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Jacobian — Mapping Operator
Joint & Cartesian/Task Spaces
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Kinematics Relations - Joint & Cartesian/Task Spaces

 Avrobot is often used to manipulate object attached to its tip (end effector).

« The location of the robot tip may be specified using one of the following
descriptions:
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Kinematics Relations - Forward & Inverse

« The robot kinematic equations relate the two description of the robot tip location
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Kinematics Relations - Forward & Inverse
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Jacobian — Derivation from First Principals
Velocity Maping
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Jacobian Matrix - Introduction

« The Jacobian is a multi dimensional form of the derivative.
« Suppose that for example we have 6 functions, each of which is a function of 6 independent variables

Y= fl()\(;’XZ'X3’X4’X5’)\(Q)
Y, = fz(Xl,XZ,X3,X4,X5,X6)

Yo = T (X0 %50 X5, X0 X5, Xg)

« We may also use a vector notation to write these equations as

Y =B
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Jacobian Matrix - Introduction

- If we wish to calculate the differential of Y; as a function of the differential X; we use the chain rule to get
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«  Which again might be written more simply using a vector notation as
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Jacobian Matrix - Introduction

The 6x6 matrix of partial derivative is defined as the Jacobian matrix
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Jacobian Matrix - Introduction

* In the field of robotics the Jacobian
matrix describe the relationship
between the joint angle rates ( QN)
and the translation and rotation
velocities of the end effector ( X ).
This relationship is given by:
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Jacobian Matrix - Introduction

* In the field of robotics the Jacobian
matrix describe the relationship
between the joint angle rates ( QN)
and the translation and rotation
velocities of the end effector ( X ). 6, q
This relationship is given by:
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« Note: The Jacobian is a function of joint angle (§) meaning that the Jacobian
varies as the configuration of the arm changes
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Jacobian Matrix - Introduction

This expression can be expanded to:

- X

__Q_
JU(Q) 92
1,(0)

116w |
6xXN Nx1

Is a 6x1 vector of the end effector linear and angular velocities

- J (Q) is a 6xN Jacobian matrix

— @, is a Nx1 vector of the manipulator joint velocities

- N

Is the number of joints
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Jacobian Matrix - Introduction

« The meaning of each line (e.g. the first line) of the Jacobian matrix:
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« The first line maps the contribution of the angular velocity of each joint to the linear velocity of the end
effector along the x-axis
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Jacobian Matrix - Introduction

« The meaning of each column (e.g. the first column) of the Jacobian matrix:

« The first column maps the contribution of the angular velocity of the first joint to the linear and angular
velocities of the end effector along all the axis (x,y,z)
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Jacobian — Derivation from First Principels
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Jacobian Matrix - Introduction
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Jacobian Matrix - Introduction




Jacobian Matrix - Introduction

* In addition to the velocity
relationship, we are also interested in
developing a relationship between
the robot joint torques ( 7 ) and the
forces and moments ( F ) at the
robot end effector (Static
Conditions). This relationship is

iven by:
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Jacobian Matrix - Introduction

« This expression can be expanded to:
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«  Where:

— T is a6x1 vector of the robot joint torques

-J (Q)T is a 6XN Transposed Jacobian matrix

— F is a Nx1 vector of the forces and moments at the robot end effector

— N is the number of joints
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Jacobian Matrix - Introduction

The meaning of each line (e.g. the first line) of the Jacobian matrix:
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Action: The first line represent how the torque applied at the first joint contributes to the forces and torques
applied by the end effector

Reaction: The first line maps the contribution of the partial external loads applied on the end effector to the
join torque that needs to be applied to maintain static equilibriums
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Jacobian Matrix - Introduction

« The meaning of each column (e.g. the first column) of the Jacobian matrix:

_71 ] Jig @ F, ]
& Jip Fy
o v | se ||F
‘]14 Ile
Jis |\/|y

| TN Ji6 _Mz_
Nx1 6XN 6x1

« Action: The first column represent what partial torque applied by each joint is required to create an
equilibrium of the force aloning the X- Axis

« Reaction: The first column maps the contribution of the partial external loads of the force along the X-axis
applied on the end effector to the join torques that are needed to be applied to maintain static equilibriums
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Jacobian Matrix - Derivation Methods

Differentiation the
Forward Kinematics Egs.
(Method 1)
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Jacobian Matrix
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Jacobian — R Robot (1 DOF) - Example
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Jacobian Matrix by Differentiation - 1R - 1/4

« Consider a simple planar 1R robot
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« The end effector position is given by
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Jacobian Matrix by Differentiation - 1R - 2/4

« The velocity of the end effector is defined by

« Expressed in matrix form we have
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Jacobian Matrix by Differentiation - 1R - 3/4
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« The moment about the joint generated by the force acting on the end effector is given by
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Jacobian Matrix by Differentiation - 1R - 4/4

Expressed in matrix form we have
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Jacobian — RR Robot (3 DOF) - Example
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Jacobian Matrix by Differanciation - 3R - 1/4

« Consider the following 3 DOF Planar manipulator
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Jacobian Matrix by Differanciation - 3R - 2/4

Problem: Compute the Jacobian matrix that describes the relationship

Solution:

The end effector position and orientation is defined in the base frame by
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Jacobian Matrix by Differanciation - 3R - 3/4

« The forward kinematics gives us relationship of the end effector to the joint an%Ies
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Jacobian Matrix by Differanciation - 3R - 4/4

« Using a matrix form we get FRAME O
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« The Jacobian provides a linear transformation, giving a velocity map and a force map for a robot manipulator.
For the simple example above, the equations are trivial, but can easily become more complicated with robots
that have additional degrees a freedom. Before tackling these problems, consider this brief review of linear
algebra.
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