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MODELLING THE ROWING STROKE IN RACING SHELLS 

Modelling the rowing stroke in racing shells 

MAURICE N. BREARLEY, NEVILLE J. de MESTRE and DONALD 
R. WATSON 

1. Introduction 
In this article we set up a mathematical model to represent the effects of 

the forces which operate during the rowing of racing shells. The analysis is 
conducted in terms of eights, but could apply equally well to fours, pairs and 
double or quad sculls, and even (with obvious verbal changes) to single 
sculls. McMahon [1] as well as McMahon and Bonner [2] have previously 
considered various numbers of rowers in racing shells, and reached 
conclusions suggesting that consideration of an eight is representative of all 
possible combinations of rowers. 

The rowing stroke is divided into two parts: the power stroke, during 
which the blades of the oars are in the water and the rowers pull on the oar 
handles and straighten their legs, thus moving their bodies towards the bow 
on their sliding seats; and the recovery phase, during which the blades are 
clear of the water and the rowers move stem-wards by bending their legs 
and leaning forward. 

The main resistance to the forward motion of a boat is provided by the 
drag of the water. Air resistance plays a much smaller part, in general, and is 
neglected in the analysis. A formula for the drag on the hull of a typical 
racing eight is obtained from experimental data in a Report of the UK 
National Physical Laboratory (Wellicome [3]), and this enables numerical 
results to be obtained for a typical eight. Boat-flexing, pitching and 'fish- 
tailing' are all neglected, their influence being negligible compared with that 
of the forces considered in the analysis. 

Assumptions are made in later Sections about the variation of the forces 
on the oar handles and of the rowers' displacements on their slides. To our 
knowledge only one other author (Millward [4]) has endeavoured to 
construct a mathematical model of rowing. His model ignored any 
movement of the rowers within the boat. The test of any model is how well 
its predictions correspond to observed results in a practical situation; in 
Section 5 the variation of boat speed during a stroke and race duration are 
predicted by our model for an eight in a 2000 m race. 

Graphs are obtained of the variation in boat velocity while accelerating 
from a stationary start and during a full stroke after top speed has been 
reached. The idea of two-phase rowing is introduced, and an analysis of its 
effectiveness is made. 

2. Notation and conventions 
The water on which the boat travels may, of course, be regarded as a 

fixed reference frame. 
A modem racing oar has a mass of only about 2 kg, so the masses of the 
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oars may reasonably be neglected in the analysis. Let 
m = mass of boat (including the cox, if present), 
M = combined mass of rowers, 
t = time from start of power stroke, 
v = velocity of boat at time t, 
f = dv I dt = acceleration of boat at time t, 
r = duration of power stroke, 
2 = duration of recovery phase, 

t' = t - rl = time from start of recovery phase, 
D = drag of the water on the hull. 

In the Appendix it will be shown that for a typical racing-eight hull, 

D = a + bv + cv2, (1) 

where a, b, c, are constants which are calculable from data in Wellicome 
[3]. It will be assumed that this formula remains valid over the whole range 
of boat velocities considered in this analysis of rowing. 

It is important to distinguish the directions of the forces which operate. 
The word 'forward' will be taken to mean the direction in which the boat is 
moving, and 'backward' to mean the opposite direction. 

The word 'rowers' will be used instead of the traditional (and sex- 
discriminatory!) word 'oarsmen'. 

3. The power stroke 
This occurs during the time interval 0 < t < r\. 
The feet of the rowers are strapped to footrests fixed to the hull. During 

the power stroke the rowers straighten their legs and exert a combined 
backward force, Q say, on the footrests and hence on the boat. By Newton's 
Third Law, an equal and opposite force is exerted on the rowers by the 
footrests. These forces are depicted in Figure 1 for a single oar, but the 
forces shown are the combined values for all rowers in the boat. 

- ---> S 

Forward 
direction 

> P 
~~~~~\ ^ ~, Vel. v 

Drag D 

FIGURE 1 Plan view of the power-stroke situation 

390 



MODELLING THE ROWING STROKE IN RACING SHELLS 

In Figure 1, forces acting on the boat itself are drawn with full arrows; 
others are shown as dashed lines. Since force components perpendicular to 
the direction of travel will cancel for each pair of oars on opposite sides of 
the boat, it is sufficient to consider only components parallel to the direction 
of travel. 

The rowers exert a combined forward force R on the oars, and 
experience themselves an equal and opposite backward force. Not being 
forces on the boat, both of these forces are shown dashed in Figure 1. 

The water exerts forces on the blades of the oars, the combined 
component in the forward direction being denoted by S. It is shown dashed 
in the figure since it does not act on the boat. It may be considered as acting 
at the centre of each blade. It has been observed by us that the blades move 
very little through the water during the power stroke; in this model they are 
regarded as fixed fulcrums of the levers formed by the oars. A case can be 
made for allowing for some small motion of the blades through the water by 
taking the fulcrum of each oar to be inboard of the blade itself. Such a 
change would affect some of the numerical work in Section 5 but would not 
alter the basic form of the mathematical model. 

The oars exert forces on the boat at the swivels, their combined 
components in the forward direction being denoted by P in Figure 1. The 
mechanical advantage of the oar-lever system ensures that P > Q. It is the 
combined difference P - Q for all oars that drives the boat forward against 
the drag D of the water during each power stroke. 

As depicted in Figure 1, let 
f = oar length from centre of grip to centre of blade, 
h = distance from centre of grip to swivel. 

By considering moments about the centre of the blade it is seen that 

Rf = P(f - h). 

It follows that 

P - R = (hl/)P, (2) 

and this relationship evidently holds throughout the power stroke, 
irrespective of the angle which the oars make with the boat. 

Oar flexing is ignored in this approach, even though it may modify 
slightly the values of P and f. Its effect on the conclusions will be small. 

Relative to the boat, the rowers begin and end their forward motion with 
zero velocity, and attain smoothly a maximum velocity at about the centre of 
their travel. This relative motion is such that it may reasonably be taken as 
half of a cycle of simple harmonic motion (SHM). This suggests writing the 
relative forward displacement of the rowers from the central point of their 
travel during 0 < t < rI as 

xl = -al cos nit, (3) 
where the forward direction of the boat is taken as positive and 
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al = the amplitude averaged over all rowers of the SHM 
of the centres of mass of the rowers' bodies, 

nl = 7 / rT = the circular frequency of the SHM. 

The forward acceleration of the rowers relative to the boat is x1, and 
relative to the water is xl + f. The equation of motion of the rowers in the 
forward direction is therefore 

Q - R = M(xli + f) = M nl2al cosnit + dv. 

The equation of motion of the boat is 

dv 
P - Q - D = m-. 

dt 

Adding these two equations and using (2) produces 

(m + M) d = -hP - Mnl2al cosnlt - D. 
dt # 

The force P begins and ends with small magnitudes in 0 < t < T1, and 
attains smoothly a maximum near the centre of this interval (Mason et al 
[5]). The salient features of P will be adequately represented in a 
mathematically tractable way by taking 

h 
-P = Pm sin n t, (4) 

where nl = z / T1 as before, and Pm is the maximum value of (h / f) P. 

The previous differential equation then becomes, by virtue of (1), 

(m + M) d = Pm sin nt - Mnl2al cosnit - a - bv - cv2. 
dt 

This power-stroke equation may also be written as 

dv 2 
- = K sin nit + K2 cosnit + A + Bv + Cv2, (5) 
dt 

where 0 < t < rT, nl = zr/r1, and 

Pm -Mn12a, 
K1 = , K2 = a (6a,b) 

m+M' m+M 

-a -b -c 
A = , B M= C = . (7a,b,c) 

m+ M m+M m+ M 

4. The recovery phase 
This occurs during the time interval T\ < t < TI + T2, or 0 < t' < T2 

where t' = t - T1. 

During the recovery the rowers bend their legs to draw themselves on 
their sliding seats towards the stern of the boat. The combined force F on the 
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rowers which produces their motion is shown dashed in Figure 2, and the 
equal and opposite force F on the footrests is shown as a full arrow because 
it is a force on the boat. Just as for Figure 1, it is enough to illustrate the 
situation for a single oar. 

Forward 
direction 

Drag D 

/ \\ ^YVel. v 

D 'F F""" 13 ) Accn. f F F 

FIGURE 2 Plan view of the recovery-phase situation. 

During the first half of the recovery phase the directions of the forces F 
are as shown in Figure 2, and the boat accelerates in the forward direction. 
For the second half of the recovery the forces F and the boat's acceleration 
reverse their directions, and this will shortly be seen analytically. 

During the recovery phase the positions occupied by the rowers' bodies 
are very similar to those during the power stroke, but assumed of course in 
the opposite direction and over a different time span r2. The relative 
forward displacement of the rowers from the central point of their travel 
during 0 < t' < r2 may thus be taken as 

x2 = a1 cosn2t', (8) 

where the amplitude a1 is the same as in equation (3), and n2 = r /r2 = 

the circular frequency of the SHM. 
The forward acceleration of the rowers relative to the boat is x2, and 

relative to the water is X2 + f. The forward equation of motion of the rowers 
is therefore 

-F = M(2 + f) = M(-n2 al cosn2t' + d) 

The equation of motion of the boat is 

dv 
F-D=m-. 

On adding the last two equations and using (1) it is seen that 

(m + M)- = Mn22al cosn2t' - a - bv - cv2. 
dt' 

Dropping the dash from t' (for convenience only), this recovery phase 
equation may also be written as 
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dv - K3 cosn2t + A + Bv + Cv2, (9) 
dt 

where 0 < t < r2, n2 = 7r/I2, and 

K3 Mna (10) 

with A, B, C given by (7 a,b,c). 

5. A particular numerical example 
To apply the foregoing theory to a particular case, a racing eight will be 

considered. The constants a, b, c in equation (1) are known for such a boat 
from work done in the Appendix. It is shown there that the drag on the hull 
(in newtons) is given by 

D = 24.93 - 11.22v + 13.05v2, 
where the boat speed v is in m/s. The values of the constants in (1) in SI 
units are therefore 

a = 24.93, b = -11.22, c = 13.05. 

A video of an Australian Olympic eight in action over a 2000-metre 
course enabled estimates to be made of the power-stroke and recovery 
durations, and it was decided to take 1l = 0.7 s, r2 = 0.9 s. Of course in 
a race the durations would vary, but for purposes of calculation they are 
taken as constant. The time for a complete stroke is 1.6 s, which corresponds 
to a stroke rate of 37.5 per minute. 

The amplitude a1 of the motion of the centres of mass of the rowers' 
bodies is estimated to be 0.36 m. 

The mass of the boat plus cox, and the combined masses of the eight 
rowers are taken to be respectively m = 146 kg, M = 680 kg. 

Measurements of the force exerted by rowers while using a rowing 
ergometer yielded an average maximum value of 447.4 N. This is not meant 
to imply that this force is known to within 0.1 N, but that this number of 
significant figures is needed to ensure that the results of subsequent 
calculations are sufficiently accurate. This force estimate lies within the 
range obtained by Mason et al [5]. For all eight rowers combined, the value 
of the force R in Figure 1 is then 3579 N. Equations (2) and (4) show that 

Pm = [(t/h) - 1] x maxR, 

where f and h are the lengths depicted in Figure 1. If the estimates 
f = 3.40 m and h = 1.02 m are used, then 

Pm = 0.4286 x 3579 = 1534 N, 
and this is the value that is used in (6a) to calculate the value of the constant 
K1. 

In the power-stroke differential equation 
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d = K1 sinnlt + K2 cos nlt + A + Bv + Cv2, (5) 
dt 

the relevant domain is 0 < t < 0.7, and nl = zr/0.7 rad/s. The values of 
the other constants in (6 a,b) and (7 a,b,c,) are found to be (in S.I. units) 

K1 = 1.8577, K2 = -5.9695, 

A = -0.030182, B = 0.013584, C = -0.015799. 

In the recovery-phase equation 
dv 
- = K3 cosn2t + A + Bv + Cv2, (9) 
dt 

the domain is 0 < t < 0.9, and n2 = 7r/0.9 rad/s. The values of A, B, C 
are as listed above, and K3 = 3.6112. 

Equations (5) and (9) are not very amenable to analytical solution. A 
computer was therefore used to solve them numerically, using the Runge- 
Kutta method. To investigate the acceleration of the boat from a stationary 
start it was assumed that (5) and (9) applied from the outset, and the 
following iterative procedure was used. 

An initial velocity of v = v0ol = 0 was used, and (5) was solved to find 
the velocity v = vll at t = 0.7, the end of the first power-stroke. This 
value vll was used as a starting value with the recovery equation (9), which 
was then solved numerically to yield the velocity v = v21 at t = 0.9, the 
end of the first complete stroke. The whole procedure was then repeated, 
using in (5) the new initial velocity v02 = v21 and arriving at a new value 
for v22 at the end of the second complete stroke. The iteration was continued 
until the value v2n was repeated to sufficient accuracy after successive 
strokes, showing that the boat had reached a 'steady state'. 

The distance travelled by the boat during each stroke was calculated by 
numerical integration of the velocity, from which the mean boat velocity v 
during each stroke was found by dividing the distance by the stroke duration 
of 1.6 seconds. Because the velocity varies greatly during a stroke, v is a 
more suitable quantity to plot as a function of time than the instantaneous 

v 7- 
(m/s), 

FIGURE 3 Mean boat velocity v versus time t during acceleration 
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velocity. Figure 3 was formed by drawing a smooth curve through the points 
(t, v), where t is the time from the start to the middle of the stroke to which 
the v value refers.Figure 3 shows that the boat reaches a constant mean 
speed after about 40 seconds, which corresponds to 25 complete strokes. 

The computer solution was also used to find the boat velocity at 0.1 
second intervals throughout a complete stroke after the 'steady state' had 
been achieved. Figure 4 was formed by drawing a smooth curve through the 
resulting points (t, v). 

v 8- 
(m/s) 

6- 

4- 

3- 

2 i I , I i , , 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 
t (s) 

FIGURE 4 Boat velocity v during one stroke in the 'steady state' situation 

Figure 4 shows that the boat speed drops to below 4.6 m/s near the 
middle of the power stroke, and that it reaches nearly 7 m/s near the middle 
of the recovery phase. This speed variation is mainly the result of the forces 
exerted by the rowers on their footrests; during the power stroke they are 
driving the boat back against its predominantly forward motion, and during 
the recovery phase they are dragging the boat forward and augmenting its 
velocity. From a dynamical viewpoint one would say that there is an 
exchange of momentum between the rowers and the boat, with the motion of 
their combined centre of mass being much more uniform than the motion of 
either component. 

The distance travelled by the boat during one 'steady state' stroke was 
also calculated and found to be 9.488 m, which corresponds to a mean 
velocity v of 5.93 m/s. 

The time taken for the eight to row the 2000 m course can now be 
calculated. During the acceleration phase of 40 seconds duration, the 
distance travelled by the boat was found from the computer solution to be 
200.7 m. The time taken to cover the remaining 1799.3 m at the mean 
'steady' speed of 5.93 m/s is 303 s, making the total race time 5 m 43 s. This 
would be a reasonable time for an Olympic eight, and a very good time for a 
club crew. It suggests that the value taken for the maximum force exerted by 
each rower was a reasonable one. 

The principles used in the foregoing example of a racing eight would 
apply equally well to fours and pairs, and even to double, quad and single 
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sculls, provided the obvious modifications were made for the numbers of 
rowers and oars involved, and for the mass and drag of the hull. 

6. Two-phase rowing 
The variation in boat speed during a complete stroke causes the water 

resistance to be greater than it would be if the speed were constant. One way 
of achieving a more uniform speed is to have the rowers operating out of 
phase with each other. It is not feasible to have all rowers with different 
phases for several reasons, including the extra boat length that would be 
needed to permit such an arrangement. It is, however, quite practicable to 
have two groups of rowers which are exactly out of phase with each other. 
In the case of an eight, a group of four at the bow end could row in unison 
and exactly out of phase with a group of four at the stem end. Calculations 
show that an extra space of 2m between numbers 4 and 5 is sufficient to 
avoid a clash between these rowers, and between the oars of 3 and 5, and of 
4 and 6. It will be assumed that the drag D of the boat is unchanged by this 
modification. 

An analysis will be made of the effect of such a two-phase arrangement 
for an eight, on the assumption that the two groups are equally matched as 
regards their mass, strength and rowing efficiency, and using the same 
durations for the recovery phase and power stroke as for the single-phase 
case considered earlier. 

Figure 5 shows schematically the relationships between the recovery and 
power strokes for the Bow Four and Stem Four over a complete cycle. The 
terms Up and Down refer to the blades of the oars being out of the water 
during the recovery and in the water during the power stroke. Clearly it will 
be sufficient to analyse the situation for half a cycle, such as that 
corresponding to the period 0 < t < 0.8 depicted in the figure. 

Up 
BOW FOUR 

Down -D 

p Down STERN ]FOUR L 

Time 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 

FIGURE 5 Two-phase rowing arrangement for an eight 

The notation employed in the single-phase case will again be used. In the 
two-phase case the combined mass of each group of four rowers will be 
taken as IM, and in Figures 1 and 2 the forces shown will all be halved 
when applied to each group. 

From Figure 5 it is clear that the intervals 0 < t < 0.7 and 
0.7 < t < 0.8 must be considered separately. 

(i) The period 0 < t < 0.7 
For the Bow Four, this period begins 0.1 seconds after the start of their 
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recovery phase. The equation corresponding to (8) which gives the relative 
forward displacements of the Bow Four from their central position is 

X2 = al cosn2(t + 0.1), 

where t is used instead of t'. 
For the Bow Four, instead of F in Figure 2, let F1 denote the 

corresponding combined force of these four rowers. Their forward equation 
of motion is therefore 

-Fl = 2M x2 +f) = ?M[n22a, cosn2(t + 0.1) + dj). (11) 2 2M dti ( 
For the Stem Four, Figure 5 shows that the interval 0 < t < 0.7 

corresponds to a complete power stroke. The relative forward displacements 
of these four rowers from their central position is again given by equation 
(3). 

For the Stem Four, instead of P, Q, R in Figure 1, let PI, Ql, RI denote 
the corresponding combined forces for these four rowers. Their forward 
equation of motion is then 

Ql - RI = ?M(xl + f) = M[ -ni2ai cosnit + dv. (12) 

The equation of motion of the boat is 
dv 

F, + Pi - QI - D = m-. (13) 
dt 

Adding equations (11), (12), (13) leads to 

(m + M) = P1 - R1 + Mal [n22 cosn2(t + 0.1) - ncosn1t] -D. 
dt 

Exactly as in equation (2) it is seen that 

h 
PI - Ri = IPI (14) 

and, as in equation (4), 
h 
-P1 = Plm sin nt (15) 

by the same logic as before. Since only four rowers are in power-stroke 
action when it occurs, it is clear that 

Pm = 2. (16) 

It is assumed that the drag D on the boat is still given by (1) with the 
values of a, b, c unchanged. 

On using (1), (14), (15) and (16) the power-stroke differential equation 
above becomes 

(m+ M)d = P sinn t + Ma [n22cosn2(t +0.1) -ncosntt] 

-a - bv - cv2. 
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This may also be written as 

dt = iK1 sinnit + K2 cosnlt + K3 cosn2(t + 0.1) + A + Bv + Cv2, (17) 
dt 

where 0 < t < 0.7, nl = / 0.7, n2 = lr/0.9, K1, K2 are given by (6 a,b), 
K3 is given by (10), and A, B, C are given by (7 a,b,c). 

(ii) The period 0.7 < t < 0.8. 
Figure 5 shows that during this brief period both groups of rowers are in 

recovery mode. For the Bow Four, equation (11) shows that the force 
corresponding to F in Figure 2 is 

F1 = 2M n2 a cosn2(t + 0.1) - dvi. (18) 

This equation is valid for -0.1 < t < 0.8, which includes the period now 
being considered. From Figure 5 it can be seen that the recovery period 
0.7 < t < 0.8 for the Stem Four is precisely the same as the recovery 
period -0.1 < t < 0 for the Bow Four. If F2 denotes the combined force 
for the Stem Four that corresponds to F in Figure 2, it follows from (18) that 

F2 = 2M n2 al cosn2(t - 0.7) - dv. 

The sum of these forces on the boat is 

F1 + F2 = 2Mn22al[cosn2(t + 0.1) + cosn2(t - 0.7)] - M dv 
dt 

2 dv = Mn22al cosn2(t - 0.3) cos (0.4n2) - M-. (19) 
dt 

The forward equation of the motion of the boat is 

F1 + F2 - D = md-, 
dt 

which, by virtue of (1) and (19), becomes 

(m + M) d = Mn22al cos(0.4n2)coson2 (t - 0.3) - a - bv - cv2. 
dt 

This may also be written as 

dv 
= K4 cos n2(t - 0.3) + A + Bv + Cv2, (20) 

dt 
where 0.7 < t < 0.8, A, B, C are given by (7 a,b,c) and 

Mn22a, cos (0.4n2) 
K4 

Mn22a cos (0 = = 
K3 cos (0.4n2) (21) 

m + M 
For computational purposes it is more convenient to introduce 

t' = t - 0.7, so that the interval to be considered is 0 < t' < 0.1. Then 
(21) becomes 

dv = K4 cosn2(t' + 0.4) + A + Bv + Cv2. (22) dt' 
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In practice the dash may be dropped from t' in (22), it being remembered 
that then0 < t < 0.1. 

7. Comparison of conventional and two-phase rowing 
To compare the effectiveness of the two modes of rowing in an eight, the 

particular example discussed in Section 5 was used. The relevant two-phase 
equations of Section 6 are: 

-= K1 sinnit + ?K2cosnlt + ?K3cosn2(t + 0.1) +A + Bv + Cv2, (17) 
dt 

where 0 < t < 0.7,nh = /0.7, n2 = zr/0.9,and 

?Ki = 0.92887, \K2 = -2.9847, 'K3 = 1.8056, 

A = -0.030182, B = 0.013584, C = -0.015799; 
and 

dv 
d- = K4 cosn2(t + 0.4) + A + Bv + Cv2, (22) 

where 0 < t < 0.1, n2 = :r/0.9, K4 = K3 cos(0.4n2) = 0.62707, and 
A, B, C have the values listed above. 

These equations were solved with the aid of a computer in the same way 
as that described in Section 5 for the single-phase case. To investigate the 
acceleration of the boat from a stationary start, the same iterative procedure 
was used with (17) and (22) as was done with (5) and (9). The distance 
travelled by the boat during each time interval of 1.6 seconds was found as 
before by numerical integration of the velocity, and the mean velocity v 
during each of these intervals was found by dividing the distance by 1.6. 
The acceleration of the boat from rest was found just as for the single-phase 
case, and is depicted by the dashed curve in Figure 6. To enable the 

- 7- 

(m/s) 

5- 

4- / 

3- / 

/7 2- / 

0 4 8 1 2 16 20 24 28 32 36 40 
t (s) 

FIGURE 6 Comparison of boat velocity v for single-phase and two-phase rowing 
during acceleration 

single-phase; ------- two-phase 
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accelerations in the two modes to be compared, the single-phase curve of 
Figure 3 is repeated in Figure 6 as a full line. 

Figure 6 shows that if two-phase rowing is used from the start it will take 
about 19 seconds (or 12 complete strokes) to overtake the single-phase 
performance, and that thereafter a two-phase boat would be travelling faster. 
The figure also shows that the acceleration for single-phase rowing is 
greater than that for two-phase only during the first complete stroke, 
thereafter it is smaller. Clearly it would theoretically be better to switch 
from single to two-phase after the first complete stroke; but in practice it 
would probably be better to continue with single-phase for a few more 
strokes to get the boat well under way before switching to two-phase 
rowing. 

The velocity of the boat throughout a complete stroke in the 'steady 
state' was found just as for the single-phase case, and is shown as a dashed 
curve in Figure 7. For comparison purposes the single-phase velocity curve 
of Figure 4 is reproduced as a full line in Figure 7. 

Figure 7 shows that the variation in boat velocity throughout the stroke is 
much less for two-phase rowing than for single-phase, varying between 
about 5.8 m/s and 6.2 m/s. It is this property which is responsible for the 
improved performance obtainable from two-phase rowing, for the drag D of 
the water is least when the variation in boat velocity is smallest. 

The distance travelled by the boat during one complete two-phase 
'steady-state' stroke was calculated and found to be 9.588 m, which 
corresponds to a mean velocity v of 5.99 m/s. 

v 8 - 
(m/s) 

7- 

6>-._ _,-"- - 

5- 

4 - 

3 - 

2 , 
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 

t(s) 

FIGURE 7 Comparison of boat velocity v for single-phase and two-phase rowing 
in the 'steady state' 

single-phase; ------- two-phase 

One can now calculate the improvement in terms of boat lengths in a 
2000-metre race for eights which would come from using two-phase instead 
of single-phase rowing. For simplicity, the small gain achievable during the 
acceleration in the early stages of the race will be ignored. The 'steady state' 
was found to be reached by single-phase rowing after 200.7 m, leaving 
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1799.3 m still to be travelled. The distance travelled per stroke at that stage 
was 9.49 m for single-phase and 9.59 m for two-phase. The two-phase boat 
would cover the 1799.3 m in 1799.3/9.59 = 187.6 strokes, during which 
time the single-phase boat would have travelled 187.6 x 9.49 = 1781 m, 
leaving it about 18 m behind the two-phase boat. Taking the boat length to 
be 17 m, the gain resulting from using two-phase rowing would be just over 
one boat length in a 2000-metre race. 

8. Conclusions 
A mathematical model was set up to represent the rowing stroke in a 

racing shell. An eight was used for the numerical work, but the principles 
involved apply also to fours and pairs and to single, double and quad sculls. 
The validity of the model is verified by its success in predicting 
quantitatively the familiar variation in boat speed during a stroke. The 
reason for this speed variation is revealed precisely by the model. 

The concept of two-phase rowing was introduced, and the mathematical 
analysis of it showed that its use could lead to a gain of just over one length 
for an eight in a 2000 m race assuming that it caused no change in the drag 
on the boat. Although attention was confined to its effect in an eight, two- 
phase rowing could also be used in fours and in double and quad sculls, the 
changes required in these other cases being obvious. 
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FIGURE 8 Hull resistance in lb wt versus speed in ft/sec for a typical racing 
eight hull (reproduced from Wellicome (1967) by permission of British Maritime 

Technology Limited). 

Appendix 
The formula for the resistance of a racing shell 

Wellicome [3] describes resistance measurements made on racing eight 
hulls in a water tank at the Ship Division of the National Physical 
Laboratory. The results of one set of experiments are shown in Figure 8, 
reproduced unchanged from the above Reference. 

The method of least squares was used to fit a quadratic velocity equation 
to the drag curve of Figure 8. In terms of the units used in that Figure the 
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fitted equation is 

D = 5.6027 - 0.7685V + 0.2725V2 lb wt, 

where V is the boat speed in ft/s. In S.I. units this is 

D = 24.93 - 11.22v + 13.05v2 N, 

where v is in m/s. This is the origin of the equation stated near the beginning 
of Section 5. 
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