

Trajectory Generation (2/2)

Task Space Versus Joint Space - Interpolations

Task Space Schemes

General Discussion

Task Space Versus Joint Space - Interpolations

Join Space Versus Task Space – Comparison

Parameter	Joint Space	Task Space
Interpolation Space intermediate points along the trajectory	Joint Space	Task Space
Tool Trajectory Type / Length	Curved Line / Long	Straight Lines / Short
Invers Kinematics (IK) Usage	Low	High
Computation Expense (IK)	Low (IK for Start/Finish & Via Points)	High (IK for every single point / time steo on the trajectory)
Passing through Via Points	No (Correction by establishing Pseudo Points)	Yes
Via Points Defined in the Task Space	No	Yes
Path Dependency on a Specific Manipulator	Yes	No

Trajectory Generation – Roadmap Diagram

UCLA

Task Space Scheme – Problem Definition Position / Orientation Problem

- General Approach (continue)
 - Every point along the path is defined by position and orientation of the end effector

- End Effector Position Vector Easy interpolation
- End Effector Ordination Matrix Impossible to interpolate (interpolating the individual elements of the matrix violate the requirements that all column of the matrix must be orthogonal)

Task Space Scheme – Problem Definition Orientation Problem

Task Space Scheme – Problem Definition Position / Orientation Problem – Trapezoid Velocity

- Joint Space Schemes
 - Advantages -
 - Path go through all the via and goal points
 - Points can be specified by Cartesian frames.
 - Disadvantages -
 - End effector moves along a curved line (not a straight line shortest distance).
 - Path depends on the particular joint kinematics of the manipulator

- Cartesian Space Scheme
 - Advantage
 - Most common path is straight line (shortest). Other shapes can also be used.
 - Disadvantage
 - Computationally expansive to execute At run time the inverse kinematics needs to be solved at path update rate (60-2000 Hz)

- **General Approach** Define the path (in the Cartesian space) as
 - straight lines (linear functions)
 - Parabolic lines (blends)

- General Approach (continue)
 - Every point along the path is defined by position and orientation of the end effector

- End Effector Position Vector Easy interpolation
- End Effector Ordination Matrix Impossible to interpolate (interpolating the individual elements of the matrix violate the requirements that all column of the matrix must be orthogonal)

Task Space Scheme – Problem Definition Orientation Problem - Equivalent Angle – Axis Representation

- Start with the frame coincident with a know frame {A}; then rotate frame {B} about a vector ${}^{A}\hat{K}$ by an angle θ according to the right hand rule.
- Equivalent Angle Axis Representation

 $^{A}_{B}R(\hat{K},\theta)$ or $R_{K}(\theta)$

- Vector ${}^{A}\hat{K}$ is called the equivalent axis of a finite rotation.
- The specification of ${}^{A}\hat{K}$ requires two parameters since it length is always 1.
- The angle specify the third parameter

Task Space Scheme – Problem Definition Orientation Problem - Equivalent Angle – Axis Representation

• **Conversion 1** - Conversion for single angle axis representation to rotation matrix representation

$$R_{K}(\theta) = \begin{bmatrix} k_{x}k_{x}\nu\theta + c\theta & k_{x}k_{y}\nu\theta - k_{z}s\theta & k_{x}k_{z}\nu\theta + k_{y}s\theta \\ k_{x}k_{y}\nu\theta + k_{z}s\theta & k_{y}k_{y}\nu\theta + c\theta & k_{y}k_{z}\nu\theta - k_{x}s\theta \\ k_{x}k_{z}\nu\theta - k_{y}s\theta & k_{y}k_{z}\nu\theta - k_{x}s\theta & k_{z}k_{z}\nu\theta + c\theta \end{bmatrix} \qquad c\theta = \cos\theta$$

$$s\theta = \sin\theta$$

$$v\theta = 1 - \cos\theta$$

• **Conversion 2** – Compute ${}^{A}\hat{K}$ and θ given a rotation a matrix

$$R_{K}(\theta) = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \qquad \qquad \theta = \cos^{-1} \left(\frac{r_{11} + r_{22} + r_{33} - 1}{2} \right)$$
$$\hat{K} = \frac{1}{2\sin\theta} \begin{bmatrix} r_{32} - r_{23} \\ r_{13} - r_{31} \\ r_{21} - r_{12} \end{bmatrix}$$

Task Space Scheme – Problem Definition Position / Orientation Problem - Equivalent Angle – Axis Representation

- Combining the angle-axis representation of orientation with the 3x1 Cartesian position representation we have a 6x1 representation of Cartesian position and orientation.
- Consider a via point specified relative to a station point frame as ${}^{S}_{A}T$

$${}^{S}_{A}T = \begin{bmatrix} {}^{S}_{A}R & {}^{S}P_{AORG} \\ \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Frame {A} specifies a via point
 - Position of the end effector given by ${}^{S}P_{AORG}$
 - Orientation of the end effector given by $\int_{A}^{S} R$

Task Space Scheme – Problem Definition Position / Orientation Problem - Equivalent Angle – Axis Representation

• Convert the rotation matrix into an angle axis representation

$${}^{S}_{A}R = ROT({}^{S}\hat{K}_{A}, \theta_{SA}) = {}^{S}K_{A}$$

• Use the symbol χ to represent 6x1 position and orientation

$${}^{S}\chi_{A} = \begin{bmatrix} {}^{S}P_{AORG} \\ {}^{S}K_{A} \end{bmatrix}$$

• Where ${}^{S}K_{A}$ is formed by scaling the unite vector ${}^{S}\hat{K}_{A}$ by the amount of rotation θ_{SA}

• Process - For a given trajectory we describe a spline function that smoothly vary these six quantities from path point to path point as a function of time.

$${}^{s}\chi_{A} = \begin{bmatrix} {}^{s}P_{AORG} \\ {}^{s}K_{A} \end{bmatrix}$$

- Linear Spline with parabolic bland
 - Path shape between via points will be linear
 - When via points are passed, the linear and angular velocity of the end effector are changed smoothly

Task Space Scheme – Cartesian Straight Line

• **Complication –** The angle-axis representation is not unique

$$({}^{S}\hat{K}_{B},\theta_{SB}) = ({}^{S}\hat{K}_{B},\theta_{SB} \pm n360)$$

 In going from via point {A} to a via point {B}, the total amount of rotation should be minimized

• Choose
$${}^{S}\hat{K}_{B}$$
 such that

$$\min \left| {}^{s} \hat{K}_{B} - {}^{s} \hat{K}_{A} \right|$$

Task Space Scheme – Cartesian Straight Line

- The splines are composed of linear and parabolic blend section
- Constrain
 - The transition between the linear segment and the parabolic segment for all the DOF must take place at the same time.

 ${}^{S}\chi_{A} = \begin{bmatrix} {}^{S}P_{AORG} \\ {}^{S}K_{A} \end{bmatrix} \qquad {}^{S}\chi_{B} = \begin{bmatrix} {}^{S}P_{BORG} \\ {}^{S}K_{B} \end{bmatrix}$

Path Generation & Run Time – Summary

Joint Space

Path Generation & Run Time – Summary

Task Space

Task Generation at Run Time – Task/Joint Space Mapping

Mapping
$$\vec{X}, \vec{X}, \vec{X}$$
 from the task space to the joint space
Option 1 - Time derivative one done at the task space
 $\vec{A} = \vec{J}^{-1} \vec{X} \cdot \vec{J}^{-1} \vec{J} \cdot \vec{A}$
 $\vec{A} = \vec{J}^{-1} \cdot \vec{X}$
 $\vec{A} = \vec{J}^{-1} \cdot \vec{X}$
 $\vec{A} = \vec{J} \cdot \vec{A}$
 $\vec{X} = \vec{J} \cdot \vec{A}$
 $\vec{A} = \vec{J} \cdot \vec{A}$

Task Generation at Run Time – Task/Joint Space Mapping

Task Space Schemes

Geometric Problems with Paths in Task Space

Geometric Problems – Cartesian Paths

- Problem Type 1 Unreachable Intermediate Points
- The initial and the final point are in the reachable workspace however some point along the path may be out of the workspace.

Solution

- Joint space path unreachable
- Cartesian straight Path reachable

Geometric Problems – Cartesian Paths

- Problem Type 2 High Joint Rate Near Singularity.
- In singularity the velocity of one or more joint approach infinity.
- The velocity of the mechanism are upper bounded, approaching singularity results in the manipulator's deviation form the desired path.
- Solution
 - Slow down the velocity such that all the joint velocities will remain in their bounded velocities

Geometric Problems – Cartesian Paths

- Problem Type 3 Start and Goal reachable in different solutions
- Joint limits may restrict the number of solutions that the manipulator may use given a goal point.
- Solution
 - Switch between joint space (default) and Cartesian space trajectories (used only if needed)

