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Jacobian Methods of Derivation & the 

Corresponding Reference Frame   – Summary 
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Propagation to the Tip of the Tool 

Problem Defenition 

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Propagation to the Tip of the Tool – Problem Definition  

• Problem

– Practical Configuration of a robotic arm  - The robotic arm typically includes the 

following 

• F/T Sensor 

• Gripper / End Effector 

• Tool

– Analysis – The generic analysis of the robotic arm mapping position, velocities and 

forces / torques between the base and the wrist (last frame of the manipulators)

– Rational –

• Generic Analysis versus task specific elements (F/T sensor, gripper tool) -

The analysis is conducted by the robot arm manufacturer however the F/T 

sensor, the gripper and the tool are task specific and selected by the user.

• Tool Change – The same arm performing different tasks may need different tools 

that are changed during the course of its operation    

– Need – The need is typically to 

• Trace the position and orientation and velocities (linear and angular) of the tool tip 

as it follows a trajectory 

• Express force and torques applied on the environment by the tool tip and vice 

versa by a force sensor measuring these parameters in a different location  

• Solution – Expressing position, velocity forces and torques from the last frame (Frame 6 at the 

wrist) to the tip of the tool  
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Propagation to the Tip of the Tool 

Position 
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Jacobian Propagation to the Tip of the Tool – Position 

• In a case where the tool tips follows a trajectory, the path defines 

the goal position and orientation

• Since the tool is attached to the end effector its position does not 

change as a function of time with respect to frame 6

• Multiply both sides of the equations by 

• Solve the Inverse Kinematics 
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Jacobian Propagation to the Tip of the Tool 
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Jacobian Propagation to the Tip of the Tool 

Forces/Torques Velocities (Linear and Angular)
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Jacobian Propagation to the Tip of the Tool 

Velocity 
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Jacobian Propagation to the Tip of the Tool 

• Position 

Matrix Form Vector Form 
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Jacobian Propagation to the Tip of the Tool 

• Velocity of two rigidly connected frames (rigid body) 

Matrix Form Vector Form 
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Jacobian Propagation to the Tip of the Tool 

• Forces / Torque 

Matrix Form Vector Form 
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Jacobian Propagation to the Tip of the Tool 
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Jacobian Propagation to the Tip of the Tool 
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Jacobian Propagation to the Tip of the Tool 
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Jacobian – Singularity

Problem Definition
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Inverse Jacobian 

• Given 

– Tool tip path (defined mathematically)

– Tool tip position/orientation 

– Tool tip velocity

– Jacobian Matrix 

• Problem: Calculate the joint velocities

• Solution:

– Compute the inverse Jacobian matrix

– Use the following equation to compute 

the joint velocity

  xJ  1
 

    Jx 
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Singularity - The Concept

• Motivation:  We would like the hand of a robot (end effecror) to move with a certain velocity vector in 

Cartesian space. Using linear transformation relating the joint velocity to the Cartesian velocity we could 

calculate the necessary joint rates at each instance along the path.  

• Given: a linear transformation relating the joint velocity to the Cartesian velocity (usually the end effector)

• Question:  Is the Jacobian matrix invertable? (Or) Is it nonsingular?

Is the Jacobian invertable for all values of       ?

If not, where is it not invertable?

  xJ  1
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Inverse Jacobian

• Cases in which the Jacobian matrix             is not inevitable (               does not exists). Non invertible matrix 

is called singular matrix

– Case 1 - The Jacobian matrix is not squared

In general the 6xN Jacobian matrix may be non-square in which case the inverse is not defined

– Case 2 - The determinant (                    ) is equal to zero

 J   1
J

  Jdet

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Singularity - The Concept

• Answer (Conceptual): Most manipulator have  values of    where the Jacobian becomes singular . Such 

locations are called singularities of the mechanism or singularities for short 


Singularities of the mechanism

Workspace interior SingularitiesWorkspace boundary singularities

End 

Effector
Workspace

Boundary

- Stretched out

- Folded back
- Two or more joints are lining up
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Singularity - The Concept

• Lost of DOF - Losing one or more DOF means that there is a some direction (or subspace) in Cartesian 

space along which it is impossible to move the hand of the robot (end effector) no matter which joint rate 

are selected 

• Load Balance – A finite force can be applied to the end effector that produces no torque at the robot’s 

joints

• Joint Velocity – A zero end effector velocity will cause high joint velocity  

Manipulator 

Singular 

Configuration 

Losing 

One or More DOF 

General 

Configuration 

All DOF 

Are Available 

Problematic 

Load Balance
Problematic 

Joint Velocity
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Singularity – Physical Interpretation - Examples

• Type of Singularities 

– Wrist 

– Elbow

– Shoulder 

Instructor: Jacob Rosen 
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Singularity – Physical Interpretation - Examples
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https://youtu.be/lD2HQcxeNoA
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Singularities 

https://youtu.be/BJnZvwAE0PY
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Jacobian – Singularity

Example 1 – 3R 

Elbow Singularity

Singularity at the Edge of the Workspace 
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Jacobian Matrix by Differanciation - 3R - 1/4

• Consider the following 3 DOF Planar manipulator
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Jacobian Matrix by Differanciation - 3R - 4/4

• Using a matrix form we get

• The Jacobian provides a linear transformation, giving a velocity map and a force map for a robot manipulator.  

For the simple example above, the equations are trivial, but can easily become more complicated with robots 

that have additional degrees a freedom.  Before tackling these problems, consider this brief review of linear 

algebra. 
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Properties of the Jacobian -

Velocity Mapping and Singularities

• Example: Planar 3R

• Note that                      is not a function of
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Properties of the Jacobian -

Velocity Mapping and Singularities

• The manipulator loses 1 DEF. The end effector can only move along the tangent direction of the arm. Motion 

along the radial direction is not possible. 
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Properties of the Jacobian -

Force Mapping and Singularities

• The relationship between joint torque and end effector force and moments is  given by:

• The rank of                is equals the rank of           .

• At a singular configuration there exists a non trivial force         such that 

• In other words, a finite force can be applied to the end effector that produces no torque at the robot’s joints.  

In the singular configuration, the manipulator can “lock up.”   
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Properties of the Jacobian -

Force Mapping and Singularities

• Example: Planar 3R

• In this case the force acting on the end effector (relative to the {0} frame) is given by

F

1

0    ; 321  



















0

1

1

0 Fs

Fc

F

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Properties of the Jacobian -

Force Mapping and Singularities

• For                                       we get
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Jacobian – Singularity

Example 2 – 3R

Shoulder Singulaity 

Singularity Inside the Workspace  
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Models of Robot Manipulation - EE 543 - Department of Electrical Engineering - University of Washington



Jacobian: Singular Configuration - 3R Example 

• If we want to use the inverse Jacobian to compute the joint angular velocities we need to first find out at what 

points the inverse exists.

• Considering the 3R robot

• The determinate of the Jacobian is defined as follows 

  xJ  1
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Jacobian: Singular Configuration - 3R Example

• The reduced Jacbian matrix is singular when it determinate is equal to zero

• The singular condition occur when either of the following are true
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Jacobian: Singular Configuration - 3R Example

• Case 1:

• The first row of the Jacobian is zero

• The 3R robot is loosing one DOF. 

• The robot can no longer move along the 

X-axis of frame {4} 
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Jacobian: Singular Configuration - 3R Example

• Case 2:

• Occur only if

• The third row of the Jacobian is zero

• The origin of frame {4} intersects the Z-

axis of frame {1}

• The 3R robot is loosing one DOF. 

• The robot can no longer move along the 

Z-axis of frame {4} 

0233221  cLcLL

 





















00233221

33320

0320
4

cLcLL

LLcL

sL

J r 

132 LLL 

233221 cLcLL 

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Joint Velocity Near Singular Position - 3R Example

• Robot : 3R robot  

• Task: Visual inspection

• Control   

Control RobotOperator
  xJ  1
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Joint Velocity Near Singular Position - 3R Example

• Singularity (Case 2)- The origin of frame {4} intersects the Z-axis of frame {1}

• Solve for      in terms of     we find 
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Joint Velocity Near Singular Position - 3R Example

• Singularity  -

• Problems:

– Motor Constrains - The robot is physically limited from moving in unusual high joint velocities by motor 

power constrains. Therefore, the robot will be unable to track the required joint velocity trajectory exactly 

resulting in some perturbation to the commanded Cartesian velocity trajectory. 

– Gears and Shafts - The derivative of the angular velocity is the  angular acceleration. The high 

acceleration of the joint resulting form approaching too close to a singularity may cause damage to the 

gear/shafts. 

– DOF - At a singular configuration (specific point in space) the manipulator loses one or more DOF. 

• Consequences – Certain tasks can not be performed at a singular configuration 

   0det J

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Jacobian – Singularity

Example 3 – 3R

Wrist Singularity 

Singularity Inside the Workspace  

Instructor: Jacob Rosen 
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Mapping - Rotated Frames - Z-Y-Z Euler Angles

Start with frame {4}. 

• Rotate frame {4} about      by an angle 

• Rotate frame {4} about      by an angle 

• Rotate frame {4} about      by an angle 

Note - Each rotation is preformed about an axis of the moving reference frame 

{4}, rather then a fixed reference.
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4Ẑ




 Euler Angles
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Mapping - Rotated Frames - Z-Y-Z Euler Angles
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Mapping - Rotated Frames - Z-Y-Z Euler Angles
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Mapping - Rotated Frames - Z-Y-Z Euler Angles
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Three consecutive Axes Intersect - wrist


Goal


Direct Kinematics
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Three consecutive Axes Intersect - wrist

• Solve for         using element  

• Using the Atan2 function, we find
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Three consecutive Axes Intersect - wrist

• Solve for       using elements

ssr 23

scr 13

  srsr /,/Atan2 1323

1323 , rr
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Three consecutive Axes Intersect - wrist

• Solve for       using elements

ssr 32

csr 31

3132 , rr

  srsr /,/Atan2 3132 
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Three consecutive Axes Intersect - wrist

• Note: Two answers exist for angle       which will result in two answers each for angles       and       .

• If                                                       the solution degenerates                         
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Three consecutive Axes Intersect - wrist

• We are left with                  for every case.  This means we can’t solve for either, just their sum.   
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Three consecutive Axes Intersect - wrist

• One possible convention is to choose  

• The solution can be calculated to be 

o0
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Three consecutive Axes Intersect - wrist

• For this example, the singular case results in the capability for self-rotation.  That is, the middle link can rotate 

while the end effector’s orientation never changes.
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Gimbal Lock 

Normal situation 

The three gimbals are independent

Gimbal lock: 

Two out of the three gimbals are in the 

same plane, one degree of freedom is lost

http://youtu.be/zc8b2Jo7mno

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA
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Gimbal Lock – Robotics  

• In robotics, gimbal lock is commonly referred to as "wrist flip", due to the use of a "triple-roll wrist" in robotic 

arms, where three axes of the wrist, controlling yaw, pitch, and roll, all pass through a common point.

• An example of a wrist flip, also called a wrist singularity, is when the path through which the robot is traveling 

causes the first and third axes of the robot's wrist to line up. The second wrist axis then attempts to spin 180°

in zero time to maintain the orientation of the end effector. The result of a singularity can be quite dramatic 

and can have adverse effects on the robot arm, the end effector, and the process.

• The importance of non-singularities in robotics has led the American National Standard for Industrial Robots 

and Robot Systems — Safety Requirements to define it as "a condition caused by the collinear alignment of 

two or more robot axes resulting in unpredictable robot motion and velocities".
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Properties of the Jacobian -

Force Mapping and Singularities

• This situation is an old and famous one in mechanical engineering. 

• For example, in the steam locomotive, “top dead center” refers to the following condition

• The piston force, F, cannot generate any torque around the drive wheel axis because the linkage is singular 

in the position shown.
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Properties of the Jacobian -

Velocity Mapping and Singularities

• We have shown the relationship between joint space velocity and end effector velocity, given by

• It is interesting to determine the inverse of this relationship, namely

   Jx 

  xJ  1
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Properties of the Jacobian -

Velocity Mapping and Singularities

• Consider the square 6x6 case for            .  

• If rank  < 6  (                           )    , then there is no solution to the inverse equation (see Brief Linear Algebra 

Review - 1,7).  

• However, if the rank = 5, then there is at least one non-trivial solution to the forward equation (see Brief 

Linear Algebra Review - 7). That is, for

   6JRank

 J

   0JDet

  xJ  1
 

  0   Jx

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Properties of the Jacobian -

Velocity Mapping and Singularities

• The solution is a direction          in the in joint velocity space for which joint motion produces no end effector 

motion.

• We call any joint configuration               for which

a singular configuration.

 

   6JRank

Q
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Properties of the Jacobian -

Velocity Mapping and Singularities

• For certain directions of end effector motion ,

where:

– are the eigenvalues of   

– are the eigenvectors of

• If             is fully ranked (see Brief Linear Algebra Review - 6/ ), we have      
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Properties of the Jacobian -

Velocity Mapping and Singularities

• As the joint approach a singular configuration                there is at least one eigenvalue for which                . 

This results in  

• In other word, as the joints approach the singular configuration, the end effector motion in a particular task 

direction       causes the joint velocities to approach infinity.  However, there are task velocities that can have 

solutions.  

• If            loses rank by only one, then there are n-1 eigenvectors in the task velocity space (    ) for which 

solutions do exist.  However, there can be multiple solutions. 
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Jacobian – Manipulability Ellipsoid 

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Jacobian – 2R
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Properties of the Jacobian -

Velocity Mapping and Singularities

• Note: See Mathematica Simulations 

– Two Link: https://demonstrations.wolfram.com/ForwardAndInverseKinematicsForTwoLinkArm/ 

– Three links : https://demonstrations.wolfram.com/ManipulabilityEllipsoidOfARobotArm/ 

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA
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Jacobian – Performance Index

Design

Instructor: Jacob Rosen 
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Performance Index – Manipulability  

• Kinematic Singularity – The robot end effector 

loses its ability to translate or rotate in one ore 

more directions 

• Kinematic Singularity – Binary - A kinematic 

singularity presents a binary proposition – a 

particular configuration is either kinematically 

singular or it is not 

• Proximity to Singularity - it is reasonable to ask if 

a nonsingular configuration is “close” to being 

singular. 

• Manipulability Ellipsoid - The manipulability 

ellipsoid allows one to visualize geometrically the 

directions in which the end-effector moves with 

least effort or with greatest effort

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Performance Index – Manipulability 

• Manipulabity Ellipsoid - For a general n-joint serial (open chain) and a task space with coordinates the 

manipulability ellipsoid corresponds to the end-effector velocities for joint rates 

satisfying the norm of       to be equal to 1

representing a unite sphere in the n-th dimensional joint velocity space  

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA
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Performance Index – Manipulability 

Assuming J is invertible, the unit joint-velocity condition can be written

If J is full rank the matrix             and                 are 

– square, 

– symmetric

– positive definite

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA
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Performance Index – Manipulability 

For any symmetric positive-definite         , the set of vectors       satisfying

defines an ellipsoid in the m-dimensional space.

Recap

• Represent an circle / sphere

• Represent a ellipse / ellipsoid  

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA
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Performance Index – Manipulability 

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA

  JXq




T

T

JF

FJ





Joint Space Joint SpaceTask Space
Task Space



Performance Index – Manipulability 

• Performing eigenvector/eigenvalue analysis of          defining  

– eigenvectors 

– eigenvalues  

• The directions of the principal axes of the ellipsoid are      and the lengths of the principal semi-axes are

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA
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Performance Index – Manipulability 

• The volume V of the ellipsoid is proportional to the product of the semi-axis lengths

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA
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Performance Index – Manipulability 

• Given the structure of the Jacobian matrix, it makes sense to separate it into the two sub matrixes because 

the units of

– are linear velocities (m/s) and the unites of    

– are angular velocities (rad/s)

• This leads to two three-dimensional manipulability ellipsoids, one for linear velocities and one for angular 

velocities.

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA
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Performance Index – Manipulability 

When calculating the linear-velocity manipulability ellipsoid (           ), 

it generally makes more sense to use the Jacobian expressed in the end effector space 

instead of the Base Frame  

since we are usually interested in the linear velocity of the end effector in its own coordinate system than a fixed 

frame at the base 

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA
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Designing Well Conditioned Workspace – Rational 

• Challenge 

– Difficulty in operating at 

• Workspace Boundaries  

• Neighborhood of singular point inside the workspace  

• Goal 

– Singularity - The further the manipulator is away from singularities the better it moves uniformly and 

apply forces in all directions  

• Performance Criterion 

– It is useful to assign a single scalar measure defining how easily the robot can move at a given posture.

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Performance Index – Isotropy 

• Isotropy – The ratio of the longest and shortest semi-axes of the manipulability ellipsoid

– When                               then the manipulability ellipsoid is nearly spherical or isotropic, meaning that it 

is equally easy to move in any direction. This situation is generally desirable

– When                              the  robot approaches a singularity

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA
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Performance Index – Condition Number 

• Condition Number – Squaring the isotropy measure 

– When                               then the manipulability ellipsoid is nearly spherical or isotropic, meaning that it 

is equally easy to move in any direction. This situation is generally desirable

– When                              the  robot approaches a singularity

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA
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Performance Index – Manipulability  

• Manipulability – Proportional to the volume of the manipulability ellipsoid 

– A good manipulator design has large area of characterized by high value of the manipulability 

 w0

)(w

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA
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Design – Example 

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



RAVEN – A SURGICAL ROBTICS SYSTEM  

DESIGN – SPECIFICATIONS  









Blue DRAGON



Engineering Specifications - BlueDRAGON

Device DRAGON UC Berkeley UC Berkeley UC Berkeley DeVinchi Zeus 

Generation R1 - E (95%) 1 2

Referance Measured Traget Obtained

Base Overall Geomtery Shaft Diameter [m] 0.01 - 0.015 0.01 - 0.015 0.01 0.005

Position / Oriantataion Delta Theta x [Deg] 53.8047 +/-60

Delta Theta y [Deg] 36.3807 +/-80

Delta Theta z [Deg] 148.0986 90 180-270 720 +/-180

R [m] 0.1027 0.2

Grasping Jaw s [Deg] 24.0819 200

Grasping Jaw s [m] * 0.006 0.002-0.003 0.008 min

Delta X [m] 0.1026

Delta Y [m] 0.0815

Delta Z [m] 0.0877

Velocity (Angular Linear) Wx [Rad/sec] 0.432

Wy [Rad/sec] 0.486

Wz [Rad/sec] 1.053 9.4 min

VR [m/sec] 0.072

Wg [Rad/sec] 0.0468

Force Fx [N] 14.7299

Fy [N] 13.1981

Fz [N] 184.3919

Fg [N] 41.6085 15 5 min 40 min 

Torque Tx [Nm] 2.3941

Ty [Nm] 1.6011

Tz [Nm] 0.0464 0.088 0.022



Kinematic Analysis –

Playback Simulation using  Measured Data



Robot Optimization  - Workspace

• Dexterous Workspace (DWS) 

– High dexterity region defined by 

a right circular cone with a 

vertex angel of 60º 

– Contains 95% of the tool 

motions based on in-vivo

measurements. 

60o- 60o







Spherical Mechanism - Robot Optimization 



Optimization of Raven IV –

Problem & Parameters (7) Definitions 





RAVEN – A SURGICAL ROBTICS SYSTEM  

DESIGN – KINEMATIC ANALYSIS & OPTIMIZATION



Direct Kinematics –

Coordinate  Systems Assignment



Direct Kinematics –

Coordinate  Systems Assignment



Direct Kinematics: 

DH Parameters - Left and Right Robot



Direct Kinematics: 

Transform Matrix for Left Robot
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Direct Kinematics: 

Transform Matrix for Right Robot
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Direct Kinematics: Solution 
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Inverse Kinematics

• 6 DOFs for positioning and orienting  Inverse Kinematics

• 1 DOF for the opening and closing of the grasper  Redundancy 

• Joint Limit Range



Inverse Kinematics: 

Homogeneous Transformation Matrix and Its Inverse

• Homogenous Transform Matrix  Inverse
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• For the left robot,

• For the right robot,
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• Define

• Which gives
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Inverse Kinematics



• For the left robot,

• For the right robot,
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Inverse Kinematics

• Four Possible Solutions of

2 2 2 2
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For the left robot,

• Resolve 

For the right robot,
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Inverse Kinematics

• With resolved        ,     and 4d
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Inverse Kinematics

• With resolved        ,      ,      ,      and 
4d
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Jacobian & Isotropy 

• The mechanism isotropy is determined by the eigen-values of Jacobian matrix, which can be 

derived by velocity propagation

• General equations for velocity propagation: X J
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• Initial Condition

• Rotation Matrices                         , which leads to
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For the left robot

For the right robot

Link 2 is rotating at     about      1z2


Link 3 is frozen with
3 0




0 1 2

1 2 3 [0,0,0]TP P P  Translation in homogeneous transformation matrix:
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4d


Jacobian & Isotropy 



• Angular velocity propagation

• Linear velocity propagation
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Jacobian & Isotropy 



• Hence, the velocity of the end-point of Link 3 is with reference to Frame 3 is

Angular Velocity

Linear Velocity
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For the right robot
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Jacobian & Isotropy 



• Hence, the Jacobian Matrix is

• The mechanism isotropy only depends on the 2X2 sub-matrix to the left corner

For the left robot
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For the right robot
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Jacobian & Isotropy 



Mechanism Isotropy

• Mechanism isotropy - the end-effector's ability of moving in all direction given a specific manipulator 

configuration. 

• Definition

• Range

min

max

Iso





0 1Iso 



• The eigen-values of the Jacobian matrix can be found by solving

• Which gives 

• Define
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Jacobian & Isotropy 





Optimization of Raven IV –

Problem & Parameters (7) Definitions 



Optimization of Raven IV – Cost Function 

• Cost Function

– Geometry - Largest circular common workspace (Area 

Circumference Ratio)

– Manipulations - Best Isotropy

• Across the common workspace

• Worst case value (min/max problem)

– Mechanics - Stiff mechanism (Smallest Mechanism)

• Method

– Brute force search across all the free parameters
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Common Workspace – Reference Plane  



Area-Circumference Ratio

• Definition

• According to the Isoperimetric Inequality, a circle has the largest possible area among all the figures with 

the length of boundary

Area

Circumference
 

2

2 2
c

r r

r





 



Effect of Limiting Minimum Isotropy Performance



Optimization of Raven IV surgical System

Effect of Limiting Minimum Isotropy Performance

• Workspace propagation – Minimum Mechanism Isotropy = 0.2



Optimization of Raven IV surgical System

Overall simulation result

• Parameter ranges, resolutions and optimal values



Optimization of Raven IV - Conclusion



Jacobian – Duality

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Jacobian – Duality 

is a linear mapping of the joint space velocities       which is a n - dimensional 

vector space   to the end effector velocities        which is a m – dimensional vector 

space 

Joint Space End-Effector Space 
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n
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Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Jacobian – Duality 

The subset of all the end effector velocities        resulting from the mapping              

represents all the possible end effector velocities that can be generated by the n joints 

given the arm configuration 

X  JX 
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Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Jacobian – Duality 

If the rank of the Jacobian matrix      is at full of row rank (square matrix) the joint space     

covers the entire end effector vector          otherwise there is at least one direction in which 

the end effector can not be moved    

Joint Space End-Effector Space 
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Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Jacobian – Duality 

The subset             is the null space of the linear mapping. Any element in this subspace is 

mapped into a zero vector in         such that                 therefore any joint velocity vector    

that belongs to the null space does not produce any velocity at the end effector    

Joint Space End-Effector Space 
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Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Jacobian – Duality 

If the Jacobian of a manipulator is full rank the dimension of the null space                  is the 

same as the redundant degrees of freedom (n-m). For example the human arm has 7 DOF 

whereas the hand may have 6 linear and angular velocities therefore the null dimension is 

one (n-m=7-1=1)  
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Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Jacobian – Duality 

If the Jacobian of a manipulator is full rank (i.e. n>m full row rank where the rows are linearly 

independent)  the dimension of the null space                  is the same as the redundant 

degrees of freedom (n-m). For example the human arm has 7 DOF whereas the hand may 

have 6 linear and angular velocities therefore the null dimension is one (n-m=7-1=1)  
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Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Jacobian – Duality 

If the Jacobian of a manipulator is full rank (i.e. for redundant manipulator n>m full row rank 

where the rows are linearly independent)  the dimension of the null space                  is the 

same as the redundant degrees of freedom (n-m). For example the human arm has 7 DOF 

whereas the end effector (hand) may have 6 linear and angular velocities therefore the null 

dimension is one (n-m=7-1=1)  
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Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Jacobian – Duality 

When the Jacobian matrix degenerates (i.e. not full rank e.g. due to singularity) the 

dimension of the range space                  decreases at the same time as the dimension of the 

null space increases                     by the same amount. The sum of the two is always equal to 

n 
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Jacobian – Duality 

If the null space is not empty set, the instantaneous kinematic equation has an infinite number 

of solutions that cause the same end effector velocities (recall the 3 axis end effector) 
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Unlike the mapping of the instantaneous kinematics the mapping of the static external forces 

is from the m-th vector space                  associated with the end effector coordinates to the n-

th dimensional vector space              associated with the torques at the joint space. Therefore 

the joint torque are always determined uniquely from any end effector point force  
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The null space               represents the set of all end point forces that do not require any 

torques at the joints to bear the corresponding load      (e.g. 2R fully stretched or collapsed 

elbow).  
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When the Jacobian matrix is degenerated or the arm is in a singular configuration external 

endpoint force is borne entirely by the structure and not by the joint torque.  

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA


