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Jacobian: Velocity propagation

• The recursive expressions for the adjacent joint linear and angular velocities describe a relationship between 

the joint angle rates (     ) and the transnational and rotational velocities of the end effector (    ):
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Angular and Linear Velocities - 3R Robot - Example

Instructor: Jacob Rosen 
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Angular and Linear Velocities - 3R Robot - Example

Instructor: Jacob Rosen 
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Jacobian Expression 

Frame of Reference 

Frame Notation 

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Jacobian: Velocity propagation

• The recursive expressions for the adjacent joint linear and angular velocities defines the Jacobian in the end 

effector frame

• This equation can be expanded to:
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Jacobian - 3R - Example

• The linear angular velocities of the end effector (N=4)  
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Jacobian - 3R - Example

• Re-arranged to previous two terms gives an expression that encapsulates  

• We can now factor out the joint velocities vector                         from the above vector to formulate the 

Jacobian matrix  
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Jacobian - 3R - Example

• The equations for           and          are always a linear combination of the joint velocities, so they can always 

be used to find the 6xN Jacobian matrix (           ) for any robot manipulator.

• Note that the Jacobian matrix is expressed in frame {4} 
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Jacobian: Frame of Representation

• Using the velocity propagation method we 

expressed the relationship between the 

velocity of the robot end effector 

measured relative to the robot base frame 

{0} and expressed in the end effector 

frame {N}.  

• Occasionally, it may be desirable to 

express (represent) the end effector 

velocities in another frame (e.g. frame 

{0}, in which case we will need a method 

to provide the transformation.  
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Jacobian: Frame of Representation

• There are two methods to change the references frame (frame of representation) of the Jacobian Matrix

– Method 1: Transforming the linear and angular velocities to the new frame prior to formulating the 

Jabobian matrix.

– Method 2: Transforming the Jacobian matrix from it existing frame to the new frame after it was 

formulated.     
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Jacobian Expression 

Frame of Reference 

Method No. 1

Transform the Velocity Vectors 
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Jacobian: Frame of Representation – Method 1

• Consider the velocities in a different frame {B}

• We may use the rotation matrix to find the velocities in frame {A}:
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Jacobian: Frame of Representation – Method 1

• Example: Analyzing a 6 DOF manipulator while utilizing velocity propagation method results in an expressing 

the end effector (frame 6) linear and angular velocities. 

• Using the forward kinematics formulation the rotation matrix from frame 0 to frame 6 can be defined as    

• The linear and angular velocities can than be expressed in frame 0 prior to extracting the Jacobian in frame 0  
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Jacobian Expression 

Frame of Reference 

Method No. 2

Transform the Jacobian Matrix 
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Jacobian: Frame of Representation – Method 2

• It is possible to define a Jacobian transformation matrix            that can transform the Jacobian from frame A 

to frame B 

• The Jacobian rotation matrix           is given by 
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Jacobian: Frame of Representation

• or equivalently, 
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Jacobian: Frame of Representation - 3R Example

• The rotation matrix (       )  can be calculated base on the direct kinematics given by

 

 

 

 

























































































































































































110

0023

0023

00233221

33320

0320

02323

1231231

1231231

000

000

000

000

000

000

02323

1231231

1231231

000

000

000

000

000

000
4

4

0

4

0

4

0

c

s

cLcLL

LLcL

sL

cs

csscs

ssccc

cs

csscs

ssccc

J

R

R

J 

R0

4





















1000

4

00

43

4

2

3

1

2

0

1

0

4

ORGPR
TTTTT

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



Jacobian Methods of Derivation & the 

Corresponding Reference Frame   – Summary 

Instructor: Jacob Rosen 
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Method Jacobian

Matrix 

Reference 

Frame 

Transformation to Base Frame (Frame 0)

Explicit

(Diff. the Forward 

Kinematic Eq.)

None

Iterative Velocity Eq. Transform Method 1:

Transform Method 2: 
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Transform 
T

N

N J

N

N J

NJ0

TT

N

N

N

N JJ ][

N

N

NN vRv 00 

N

N

NN R  00 

    N

N

N

N

N J
R

R
J 










0

0

0

0

0

    N

N

N

N

N J
R

R
J 










0

0

0

0

0



Inverse Jacobian - Reduced Jacobian

• Problem 

– When the number of joints (N) is less than 6, the manipulator does not have the necessary degrees of 

freedom to achieve independent control of all six velocities components.  

• Solution

– We can reduce the number of rows in the original Jacobian to describe a reduced Cartesian vector.  For 

example, the full Cartesian velocity vector is given by
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Jacobian: Reduced Jacobian - 3R Example

• Matrix Reduction - Option 1

• Column of zeroes

• The determinate is equal to zero

• Only two out of the three variables can be independently specified

Instructor: Jacob Rosen 

Advanced Robotic - Department of Mechanical & Aerospace Engineering - UCLA



• Matrix Reduction - Option 2

• Two columns of zeroes

• The determinate is equal to zero

• Only one out of the three variables can be independently specified












































































3

2

1

44

110

0023

0023

00233221

33320

0320


















c

s

cLcLL

LLcL

sL

z

y

x

z

y

x

Jacobian: Reduced Jacobian - 3R Example
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• Matrix Reduction - Option 3

• The resulting reduced Jacobian will be square (the number of independent rows 

in the Jacobian are equal to the number of unknown variables) and can be 

inverted unless in a singular configuration.
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Jacobian: Singular Configuration - 3R Example 
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