
Jacobian

Introduction 

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA



Jacobian – Mapping Operator

Joint & Cartesian/Task Spaces
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Kinematics Relations - Joint & Cartesian/Task Spaces 

• A robot is often used to manipulate object attached to its tip (end effector). 

• The location of the robot tip may be specified using one of the following 

descriptions: 

• Joint Space

• Cartesian Space
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Kinematics Relations - Forward & Inverse 

• The robot kinematic equations relate the two description of the robot tip location
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Kinematics Relations - Forward & Inverse 
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Jacobian – Derivation from First Principals

Velocity Maping  
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Jacobian Matrix - Introduction

• The Jacobian is a multi dimensional form of the derivative.

• Suppose that for example we have 6 functions, each of which is a function of 6 independent variables

• We may also use a vector notation to write these equations as    
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Jacobian Matrix - Introduction

• If we wish to calculate the differential of         as a function of the differential          we use the chain rule to get

• Which again might be written more simply using a vector notation as  
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Jacobian Matrix - Introduction

• The 6x6 matrix of partial derivative is defined as the Jacobian matrix

• By dividing both sides by the differential time element, we can think of the Jacobian as mapping velocities in 

X to those in Y

• Note that the Jacobian is time varying linear transformation   
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Jacobian Matrix - Introduction

• In the field of robotics the Jacobian 

matrix describe the  relationship 

between the joint angle rates  (       ) 

and the translation and rotation 

velocities of the end effector (       ).  

This relationship is given by:
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Jacobian Matrix - Introduction

• In the field of robotics the Jacobian 
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Jacobian Matrix - Introduction

• This expression can be expanded to:

• Where:

– is a 6x1 vector of the end effector linear and angular velocities

– is a 6xN Jacobian matrix 

– is a Nx1 vector of the manipulator joint velocities

– is the number of joints 
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Jacobian Matrix - Introduction

• The meaning of each line (e.g. the first line) of the Jacobian matrix:

• The first line maps the contribution of the angular velocity of each joint to the linear velocity of the end 

effector along the x-axis 
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Jacobian Matrix - Introduction

• The meaning of each column (e.g. the first column) of the Jacobian matrix:

• The first column maps the contribution of the angular velocity of the first joint to the linear and angular 

velocities of the end effector along all the axis (x,y,z) 
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Jacobian – Derivation from First Principels 
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Jacobian Matrix - Introduction

• In addition to the velocity 

relationship, we are also interested in 

developing a relationship between 

the robot joint torques (     ) and the 

forces and moments (     ) at the 

robot end effector (Static 

Conditions).  This relationship is 

given by:
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Jacobian Matrix - Introduction

• This expression can be expanded to:

• Where:

– is a 6x1 vector of the robot joint torques 

– is a 6xN Transposed Jacobian matrix 

– is a Nx1 vector of the forces and moments at the robot end effector

– is the number of joints
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Jacobian Matrix - Introduction

• The meaning of each line (e.g. the first line) of the Jacobian matrix:

• Action: The first line represent how the torque applied at the first joint contributes to the forces and torques 

applied by the end effector 

• Reaction: The first line maps the contribution of the partial external loads applied on the end effector to the 

join torque that needs to be applied to maintain static equilibriums

•

6x16xNNx1
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Jacobian Matrix - Introduction

• The meaning of each column (e.g. the first column) of the Jacobian matrix:

• Action: The first column represent what partial torque applied by each joint is required to create an 

equilibrium of the force aloning the X- Axis 

• Reaction: The first column maps the contribution of the partial external loads of the force along the X-axis 

applied on the end effector to the join torques that are needed to be applied to maintain static equilibriums
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Jacobian Matrix - Derivation Methods

Jacobian Matrix
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Explicit Method

Differentiation the 

Forward Kinematics Eqs. 

(Method 1)

Iterative Methods 

Recursive Equations

Velocity

Propagation –

Base to EE 

(Method 2)

Force/Torque

Propagation –

EE to Base

(Method 3)  
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Jacobian – R Robot (1 DOF) - Example
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Jacobian Matrix by Differentiation - 1R - 1/4

• Consider a simple planar 1R robot

• The end effector position is given by 
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Jacobian Matrix by Differentiation - 1R - 2/4

• The velocity of the end effector is defined by

• Expressed in matrix form we have

 

 







coscos

sinsin

00

00

rryPV

rrxPV

yy

xx





 


 





















cos

sin

r

r

y

x

   Jx 

2x1 2x1 1x1

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA



Jacobian Matrix by Differentiation - 1R - 3/4

• The moment about the joint generated by the force acting on the end effector is given by
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Jacobian Matrix by Differentiation - 1R - 4/4

• Expressed in matrix form we have
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Jacobian – RR Robot (3 DOF) - Example
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Jacobian Matrix by Differanciation - 3R - 1/4

• Consider the following 3 DOF Planar manipulator
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Jacobian Matrix by Differanciation - 3R - 2/4

• Problem: Compute the Jacobian matrix that describes the relationship

• Solution:

• The end effector position and orientation is defined in the base frame by 
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Jacobian Matrix by Differanciation - 3R - 3/4

• The forward kinematics gives us relationship of the end effector to the joint angles:

• Differentiating the three expressions gives
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Jacobian Matrix by Differanciation - 3R - 4/4

• Using a matrix form we get

• The Jacobian provides a linear transformation, giving a velocity map and a force map for a robot manipulator.  

For the simple example above, the equations are trivial, but can easily become more complicated with robots 

that have additional degrees a freedom.  Before tackling these problems, consider this brief review of linear 

algebra. 
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