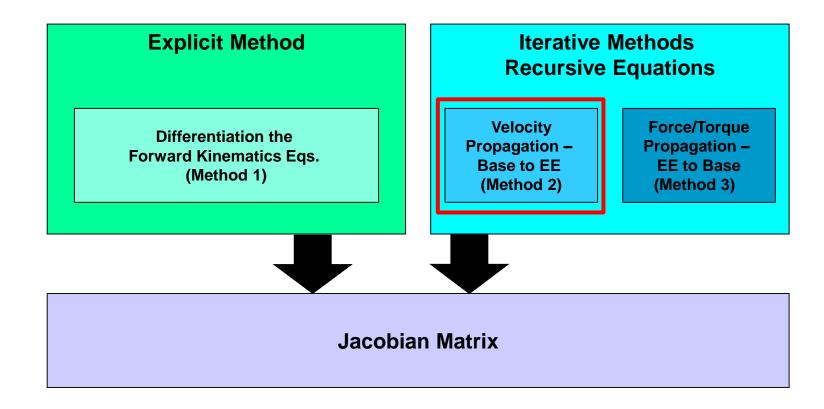


Jacobian Iterative Method -Velocity Propagation (Method No. 2) Part 2 – Reference Frame

Jacobian Matrix - Derivation Methods



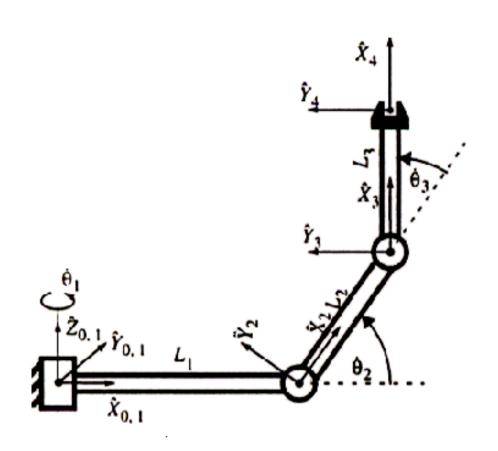
Jacobian: Velocity propagation

• The recursive expressions for the adjacent joint linear and angular velocities describe a relationship between the joint angle rates ($\dot{\theta}$) and the transnational and rotational velocities of the end effector (\dot{X}):

$$^{i+1}\omega_{i+1}=^{i+1}_{i}R^{i}\omega_{i}+egin{bmatrix}0\\0\\\dot{ heta}_{i+1}\end{bmatrix}$$

$${}^{i+1}v_{i+1} = {}^{i+1}R({}^{i}\omega \times {}^{i}P_{i+1} + {}^{i}v_{i}) + \begin{bmatrix} 0 \\ 0 \\ \dot{d}_{i+1} \end{bmatrix}$$

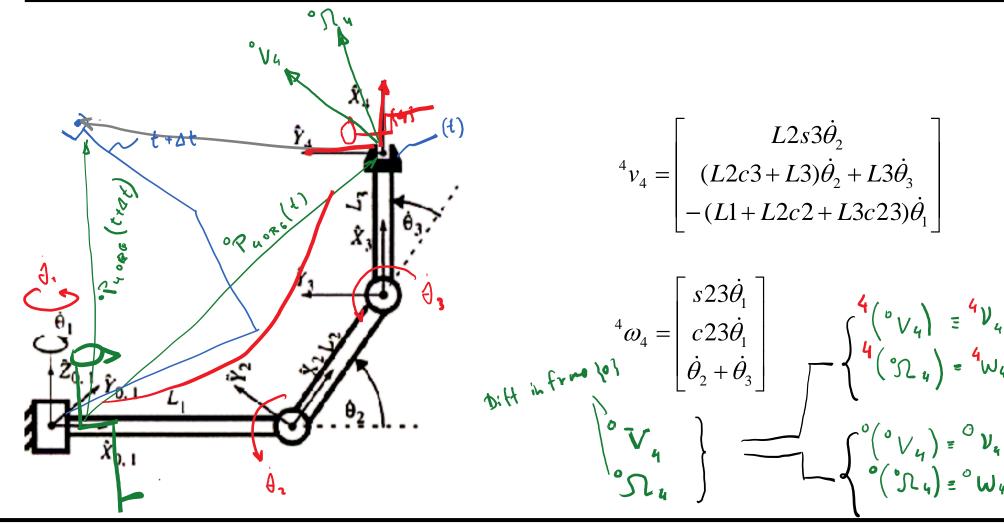
Angular and Linear Velocities - 3R Robot - Example



$${}^{4}v_{4} = \begin{bmatrix} L2s3\dot{\theta}_{2} \\ (L2c3 + L3)\dot{\theta}_{2} + L3\dot{\theta}_{3} \\ -(L1 + L2c2 + L3c23)\dot{\theta}_{1} \end{bmatrix}$$

$${}^{4}\omega_{4} = \begin{bmatrix} s23\dot{\theta}_{1} \\ c23\dot{\theta}_{1} \\ \dot{\theta}_{2} + \dot{\theta}_{3} \end{bmatrix}$$

Angular and Linear Velocities - 3R Robot - Example



Jacobian Expression Frame of Reference

Frame Notation

Jacobian: Velocity propagation

 The recursive expressions for the adjacent joint linear and angular velocities defines the Jacobian in the end effector frame

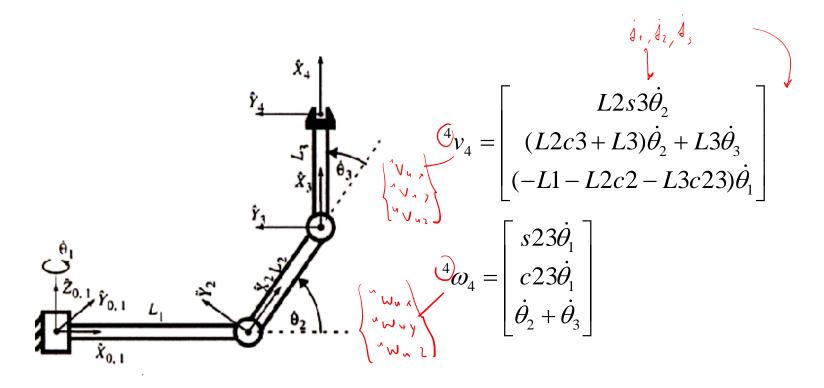
$$\hat{N}\dot{X} = \hat{V}J(\theta)\dot{\theta}$$

This equation can be expanded to:

$${}^{N}\dot{X} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \\ \Omega x \\ \Omega y \\ \Omega z \end{bmatrix} = \begin{bmatrix} {}^{N}v_{N} \\ {}^{N}\omega_{N} \end{bmatrix} = \begin{bmatrix} J(\theta) \\ \vdots \\ J(\theta) \end{bmatrix} \begin{bmatrix} \dot{\theta}1 \\ \dot{\theta}2 \end{bmatrix}$$
...

Jacobian - 3R - Example

The linear angular velocities of the end effector (N=4)



Jacobian - 3R - Example

Re-arranged to previous two terms gives an expression that encapsulates

$${}^{4}\dot{X} = {}^{4}J(\theta)\dot{\theta}$$

$${}^{4}\dot{X} = {}^{4}\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \\ \Omega_{x} \\ \Omega_{y} \\ \Omega_{z} \end{bmatrix} = {}^{4}\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \\ \Omega_{x} \\ \Omega_{y} \\ \Omega_{z} \end{bmatrix} = {}^{4}\begin{bmatrix} L2s3\dot{\theta}_{2} \\ (L2c3 + L3)\dot{\theta}_{2} + L3\dot{\theta}_{3} \\ (-L1 - L2c2 - L3c23)\dot{\theta}_{1} \\ s23\dot{\theta}_{1} \\ c23\dot{\theta}_{1} \\ \dot{\theta}_{2} + \dot{\theta}_{3} \end{bmatrix}$$

• We can now factor out the joint velocities vector $\dot{\theta} = [\dot{\theta}_1 \dot{\theta}_2 \dot{\theta}_3]^T$ from the above vector to formulate the Jacobian matrix

$$^4J(heta)$$

Jacobian - 3R - Example

- The equations for Nv_N and ${}^N\omega_N$ are always a linear combination of the joint velocities, so they can always be used to find the 6xN Jacobian matrix $({}^NJ(\theta))$ for any robot manipulator.
- Note that the Jacobian matrix is expressed in frame {4}

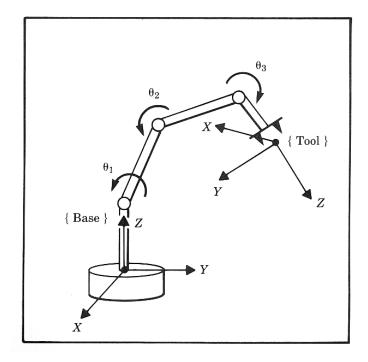
Jacobian: Frame of Representation

 Using the velocity propagation method we expressed the relationship between the velocity of the robot end effector measured relative to the robot base frame {0} and expressed in the end effector frame {N}.

$$^{N}\dot{X} = ^{N}J(\theta)\dot{\theta}$$

 Occasionally, it may be desirable to express (represent) the end effector velocities in another frame (e.g. frame {0}, in which case we will need a method to provide the transformation.

$$^{0}\dot{X} = 0$$
 $J(\theta)\dot{\theta}$



Jacobian: Frame of Representation

- There are two methods to change the references frame (frame of representation) of the Jacobian Matrix
 - Method 1: Transforming the linear and angular velocities to the new frame prior to formulating the Jabobian matrix.
 - Method 2: Transforming the Jacobian matrix from it existing frame to the new frame after it was formulated.

Jacobian Expression Frame of Reference

Method No. 1
Transform the Velocity Vectors

Jacobian: Frame of Representation – Method 1

• Consider the velocities in a different frame {B}

$${}^{B}\dot{X} = \left[{}^{B}v_{N} \atop {}^{B}\omega_{N} \right] = {}^{B}J(\theta)\dot{\theta}$$

• We may use the rotation matrix to find the velocities in frame {A}:

$$\begin{array}{c}
\stackrel{\text{(A)}}{\dot{X}} = \begin{bmatrix} \stackrel{\text{(A)}}{v_N} \\ \stackrel{\text{(A)}}{\omega_N} \end{bmatrix} = \begin{bmatrix} \stackrel{\text{(A)}}{B} R^B v_N \\ \stackrel{\text{(A)}}{B} R^B \omega_N \end{bmatrix}$$

Jacobian: Frame of Representation – Method 1

 Example: Analyzing a 6 DOF manipulator while utilizing velocity propagation method results in an expressing the end effector (frame 6) linear and angular velocities.

$$^{6}\dot{X} = \begin{bmatrix} ^{6}v_{6} \\ ^{6}\omega_{6} \end{bmatrix}$$

Using the forward kinematics formulation the rotation matrix from frame 0 to frame 6 can be defined as

$${}_{6}^{0}T = {}_{1}^{0}T {}_{2}^{1}T {}_{3}^{2}T {}_{4}^{3}T {}_{5}^{4}T {}_{6}^{5}T = \begin{bmatrix} & {}_{6}^{0}R & {}^{0}P_{6ORG} \\ & & & \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• The linear and angular velocities can than be expressed in frame 0 prior to extracting the Jacobian in frame 0

$${}^{0}\dot{X} = \begin{bmatrix} {}^{0}v_{6} \\ {}^{0}\omega_{6} \end{bmatrix} = \begin{bmatrix} {}^{0}R^{6}v_{6} \\ {}^{0}R^{6}\omega_{6} \end{bmatrix} = {}^{0}J\dot{\theta}$$

Jacobian Expression Frame of Reference

Method No. 2
Transform the Jacobian Matrix

Jacobian: Frame of Representation – Method 2

• It is possible to define a Jacobian transformation matrix A_BR_J that can transform the Jacobian from frame A to frame B

$$^{A}\dot{X} = ^{A}J(\theta)\dot{\theta} = {^{A}_{B}R_{J}}^{B}J(\theta)\dot{\theta}$$

• The Jacobian rotation matrix ${}_{B}^{A}R_{J}$ is given by

$$\begin{bmatrix}
A_{B}R_{J} \\
B_{B}R_{J}
\end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
A_{B}R_{J}
\end{bmatrix}
\begin{bmatrix}
A_{B}R_{J}
\end{bmatrix}$$

Jacobian: Frame of Representation

or equivalently,

$${}^{A}J(\theta) = \begin{bmatrix} \begin{bmatrix} A & B \\ B & R \end{bmatrix} & \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \\ \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} & \begin{bmatrix} A & B \\ B & R \end{bmatrix} \end{bmatrix} {}^{B}J(\theta)$$

Jacobian: Frame of Representation - 3R Example

• The rotation matrix $\binom{0}{4}R$) can be calculated base on the direct kinematics given by

Jacobian Methods of Derivation & the Corresponding Reference Frame – Summary

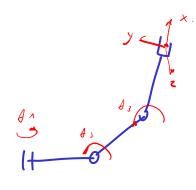
Method	Jacobian Matrix Reference Frame	Transformation to Base Frame (Frame 0)
Explicit (Diff. the Forward Kinematic Eq.)	$^0{m J}_N$	None
Iterative Velocity Eq.	$^{N}{J}_{N}$	Transform Method 1: ${}^0v_N = {}^0_N R^N v_N$ ${}^0\omega_N = {}^0_N R^N \omega_N$ Transform Method 2: ${}^0J_N(\theta) = \left[{}^0_N R & 0 \\ 0 & {}^0_N R \right]^N J_N(\theta)$
Iterative Force Eq.	$^{N}\boldsymbol{J}_{N}^{T}$	Transpose $^N J_N = [^N J_N^T]^T$ $^0 J_N(\theta) = \begin{bmatrix} ^0 R & 0 \\ ^0 R \end{bmatrix} ^N J_N(\theta)$

Inverse Jacobian - Reduced Jacobian

Problem

 When the number of joints (N) is less than 6, the manipulator does not have the necessary degrees of freedom to achieve independent control of all six velocities components.

$$\dot{X} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \\ \Omega x \\ \Omega y \\ \Omega z \end{bmatrix}$$

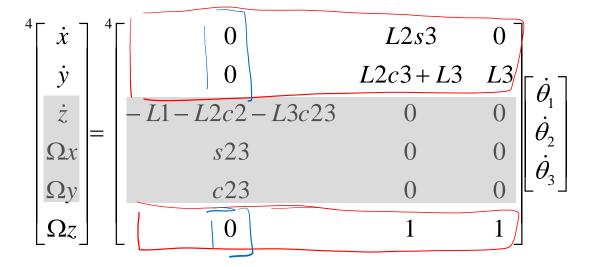


Solution

 We can reduce the number of rows in the original Jacobian to describe a reduced Cartesian vector. For example, the full Cartesian velocity vector is given by

Jacobian: Reduced Jacobian - 3R Example

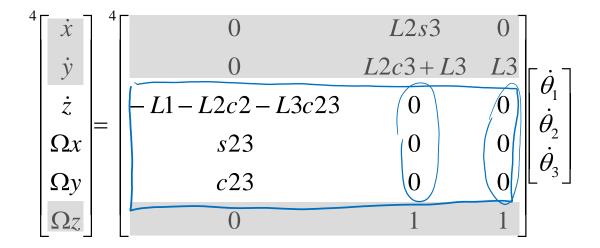
Matrix Reduction - Option 1



- Column of zeroes
- The determinate is equal to zero
- Only two out of the three variables can be independently specified

Jacobian: Reduced Jacobian - 3R Example

Matrix Reduction - Option 2



- Two columns of zeroes
- The determinate is equal to zero
- Only one out of the three variables can be independently specified

Jacobian: Reduced Jacobian - 3R Example

Matrix Reduction - Option 3

$$\begin{vmatrix}
\dot{x} \\ \dot{y} \\ \dot{z} \\ \Omega x \\ \Omega y \\ \Omega z
\end{vmatrix} = \begin{vmatrix}
0 & L2s3 & 0 \\ 0 & L2c3 + L3 & L3 \\ -L1 - L2c2 - L3c23 & 0 & 0 \\ s23 & 0 & 0 \\ c23 & 0 & 0 \\ 0 & 1 & 1
\end{vmatrix} \begin{bmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \\ \dot{\theta}_3 \end{bmatrix}$$

• The resulting reduced Jacobian will be square (the number of independent rows in the Jacobian are equal to the number of unknown variables) and can be inverted unless in a singular configuration.

Jacobian: Singular Configuration - 3R Example

$${}^{4}J_{r}(\theta) = \begin{bmatrix} 0 & L2s3 & 0 \\ 0 & L2c3 + L3 & L3 \\ -L1 - L2c2 - L3c23 & 0 & 0 \end{bmatrix}$$

