Trajectory Generation (2/2)
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Task Space Schemes

General Discussion
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Join Space Versus Task Space — Comparison

Joint Space Task Space

Interpolation Space Joint Space Task Space
intermediate points along the trajectory

Tool Trajectory Type / Length Curved Line / Long Straight Lines / Short
Invers Kinematics (IK) Usage Low High
Computation Expense (1K) Low High
(IK for Start/Finish & Via Points ) (IK for every single point / time steo on the trajectory)
Passing through Via Points No Yes
(Correction by establishing Pseudo Points)
Via Points Defined in the Task Space No Yes
Path Dependency on a Specific Manipulator Yes No

Instructor: Jacob Rosen UCLA
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Trajectory Generation — Roadmap Diagram
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Task Space Scheme — Problem Definition
Position / Orientation Problem

 General Approach (continue)
— Every point along the path is defined by position and orientation of the end
effector

(T}

(S}
(B)

— End Effector Position — Vector — Easy interpolation

— End Effector Ordination — Matrix — Impossible to interpolate (interpolating
the individual elements of the matrix violate the requirements that all column
of the matrix must be orthogonal)

Instructor: Jacob Rosen UCLA
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Task Space Scheme — Problem Definition
Orientation Problem
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Task Space Scheme — Problem Definition
Position / Orientation Problem — Trapezoid Velocity

Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Cartesian Space Schemes — Introduction

« Joint Space Schemes
— Advantages —
« Path go through all the via and goal points
» Points can be specified by Cartesian frames.

— Disadvantages -

« End effector moves along a curved line (not a straight line - shortest
distance).

« Path depends on the particular joint kinematics of the manipulator

Instructor: Jacob Rosen UCLA
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Cartesian Space Schemes — Introduction

« Cartesian Space Scheme
— Advantage

« Most common path is straight line (shortest). Other shapes can also be
used.

— Disadvantage

« Computationally expansive to execute — At run time the inverse
kinematics needs to be solved at path update rate (60-2000 Hz)

Instructor: Jacob Rosen UCLA
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Cartesian Space Scheme — Cartesian Straight Line

« General Approach - Define the path (in the Cartesian space) as
— straight lines (linear functions)
— Parabolic lines (blends)

Instructor: Jacob Rosen UCLA
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Cartesian Space Scheme — Cartesian Straight Line

 General Approach (continue)
— Every point along the path is defined by position and orientation of the end
effector

(T}

(S}
(B)

— End Effector Position — Vector — Easy interpolation

— End Effector Ordination — Matrix — Impossible to interpolate (interpolating
the individual elements of the matrix violate the requirements that all column
of the matrix must be orthogonal)

Instructor: Jacob Rosen UCLA
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Task Space Scheme — Problem Definition
Orientation Problem - Equivalent Angle — Axis Representation

« Start with the frame coincident with a know
frame {A}, then rotate frame {B} about a
vector AK by anangle g according to the
right hand rule. (B}

« Equivalent Angle — Axis Representation

“R(K,0) or R ()

. Vector K is called the equivalent axis of a
finite rotation.

« The specification of AK requires two X
parameters since it length is always 1.

«  The angle specify the third parameter

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Task Space Scheme — Problem Definition

Orientation Problem - Equivalent Angle — Axis Representation

« Conversion 1 - Conversion for single angle axis representation to rotation matrix
representation

| kkvo+co  kkvo-k,s0 kkvo+kso O =cosd

RK (9) -

kkvo+k,sé kkyvo+co

k.k,v@—-k,;s6 kkyvo—kso

kykzvﬁ—kxsé’ s@d =sin@
k,k,vo+cé vl =1-—cosf

« Conversion 2 — Compute AK and @ given a rotation a matrix

I Iy I K _

2sin@

i i 6 = cosl(

Re(0)=| Ty Ty Ty _r
23

r13 o r31

Iy — 1y ]

r11 + rzz + r33 -1
2
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Task Space Scheme — Problem Definition
Position / Orientation Problem - Equivalent Angle — Axis Representation

« Combining the angle-axis representation of orientation with the 3x1 Cartesian
position representation we have a 6x1 representation of Cartesian position and
orientation.

« Consider a via point specified relative to a station point frame as iT

T -

— Frame {A} specifies a via point
- Position of the end effector given by ° Paorc
« Orientation of the end effector given by /fR

Instructor: Jacob Rosen UCLA
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Task Space Scheme — Problem Definition
Position / Orientation Problem - Equivalent Angle — Axis Representation

« Convert the rotation matrix into an angle axis representation
SR=ROT (°K,,0.,) = °K
A A1 ¥ SA A
« Use the symbol ¥ to represent 6x1 position and orientation
S
SZ — I:)AORG
A S KA

«  Where SKA is formed by scaling the unite vector ° KA by the amount of
rotation O,

Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Task Space Scheme — Cartesian Straight Line

 Process - For a given trajectory we describe a spline function that smoothly vary
these six quantities from path point to path point as a function of time.

°P
S . AORG
ZA |: SKA

* Linear Spline with parabolic bland
— Path shape between via points will be linear

— When via points are passed, the linear and angular velocity of the end
effector are changed smoothly

Instructor: Jacob Rosen UCLA
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Task Space Scheme — Cartesian Straight Line

« Complication — The angle-axis
representation is not unique

(°Kg,0s) =CK,, O £n360)

* In going from via point {A} to a via
point {B}, the total amount of rotation
should be minimized

« Choose SKB such that

N

min‘SKB—SKA

Instructor: Jacob Rosen UCLA

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Task Space Scheme — Cartesian Straight Line

* The splines are composed of linear
and parabolic blend section

« Constrain

— The transition between the linear
segment and the parabolic
segment for all the DOF must
take place at the same time.

S S
S I:)AORG S _ I:)BORG

ZA: SK
A

Instructor: Jacob Rosen UCLA
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Path Generation & Run Time — Summary

Joint Space

Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Task Generation at Run Time — Join Space
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Task Generation at Run Time — Join Space

Alz/\\eﬂlf

= & s s
{ i< I Las\) e J T Cowv—

tle Fe\{v[u vse e !f;.\‘()“(a é‘ 6'}
and reyet 4o Lol at the

end ot the lo blendiny

Instructor: Jacob Rosen

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA

UCLA



Task Generation at Run Time — Join Space
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Task Generation at Run Time — Join Space
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Task Generation at Run Time — Join Space
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Path Generation & Run Time — Summary

Task Space

Instructor: Jacob Rosen
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Task Generation at Run Time — Task Space
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Task Generation at Run Time — Task Space
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Task Generation at Run Time — Task Space
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Task Generation at Run Time — Task Space
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Task Generation at Run Time — Task/Joint Space Mapping
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Task Generation at Run Time — Task/Joint Space Mapping
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Task Space Schemes

Geometric Problems with Paths in Task Space




Geometric Problems — Cartesian Paths

 Problem Type 1 — Unreachable Intermediate
Points

« The initial and the final point are in the reachable
workspace however some point along the path
may be out of the workspace.

« Solution
— Joint space path — unreachable
— Cartesian straight Path — reachable

Instructor: Jacob Rosen UCLA
Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Geometric Problems — Cartesian Paths

« Problem Type 2 — High Joint Rate Near
Singularity.

* In singularity the velocity of one or more joint
approach infinity.

« The velocity of the mechanism are upper bounded,
approaching singularity results in the manipulator’s
deviation form the desired path.

 Solution

— Slow down the velocity such that all the joint
velocities will remain in their bounded
velocities

Instructor: Jacob Rosen UCLA

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Geometric Problems — Cartesian Paths

« Problem Type 3 — Start and Goal reachable in
different solutions

« Joint limits may restrict the number of solutions that
the manipulator may use given a goal point.

« Solution
— Switch between joint space (default) and

Cartesian space trajectories (used only if S S S S S g

needed)

Instructor: Jacob Rosen UCLA

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



