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Jacobian Matrix - Derivation Methods
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Jacobian: Velocity propagation

* The recursive expressions for the adjacent joint linear and angular velocities describe a relationship between
the joint angle rates ( @ ) and the transnational and rotational velocities of the end effector (X ):
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Angular and Linear Velocities - 3R Robot - Example
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Angular and Linear Velocities - 3R Robot - Example
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Jacobian Expression
Frame of Reference

Frame Notation
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Jacobian: Velocity propagation

« The recursive expressions for the adjacent joint linear and angular velocities defines the Jacobian in the end
effector frame
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« This equation can be expanded to:
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Jacobian - 3R - Example

The linear angular velocities of the end effector (N=4)
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Jacobian - 3R - Example

« Re-arranged to previous two terms gives an expression that encapsulates
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- We can now factor out the joint velocities vector 0 = [919293]T from the above vector to formulate the
Jacobian matrix
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Jacobian - 3R - Example
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« The equations for NV,\I and Na)N are always a linear combination of the joint velocities, so they can always

be used to find the 6xN Jacobian matrix (N J(8) ) for any robot manipulator.

* Note that the Jacobian matrix is expressed in frame {4}
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Jacobian: Frame of Representation

* Using the velocity propagation method we
expressed the relationship between the
velocity of the robot end effector
measured relative to the robot base frame
{0} and expressed in the end effector
frame {N}.

VX =3 (9)

» Occasionally, it may be desirable to
express (represent) the end effector v
velocities in another frame (e.g. frame
{0}, in which case we will need a method
to provide the transformation.
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Jacobian: Frame of Representation

« There are two methods to change the references frame (frame of representation) of the Jacobian Matrix

— Method 1: Transforming the linear and angular velocities to the new frame prior to formulating the
Jabobian matrix. o

— Method 2: Transforming the Jacobian matrix from it existing frame to the new frame after it was
formulated.
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Jacobian Expression
Frame of Reference

Method No. 1
Transform the Velocity Vectors
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Jacobian: Frame of Representation — Method 1

« Consider the velocities in a different frame {B}
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« We may use the rotation matrix to find the velocities in frame {A}:
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Jacobian: Frame of Representation — Method 1

« Example: Analyzing a 6 DOF manipulator while utilizing velocity propagation method results in an expressing
the end effector (frame 6) linear and angular velocities.
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« Using the forward kinematics formulation the rotation matrix from frame 0 to frame 6 can be defined as
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« The linear and angular velocities can than be expressed in frame O prior to extracting the Jacobian in frame 0
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Jacobian Expression
Frame of Reference

Method No. 2
Transform the Jacobian Matrix
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Jacobian: Frame of Representation — Method 2

« Itis possible to define a Jacobian transformation matrix QRJ that can transform the Jacobian from frame A
to frame B
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« The Jacobian rotation matrix E/?RJ IS given by
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J Jacobian: Frame of Representation

« or equivalently,
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Jacobian: Frame of Representation - 3R Example
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Jacobian Methods of Derivation & the
Corresponding Reference Frame - Summary

Jacobian Transformation to Base Frame (Frame 0)
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Inverse Jacobian - Reduced Jacobian

e Problem

— When the number of joints (N) is less than 6, the manipulator does not have the necessary degrees of
freedom to achieve independent control of all six velocities components.
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« Solution Q7

— We can reduce the number of rows in the original Jacobian to describe a reduced Cartesian vector. For
example, the full Cartesian velocity vector is given by
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‘ Jacobian: Reduced Jacobian - 3R Example

« Matrix Reduction - Option 1
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* Column of zeroes
 The determinate is equal to zero
« Only two out of the three variables can be independently specified
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‘ Jacobian: Reduced Jacobian - 3R Example

« Matrix Reduction - Option 2
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« Two columns of zeroes
« The determinate is equal to zero
« Only one out of the three variables can be independently specified
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Jacobian: Reduced Jacobian - 3R Example

« Matrix Reduction - Option 3

« The resulting reduced Jacobian will be square (the number of independent rows
in the Jacobian are equal to the number of unknown variables) and can be

inverted unless in a singular configuration.
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Jacobian: Singular Configuration - 3R Example
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