares of the residuals over the discrete data points. The new objective function, J,
is then

J 0ðuÞ � JðpÞ ¼
Pnm

j¼1wjEðY jÞPnm
j¼1wj

; ðA:6Þ

where

• p = (p1, . . . ,p3(n�1)+1) is the vector of spline knots defining the coordination and the
oarlock fore-aft positioning,

• N is the number of data points collected for each variable,
• Yij is the simulated value of variable j at time step i,
• bY ij is the measured value of variable j at time step i, and
• EðY jÞ ¼ ð1=NÞ

PN
i¼1ðY ijðpÞ � bY ijÞ2=ðY �

j Þ
2 is the weighted error contribution to J for the

variable Yj.

The overall goal in choosing the form of J is to ensure that the computed error has the
following invariance properties:

(1) If the errors in each curve are the same (i.e.,
P

EðY jÞ is the same for all j) then the
value of J does not depend on how many variables we include in the fit (nm).

(2) For each fitted variable, j, if the residuals are the same for each measurement
(Y ij � bY ij is the same for all i) then the value of J does not depend on how many data
points we have (N).

(3) The value of J does not change if we scale the weights, wj, by a constant.

Although 3n + 1 parameters define the coordination and oarlock fore-aft position, we
only have 3(n � 1) + 1 free parameters in the minimization procedure. The reason for this
reduction from 3n + 1 to 3(n � 1) + 1 parameters is as follows. Since we do not have mea-
surements of the initial leg and back position (xB/F(0) and xS/B(0)) we fix these values to be
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constant, reducing the number of free parameters by 2. We obtain a further reduction by
considering the equation defining the oar angle

s sin h ¼ dL=F þ xH=SðtÞ � xS=BðtÞ � xB=FðtÞ;
¼ dL=F þ xH=Sð0Þ þ ~xH=SðtÞ � xS=Bð0Þ � ~xS=BðtÞ � xB=Fð0Þ � ~xB=FðtÞ; ðA:7Þ

The values of xB/F(0) and xS/B(0) are now fixed but we still have dL/F and xH/S(0) as free
parameters. However, we cannot choose these latter two parameters independently. That
is, if we want the sum of these values to equal 1, there are an infinite number of choices of
(dL/F,xH/S(0)) pairs to make this happen. Therefore, we fix xH/S(0) and allow dL/F to be
free (equivalently, we could fix dL/F and let xH/S(0) be free) giving us 1 less free parameter.
Thus, we have 3(n � 1) parameters defining the body displacements (since the initial posi-
tions are now fixed) and 1 additional parameter defining the oarlock fore-aft positioning.

In Section 4.1, we penalize roughness in the coordination by minimizing J*

J �ðpÞ ¼ ð1� kÞJðpÞ þ k
Z T

0

ð½€xB=FðtÞ�2 þ ½€xS=BðtÞ�2Þdt; ðA:8Þ

where k = 5 · 10�5 determines the relative weight between model error and coordination
roughness.

Using the integration step size h = T/(2 · N) and an arbitrary p, we are able to calculate
J to within an absolute numerical error of 10�8. Because typical values of J are 10�3, J is
calculated with a precision of about 1 part in 10�5.

We find the best fits to the data by searching for the set of parameters, p, that minimize
J. The optimization problem is solved using a quasi-Newton method with a line search.
Gradients of the objective function are computed using forward differencing with a step
size of 10�7 for all variables. A careful investigation of the accuracy of these gradient cal-
culations show that this step size results in relative errors on the order of not more than
10�5 for all derivatives. The Broyden–Fletcher–Goldfarb–Shanno (BFGS) update (out-
lined in Nocedal & Wright (1999)) is used to approximate the Hessian of the objective
function and a quadratic-cubic polynomial line search (also outlined in Nocedal & Wright
(1999)) is implemented to determine an appropriate step in the ‘search direction’, i.e., the
vector given by the inverse (approximate) Hessian multiplied by the gradient of J. The
minimization is terminated when the magnitude of the dot product of the gradient with
the ‘search direction’ vector is less than 50 · 10�8.

A.7. How Jmin varies with n

For each n (number of knots used to define the coordination splines) we find best fits to
the data for fours and singles by picking the values of the knot ordinates describing the body
displacement curves and the oarlock fore-aft positioning that minimize J. All other param-
eters are fixed to their values as given in Table 1. We fit for all of the data (nm = 4 for fours
and nm = 5 for singles) and for only three of the measured variables for fours. We start with
n = 3 and increment n by 1 until we reach n = 10 after which n is incremented by 2 until we
reach n = 30. The initial seed for the n = 3 case is randomly generated. Initial seeds for sub-
sequent values of n are generated by interpolating the resulting coordination patterns from
the previous minimization and using the resulting fore-aft oarlock positioning. Plots of the
logarithm (base 10) of Jmin versus n are shown in Fig. A.2 for both singles and fours using
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Fig. A.2. Plots of Jmin versus the number of knots used in each body position curve using (a) Model 1 and
(b) Model 2 for the oar blade force. Here, we are fitting all of the measured variables.
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both models for the oar blade force. The fits naturally tend to get better as the parameter-
ization grid is refined beyond n = 8. In the case when we only fit three of the measured vari-
ables for fours, the variables we fit are vb, h, and xB/F. We notice in Fig. A.2 that the value of
Jmin is smaller for nm = 3 than it is for nm = 4 for all n. We also notice in this case that Jmin

decreases more rapidly as n is increased. When nm = 3 and we choose n = 50 we should be
able to obtain exact fits to the data since there are 50 data points for eachmeasured variable.
This case is not shown in the plot but we obtain an objective function value of 1.62 · 10�5.
The fact that we do not obtain zero in this case (to within the accuracy of the calculation of
J) is due to the imperfect convergence of the curve-fit optimization.

In the plot of Jmin versus n using Model 1, it appears that Jmin begins to level off at
about n = 16. So we use 16 parameters to define each coordination spline for all sub-
sequent investigations.
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