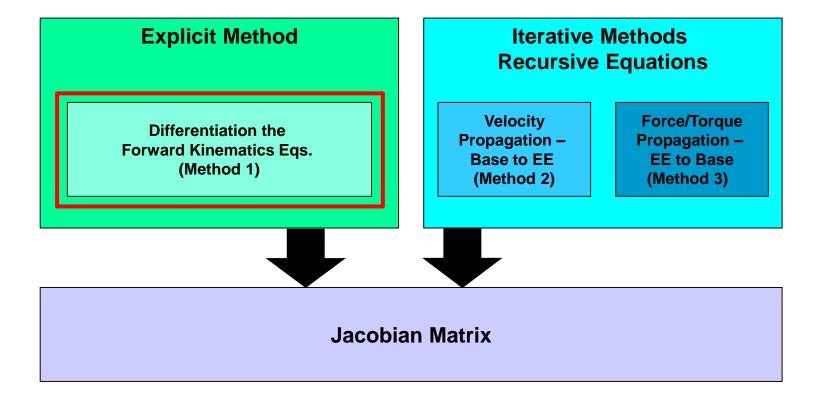
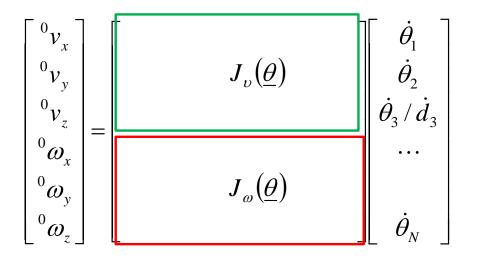


Jacobian Explicit Method -Differentiation the Forward Kinematics Eqs. (Method No. 1)

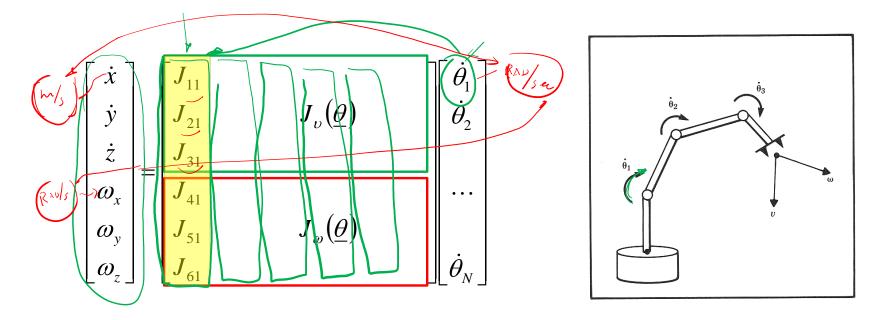
Jacobian Matrix - Derivation Methods



$$\begin{bmatrix} {}^{0}v\\ {}^{0}\omega \end{bmatrix} = \dot{X} = {}^{0}J(\theta)\dot{\Theta}$$



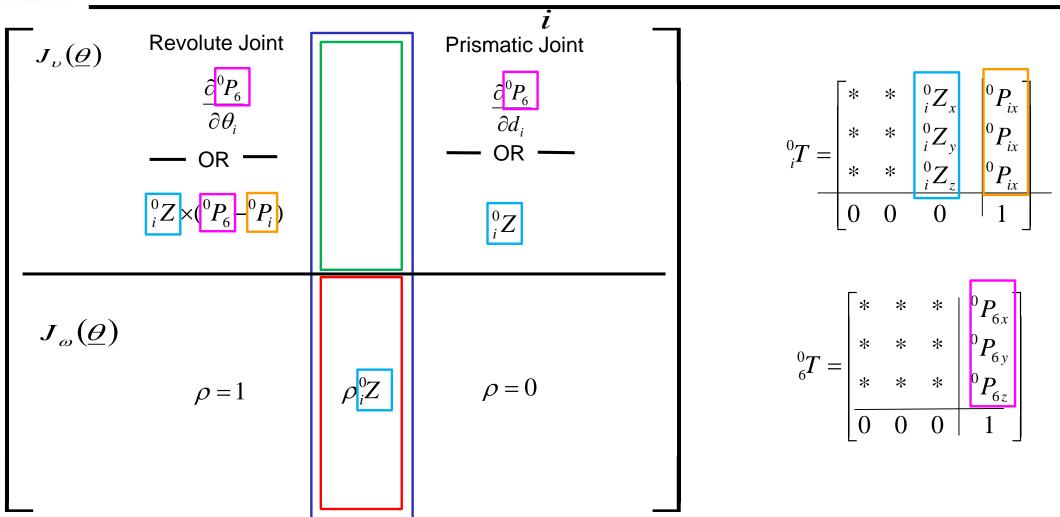
• The meaning of <u>each column (e.g.</u> the first column) of the Jacobian matrix:



• The first column maps the contribution of the angular velocity of the first joint to the linear and angular velocities of the end effector along all the axis (x,y,z)

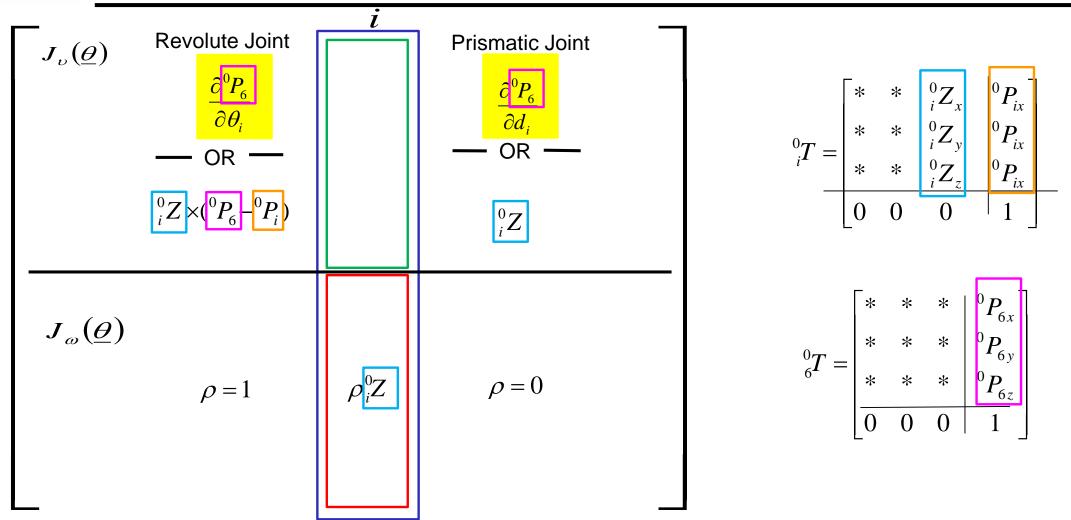
Jacobian Explicit Method

Technique



Jacobian Explicit Method – Rational

Geometric/Analytical Explnantion



Jacobian – Explicit Form – Linear Velocity J_{ν}

$$y_{1} = f_{1}(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6})$$

$$y_{2} = f_{2}(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6})$$

$$\vdots$$

$$y_{6} = f_{6}(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6})$$

$$\delta y_{1} = \frac{\partial f_{1}}{\partial x_{1}} \delta x_{1} + \frac{\partial f_{1}}{\partial x_{2}} \delta x_{2} + \ldots + \frac{\partial f_{1}}{\partial x_{6}} \delta x_{6}$$

$$\vdots$$

$$\delta y_{6} = \frac{\partial f_{2}}{\partial x_{1}} \delta x_{1} + \frac{\partial f_{2}}{\partial x_{2}} \delta x_{2} + \ldots + \frac{\partial f_{2}}{\partial x_{6}} \delta x_{6}$$

$$i$$

$$\delta y_{6} = \frac{\partial f_{6}}{\partial x_{1}} \delta x_{1} + \frac{\partial f_{6}}{\partial x_{2}} \delta x_{2} + \ldots + \frac{\partial f_{6}}{\partial x_{6}} \delta x_{6}$$

$$\delta y_{6} = \frac{\partial f_{6}}{\partial x_{1}} \delta x_{1} + \frac{\partial f_{6}}{\partial x_{2}} \delta x_{2} + \ldots + \frac{\partial f_{6}}{\partial x_{6}} \delta x_{6}$$

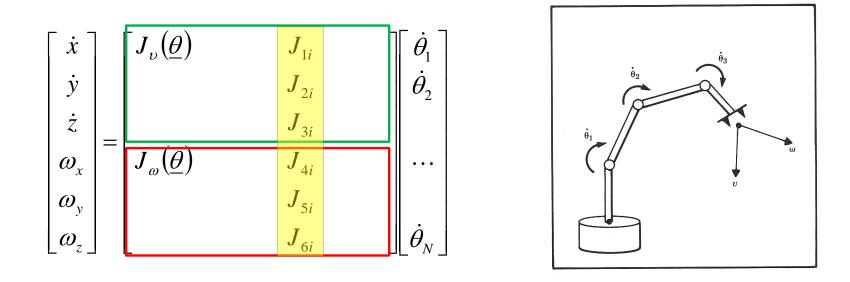
$$\delta y_{6} = \frac{\partial f_{6}}{\partial x_{1}} \delta x_{1} + \frac{\partial f_{6}}{\partial x_{2}} \delta x_{2} + \ldots + \frac{\partial f_{6}}{\partial x_{6}} \delta x_{6}$$

$$\delta Y = \frac{\partial F}{\partial X} \delta X = J(X) \delta X$$

Π

$$\begin{split} \delta y_1 &= \frac{\partial f_1}{\partial x_1} \, \delta x_1 + \frac{\partial f_1}{\partial x_2} \, \delta x_2 + \ldots + \frac{\partial f_1}{\partial x_6} \, \delta x_6 \\ \delta y_2 &= \frac{\partial f_2}{\partial x_1} \, \delta x_1 + \frac{\partial f_2}{\partial x_2} \, \delta x_2 + \ldots + \frac{\partial f_2}{\partial x_6} \, \delta x_6 \\ \vdots \\ \delta y_6 &= \frac{\partial f_6}{\partial x_1} \, \delta x_1 + \frac{\partial f_6}{\partial x_2} \, \delta x_2 + \ldots + \frac{\partial f_6}{\partial x_6} \, \delta x_6 \\ J_{vi} &= \frac{\partial^0 P_6}{\partial \theta_i} \end{split}$$

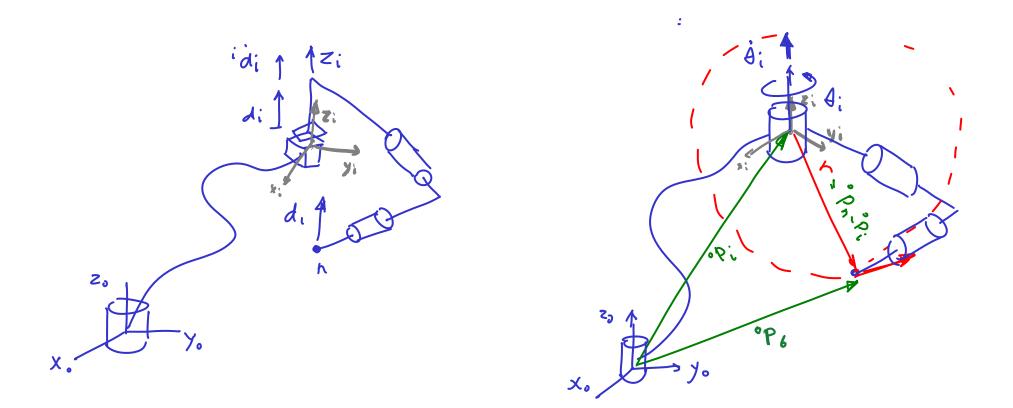
• The meaning of <u>each column</u> of the Jacobian matrix:

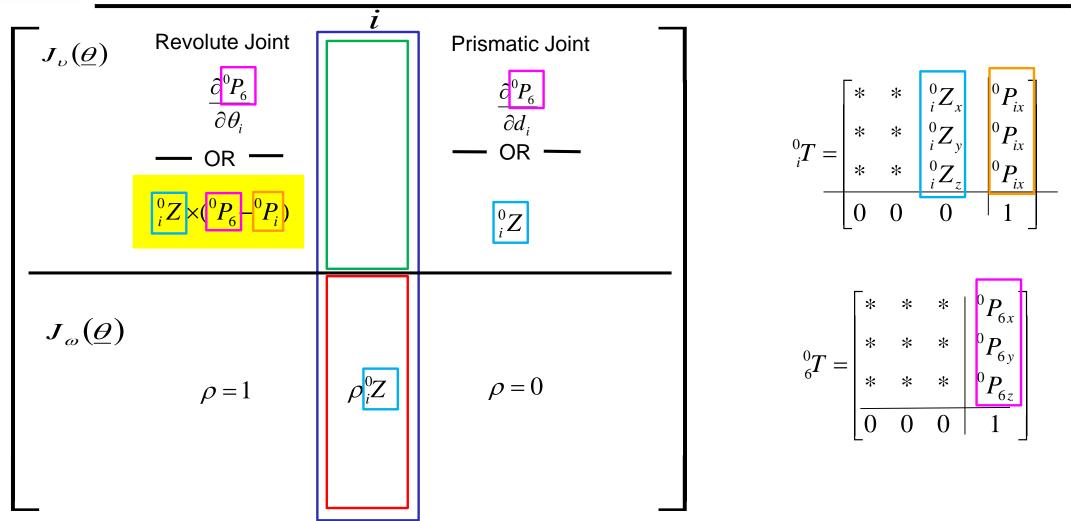


• The i'th column maps the contribution of the angular velocity of the i'th joint to the linear and angular velocities of the end effector along all the axis (x,y,z)

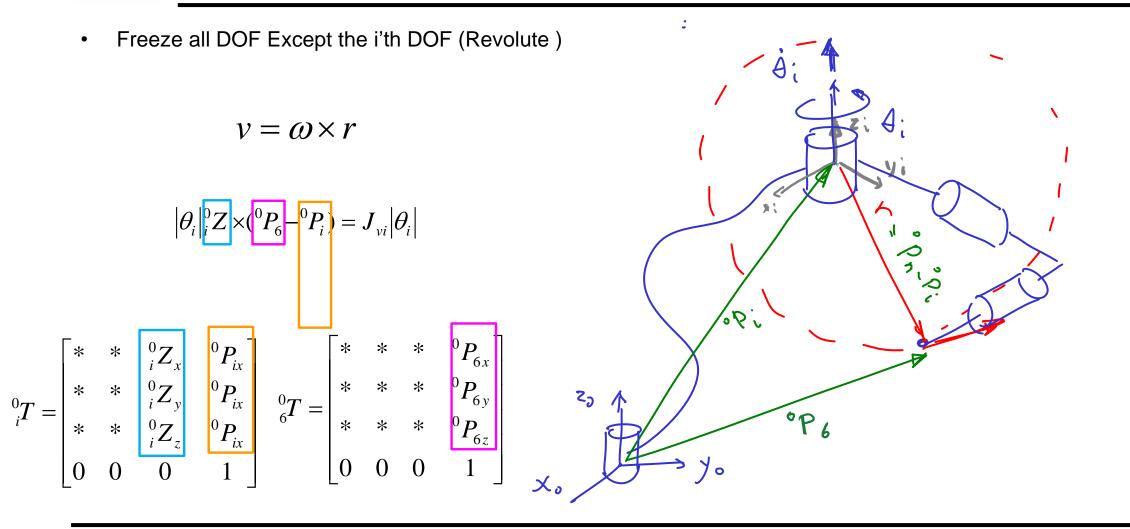
Jacobian – Explicit Form – Linear Velocity J_{v}

• The i'th column of the Jacobian can be generated by holding all the joints fixed but the i'th and actuating the i'th at a unite velocity



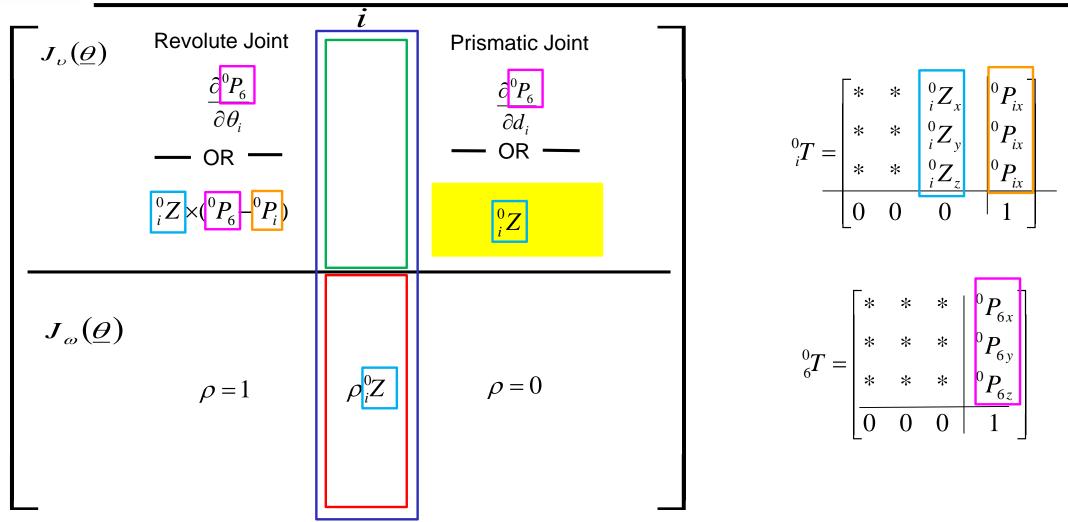


Jacobian – Explicit Form – Linear Velocity Case 1 – Revolute Joint



J

υ

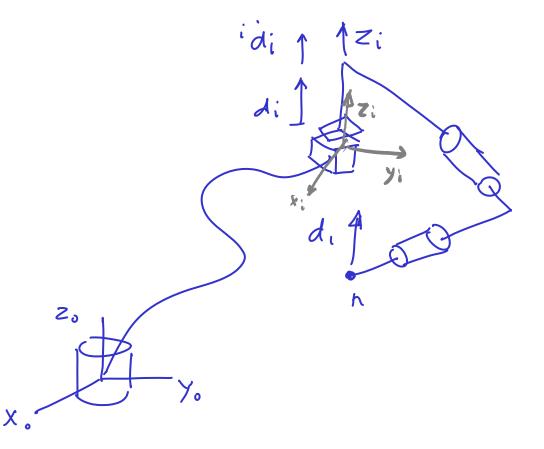


Jacobian – Explicit Form – Linear Velocity J_{v} Case 2- Prismatic Joint J_{v}

• Freeze all DOF Except the i'th DOF (Prismatic)

$${}^{0}\dot{P}_{i} = \left|\dot{d}_{i}\right|_{i}^{0}R\begin{bmatrix}0\\0\\1\end{bmatrix} = \left|\dot{d}_{i}\right|\begin{bmatrix}{}^{0}Z_{x}\\{}^{0}Z_{y}\\{}^{0}Z_{z}\end{bmatrix} = \left|\dot{d}_{i}\right|_{i}^{0}Z$$

$${}^{0}Z_{z} = \begin{bmatrix}* & * & {}^{0}Z_{x} & ** & * & {}^{0}Z_{x} & ** & * & {}^{0}Z_{y} & ** & * & {}^{0}Z_{z} & *\\0 & 0 & 0 & 1\end{bmatrix}$$

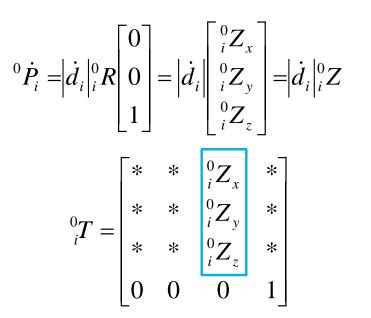


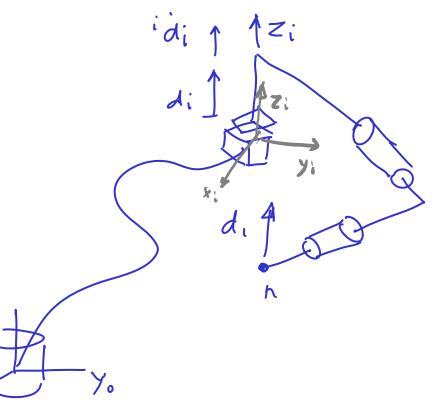
Jacobian – Explicit Form – Linear Velocity J_v Case 2- Prismatic Joint J_v

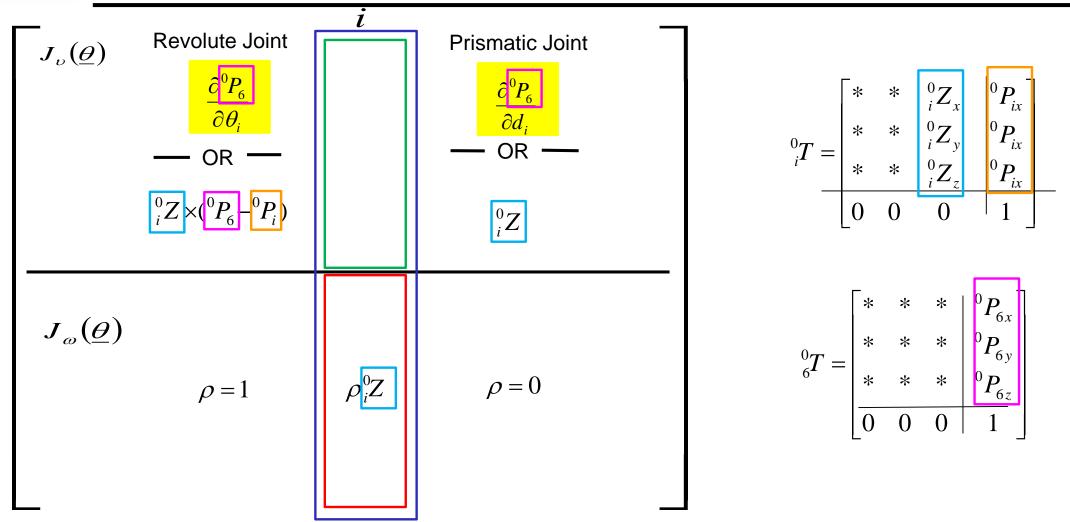
Z.

Х,

- All the joints are fixed except a single prismatic joint.
- The i'th prismatic joint generates pure translation of the end effector
- The direction of the translation is parallel to the axis Z_i







Jacobian – Explicit Form – Linear Velocity Derivative

1)

• The linear velocity of the end effector is ${}^{0}\dot{P}_{n}$. By the chain rule for differentiation

$${}^{0}\dot{P}_{n} = \sum_{i}^{n} \frac{\partial^{0} P_{n}}{\partial q_{i}} q_{i}$$

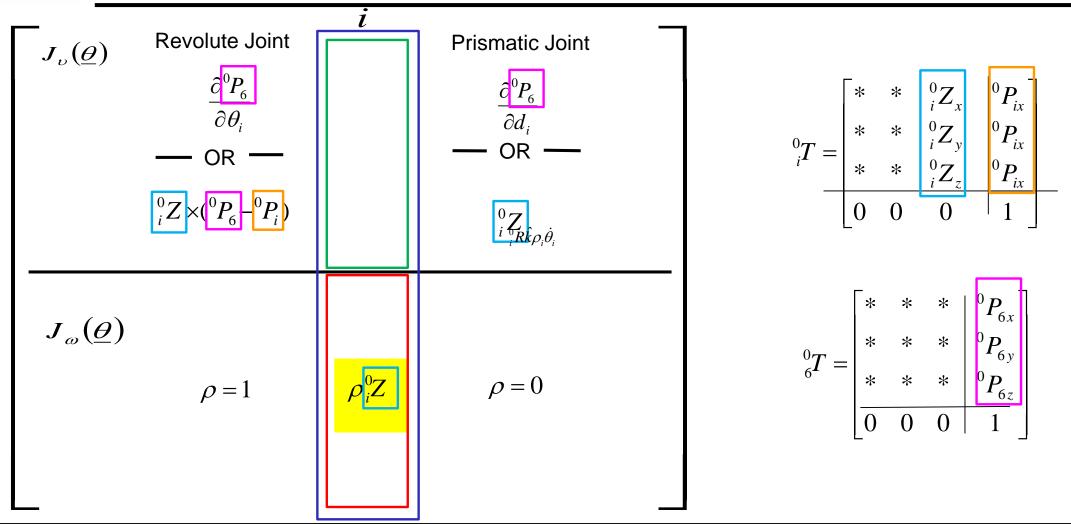
• Where q_i is the generalized notation for both the angle (revolute joint) and displacement (prismatic joint)

$$q_i = \begin{cases} \theta_i \\ d_i \end{cases}$$

• Thus the i'th column of $J_{\nu}(\underline{\theta})$ which denoted as $J_{\nu i}$ is given by

$$\frac{\partial^0 P_n}{\partial q_i}$$

• This expression is just the linear velocity of the end effector that would result if $q_i = 1$ and all the others $q_j = 0$



Jacobian – Explicit Form – Angular Velocity J_{ω}

$$i^{i+1}\omega_{i+1} = i^{i+1}R^{i}\omega_{i} + \rho \begin{bmatrix} 0\\0\\0\\\dot{\theta}_{i+1} \end{bmatrix}$$

For $i=0$
$$i^{0}\omega_{1} = {}_{0}^{1}R^{0}\omega_{0} + \rho_{1}\begin{bmatrix} 0\\0\\\dot{\theta}_{1} \end{bmatrix}$$

For $i=1$
$$i^{0}\omega_{2} = {}_{1}^{2}R^{1}\omega_{1} + \rho_{2}\begin{bmatrix} 0\\0\\\dot{\theta}_{2} \end{bmatrix} = {}_{1}^{2}R\rho_{1}\begin{bmatrix} 0\\0\\\dot{\theta}_{1} \end{bmatrix} + \rho_{2}\begin{bmatrix} 0\\0\\\dot{\theta}_{2} \end{bmatrix}$$

For $i=2$
$$i^{0}\omega_{3} = {}_{2}^{3}R^{2}\omega_{2} + \rho_{3}\begin{bmatrix} 0\\0\\\dot{\theta}_{3} \end{bmatrix} = {}_{2}^{3}R\begin{bmatrix} {}_{1}^{2}R\rho_{1}\begin{bmatrix} 0\\0\\\dot{\theta}_{1} \end{bmatrix} + \rho_{2}\begin{bmatrix} 0\\0\\\dot{\theta}_{2} \end{bmatrix} + \rho_{3}\begin{bmatrix} 0\\0\\\dot{\theta}_{3} \end{bmatrix} = {}_{1}^{3}R\rho_{1}\begin{bmatrix} 0\\0\\\dot{\theta}_{1} \end{bmatrix} + {}_{2}^{3}R\rho_{2}\begin{bmatrix} 0\\0\\\dot{\theta}_{2} \end{bmatrix} + \rho_{3}\begin{bmatrix} 0\\0\\\dot{\theta}_{3} \end{bmatrix} = {}_{1}^{3}R\rho_{1}\begin{bmatrix} 0\\0\\\dot{\theta}_{1} \end{bmatrix} + {}_{2}^{3}R\rho_{2}\begin{bmatrix} 0\\0\\\dot{\theta}_{2} \end{bmatrix} + \rho_{3}\begin{bmatrix} 0\\0\\\dot{\theta}_{3} \end{bmatrix} = {}_{1}^{3}R\rho_{1}\begin{bmatrix} 0\\0\\\dot{\theta}_{3} \end{bmatrix} + {}_{2}^{3}R\rho_{2}\begin{bmatrix} 0\\0\\\dot{\theta}_{2} \end{bmatrix} + {}_{2}^{3}R\rho_{3}\begin{bmatrix} 0\\0\\\dot{\theta}_{3} \end{bmatrix} = {}_{1}^{3}R\rho_{1}\begin{bmatrix} 0\\0\\\dot{\theta}_{3} \end{bmatrix} + {}_{2}^{3}R\rho_{2}\begin{bmatrix} 0\\0\\\dot{\theta}_{2} \end{bmatrix} + {}_{2}^{3}R\rho_{3}\begin{bmatrix} 0\\0\\\dot{\theta}_{3} \end{bmatrix} = {}_{1}^{3}R\rho_{1}\begin{bmatrix} 0\\0\\\dot{\theta}_{3} \end{bmatrix} + {}_{2}^{3}R\rho_{2}\begin{bmatrix} 0\\0\\\dot{\theta}_{3} \end{bmatrix} + {}_{2}^{3}R\rho_{3}\begin{bmatrix} 0\\0\\\dot{\theta}_{3} \end{bmatrix} = {}_{1}^{3}R\rho_{1}\begin{bmatrix} 0\\0\\\dot{\theta}_{3} \end{bmatrix} + {}_{2}^{3}R\rho_{2}\begin{bmatrix} 0\\0\\\dot{\theta}_{3} \end{bmatrix} + {}_{2}^{3}R\rho_{3}\begin{bmatrix} 0\\0\\\dot{\theta}_{3} \end{bmatrix} = {}_{1}^{3}R\rho_{1}\begin{bmatrix} 0\\0\\\dot{\theta}_{3} \end{bmatrix} + {}_{2}^{3}R\rho_{3}\begin{bmatrix} 0\\0\\\dot{\theta}_{3} \end{bmatrix} = {}_{1}^{3}R\rho_{3}\begin{bmatrix} 0\\0\\\dot{\theta}_{3} \end{bmatrix} = {}_{1}^{3}R\rho_{1}\begin{bmatrix} 0\\0\\\dot{\theta}_{3} \end{bmatrix} + {}_{2}^{3}R\rho_{3}\begin{bmatrix} 0\\0\\\dot{\theta}_{3} \end{bmatrix} = {}_{1}^{3}R\rho_{3}\begin{bmatrix} 0\\0\\\dot{\theta}_{3} \end{bmatrix} = {}_{1}^{3}R\rho_{1}\begin{bmatrix} 0\\0\\\dot{\theta}_{3$$

For
$$i=n-1$$

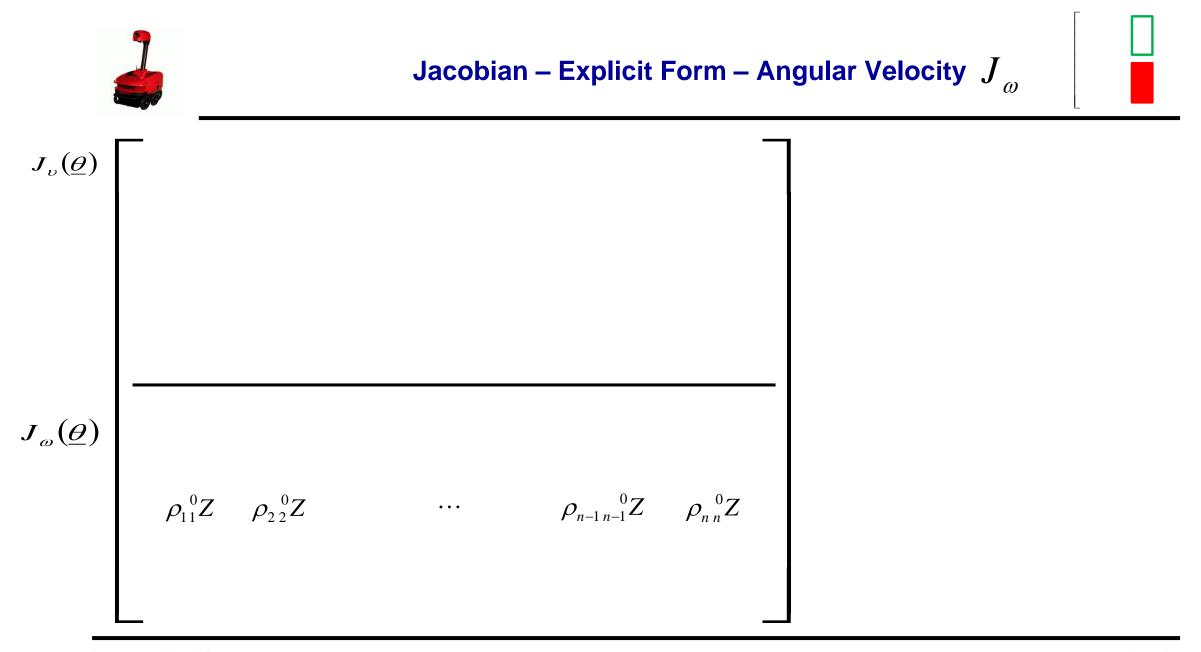
 $^{i+1}\omega_{i+1} = {}^{i+1}R^i\omega_i + \rho \begin{bmatrix} 0\\0\\\dot{\theta}_{i+1} \end{bmatrix}$
 $I = {}^{I}R\rho_1\begin{bmatrix} 0\\0\\\dot{\theta}_1 \end{bmatrix} + {}^{n}R\rho_2\begin{bmatrix} 0\\0\\\dot{\theta}_2 \end{bmatrix} + {}^{n}R\rho_3\begin{bmatrix} 0\\0\\\dot{\theta}_3 \end{bmatrix} + \cdots {}^{n}R\rho_n\begin{bmatrix} 0\\0\\\dot{\theta}_n \end{bmatrix}$

• Multiply both side of the equations by ${}^0_n R$

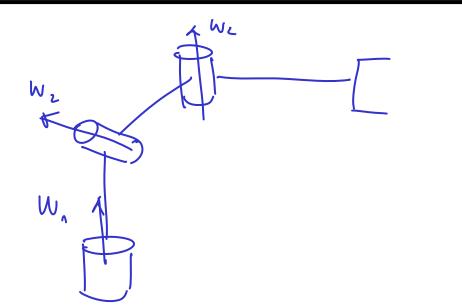
$${}_{n}^{0}R^{n}\omega_{n} = {}_{n}^{0}R\left[{}_{n-1}^{n}R^{n-1}\omega_{n-1} + \rho_{n} \begin{bmatrix} 0\\0\\\dot{\theta}_{3} \end{bmatrix} \right] = {}_{n}^{0}R_{1}^{n}R\rho_{1} \begin{bmatrix} 0\\0\\\dot{\theta}_{1} \end{bmatrix} + {}_{n}^{0}R_{2}^{n}R\rho_{2} \begin{bmatrix} 0\\0\\\dot{\theta}_{2} \end{bmatrix} + {}_{n}^{0}R_{3}^{n}R\rho_{3} \begin{bmatrix} 0\\0\\\dot{\theta}_{3} \end{bmatrix} + \dots + {}_{n}^{0}R_{n}^{n}R\rho_{n} \begin{bmatrix} 0\\0\\\dot{\theta}_{n} \end{bmatrix}$$

$${}^{0}_{n}R^{n}\omega_{n} = {}^{0}_{n}R\left[{}^{n}_{n-1}R^{n-1}\omega_{n-1} + \rho_{n}\left[{\begin{array}{*{20}c} 0\\ 0\\ \dot{\theta}_{3} \end{array}} \right] = {}^{0}_{n}R^{n}_{1}R\rho_{1}\left[{\begin{array}{*{20}c} 0\\ 0\\ \dot{\theta}_{1} \end{array}} \right] + {}^{0}_{n}R^{n}_{2}R\rho_{2}\left[{\begin{array}{*{20}c} 0\\ 0\\ \dot{\theta}_{2} \end{array}} \right] + {}^{0}_{n}R^{n}_{3}R\rho_{3}\left[{\begin{array}{*{20}c} 0\\ 0\\ \dot{\theta}_{3} \end{array}} \right] + \cdots + {}^{0}_{n}R^{n}_{n}R\rho_{n}\left[{\begin{array}{*{20}c} 0\\ 0\\ \dot{\theta}_{n} \end{array}} \right]$$
$${}^{0}\omega_{n} = \cdots \qquad = {}^{0}_{1}R\rho_{1}\left[{\begin{array}{*{20}c} 0\\ 0\\ \dot{\theta}_{1} \end{array}} \right] + {}^{0}_{2}R\rho_{2}\left[{\begin{array}{*{20}c} 0\\ 0\\ \dot{\theta}_{2} \end{array}} \right] + {}^{0}_{3}R\rho_{3}\left[{\begin{array}{*{20}c} 0\\ 0\\ \dot{\theta}_{3} \end{array}} \right] + \cdots + {}^{0}_{n}R\rho_{n}\left[{\begin{array}{*{20}c} 0\\ 0\\ \dot{\theta}_{n} \end{array}} \right]$$

$${}^{0}\omega_{n} = \sum_{i=1}^{n} {}^{0}_{i} R\rho_{i} \begin{bmatrix} 0\\0\\\dot{\theta}_{i} \end{bmatrix} = \sum_{i=1}^{n} {}^{0}_{i} R\hat{k}\rho_{i}\dot{\theta}_{i} = \sum_{i=1}^{n} {}^{0}_{i} Z\rho_{i}\dot{\theta}_{i}$$



Jacobian – Explicit Form – Angular Velocity J_{ω}



Jacobian Methods of Derivation & the Corresponding Reference Frame – Summary

Method	Jacobian Matrix Reference Frame	Transformation to Base Frame (Frame 0)
Explicit (Diff. the Forward Kinematic Eq.)	${}^{0}{m J}_{N}$	None
Iterative Velocity Eq.	$^{N}\boldsymbol{J}_{N}$	Transform Method 1: ${}^{0}v_{N} = {}^{0}_{N}R^{N}v_{N}$ ${}^{0}\omega_{N} = {}^{0}_{N}R^{N}\omega_{N}$ Transform Method 2: ${}^{0}J_{N}(\theta) = \left[{}^{0}_{N}R 0 \\ 0 {}^{0}_{N}R \right] {}^{N}J_{N}(\theta)$
Iterative Force Eq.	$^{N}\boldsymbol{J}_{N}^{T}$	Transpose ${}^{N}J_{N} = [{}^{N}J_{N}^{T}]^{T}$ Transform ${}^{0}J_{N}(\theta) = \begin{bmatrix} {}^{0}R & 0 \\ 0 & {}^{0}_{N}R \end{bmatrix} {}^{N}J_{N}(\theta)$

