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Advanced Kinematics
Invers Kinematics — Two Problem
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Advanced Kinematics
Linear and Angular Velocities

Instructor: Jacob Rosen
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Jacobian Matrix - Calculation Methods

Iterative Propagation
(Velocities or Forces / Torques)

Bl
1 3

Jacobian Matrix

Instructor: Jacob Rosen
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Jacobian Matrix - Introduction

In the field of robotics the Jacobian matrix
describe the relationship between

*  The joint angle rates ( g, ) and the
translation and rotation velocities of the end
effector ( X ).

« The robot joint torques ( 7 ) and the forces
and moments ( F ) at the robot end effector
(Static Conditions). This relationship is
given by:

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Velocity Propagation — Intuitive Explanation

« Show a demo with the stick like frames

« Three Actions

— The origin of frame B moves as a function of time with respect to the origin
of frame A

— Point Q moves with respect to frame B
— Frame B rotates with respect to frame A along an axis defined by AQB

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Velocity Propagation — Intuitive Explanation

Engineer's Computation Pad
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Velocity Propagation — Link / Joint Abstraction
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Velocity Propagation — Link / Joint Abstraction
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Central Topic -
Simultaneous Linear and Rotational Velocity

AVQ:f(BP’ BVQ’ AVBORG’ AQB’ BAR)

« Vector Form (Method No. 1)

AVQ ="V one +aR E‘VQ +4Q, ><E’$RBPQ

« Matrix Form (Method No. 2)
{A)

Vo ="Vgore +R®V,+2R, (2R°P, )

« Matrix Formulation — Homogeneous
Transformation Form — Method No. 3

et b P

Instructor: Jacob Rosen
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Central Topic -
Changing Frame of Representation — Angular Velocity

« Angular Velocity Representation in
Various Frames

{A}

A A ApB
— Vector Form Q.="Q;+,R"Q,

— Matrix Form A AR AR By ApPpT
CRQ_BRQ+BRCRQBR

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Velocity — Derivation Method No. 1 & 2

Vector Form
Matrix Form

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA
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Definitions - Linear Velocity

« Linear velocity - The instantaneous rate of change in linear position of a point relative to some frame.

e
; UARY

P4 vab ) =" &) +'vqat

AP, (t+ At)—"P, (t
dt At—0 At
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Vo ="Vgora+eREV,+Q x 2REP, Vo ="Vooro RV +2R, (2R°P, )

Definitions - Linear Velocity

- Linear velocity - The instantaneous rate of change in linear position of a point relative to some frame.

AP (t + At)="P. (t
N, =—"P, ~ lim ot AR ()
dt At—0 At

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA
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Definitions - Linear Velocity

« The position of point Q in frame {A} is represented by the linear position vector

-
Pox
A A
PQ - PQy
A
Po

« The velocity of a point Q relative to frame {A} is represented by the linear velocity vector

A Ap
Aq P, Pox
A Ap
o= | Mo |=| Py
dt A Ap
Py | | Py |

Instructor: Jacob Rosen
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Vo, ="VgoreHaR BVQ

+AQ, % R®P, Vo="VeorsT6R Vo

Linear Velocity - Rigid Body

fixed. The orientation of frame {A}
with respect to frame {B}is not
changing as a function of time R =0

Problem: describe the motion of of
the vector BpQ relative to frame {A}

Solution: Frame {B} is located

relative to frame {A} by a position

vector “P, . and the rotation matrix 'R
(assume that the orientation is not

Given: Consider a frame {B} attached A
to a rigid body whereas frame {A} is

changing in time QR = () expressing
both components of the velocity in

terms of frame {A} gives

aY

Q

— AVBORG +7 ( BVQ ): AVBORG + Q R BVQ

Instructor: Jacob Rosen
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Linear Velocity - Rigid Body

« Given: Consider a frame {B} attached
to a rigid body whereas frame {A} is
fixed. The orientation of frame {A}
with respect to frame {B} is not Q
changing as a function of time E’jR =0 (B} *

*  Problem: describe the motion of of
the vector BpQ relative to frame {A}

A
Pporc

- Solution: Frame {B} is located
relative to frame {A} by a position R
vector APBORG and t_he rot_atlo.n matrix ;'R AR 0
(assume that the orientation is not B
changing in time QR = () expressing
both components of the velocity in

terms of frame {A} gives A/
Q

— AVBORG +7 ( BVQ ): AVBORG + Q R BVQ

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Linear Velocity — Translation (No Rotation)- Problem 1

Derivation
 Problem No. 1 — Change in a position of A, ol
Point Q R \
- Conditions ) {B} g} &
e

— Point Q is fixed in frame {B}
— Frame {B} translates with respect to

Frame {A}
Apso&a(’““)
B -0
+ o)
X | PR (t+ AD—"P (1) Mo (0
E(BPQ)zL'LT}) . AL . :B(BVQ):O

A Ara A
q _ P (t+AD—*P, (1)) A
—(*P, )~lim { Q ~ O A (Mg AV ="V one

Instructor: Jacob Rosen UCLA

Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA



Linear Velocity — Translation (No Rotation) — Problem 2
Derivation

« Problem No. 2 — Translation of frame {B}

- Conditions TV ak )
— Point Q is fixed in frame {B} (B} @*. |
— Frame {B} translates with respect to P ‘
Frame {A} Al 7 (my
4Pporc

=0

Const A A
Ad | —— P ({t+A)-"P (t)
d [APBORGJz“m — = :A(AVBORG ):AVBORG =0
dt At—0 At

A Arg B
d ) P,(t+At)—"P, (t
E(BPQ)zLIEE) ( o At) o )j:A(BVQ)

A ApB
V,=4REV,

Instructor: Jacob Rosen
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Linear Velocity — Translation (No Rotation) — Problem 1&2 -Derivation
Summary

Problem No. 1 — Change in a position of Point Q

Problem No. 2 — Translation of frame {B}

{B}

{A}

A
Pgorc

A\/Q = AVBORG H A(BVQ )I: AVBORG +l3AR BVQ

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Linear Velocity — Translation — Simultaneous Derivation

A A B
PQ: PBORG+ PQ

Differentiate with respect to coordinate system {A}

d Ad Ad
at (APQ ): E(APBORG )+ E(BPQ)

(4R " (Paore (5P )
(Ve " (WVaore 1+ (Vo)

aY

Q :AVBORG + A(BVQ ):AVBORG + I? R BVQ

{A}

A
Pporac

{B}

°p

Instructor: Jacob Rosen
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Linear & Angular Velocities - Frames

 When describing the velocity (linear or angular) of an object, there are two
important frames that are being used:

— Represented Frame (Reference Frame) : e.g. [A]
This is the frame used m_(e/xpress) the object’s velocity.

Computed Frame: e.g. [B]
This is the frame in which the velocity is measured (differentiate the position).

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA
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Frame - Velocity

« As with any vector, a velocity vector may be described in terms of any frame, and this frame of reference is
noted with a leading superscript.

» A velocity vector computed in frame {B} and represented in frame {A} would be written

,4t+A’(

LT QePYeSe"'(P‘I (P‘(Dje‘t‘“l v e QA}
=) ’Rq:reét,u‘lJ (‘)103{&! )h/\ ,(l,r@w\e{g]

Represented
(Reference Frame) -— Projected on

Represented d ]
Represented (Computedv ) _ Computed P M‘K\l o
Q) = Q //

dt

Computed
(Measured) - Differentiate with respect to

a COw\a\T\,\M\ [\ J\Y&MXAX

Instructor: Jacob Rosen
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Frame - Linear Velocity

We can always remove the outer, leading superscript by explicitly including the rotation matrix which
accomplishes the change in the reference frame

A3V, )=2R®V,,

Note that in the general case A(BVQ)=E’5RBVQ;'&AVQ because ;R may be time-verging QR #0

If the calculated velocity is written in terms of of the frame of differentiation the result could be indicated by a
single leading superscript.

A(AvQ ):AvQ

In a similar fashion when the angular velocity is expresses and measured as a vector

(*Qe)=gRQ

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA
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Frames - Linear Velocity - Example

Given: The driver of the car maintains a speed of 100 km/h (as shown to the driver by the car’s
speedometer).

Problem: Express the velocities C[CVC] " [WVC] W [CVC] C[WVC] in each section of the road A, B, C,
D, E, F where {C} - Car frame, and {W} - World frame

Represented
¢ (Reference Frame)
AY / Computed
= B 5 (Measured)
{C} /4
p &Y
X
{w}

Object Frame

Instructor: Jacob Rosen
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Frames - Linear Velocity - Example
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Frames - Linear Velocity - Example

(cd —-s6 0] —
*R=Rot(2,0)=|s® cO 0
0 0 1

0.707 —0.707 0.000]
Rot(2,+45°)=|0.707 0.707 0.000 67 “s
10.000 0.000 1.000

[ 0.707 0.707 0.000]

Rot(2,-45°) =| —0.707 0.707 0.000 i
0.000 0.000 1.000
0 -1 0] .. [0 1 0]
Rot(2,490°)=|1 0 0| $Rot(2-90°)=|-1 0 0| ¥
0 0 1 0 0 1]

Instructor: Jacob Rosen A
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCL
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Frames - Linear Velocity - Example

A(BVQ):QRBVQ
QR =0 is not time-varying (in this example)
" (*Ve)=cR*V, = I[0] =[0]
T (V)= R Ve =11V,
" ("Ve)=cR"V:=cRI0]=[0]

(V)R

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA
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Frames - Linear Velocity - Example

. Velocity
Road Section C[CVC] W[WVC] W[CVC] C[WVC]
A
%
__E
B
A B |D
E
()
E
D
A B |D
E
E
= A B |D
E

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA
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Linear Velocity - Free Vector

Linear velocity vectors are insensitive to shifts in origin.

Consider the following example:

The velocity of the object in {C} relative to both {A} and {B} is the same, that is

LY

As long as {A} and {B} remain fixed relative to each other (translational but not rotational), then the velocity
vector remains unchanged (that is, a free vector).

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA
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Angular Velocity - Rigid Body - Intuitive Approach

Ay f

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA
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Angular Velocity - Rigid Body

« Given: Consider a frame {B} attached
to a rigid body whereas frame {A} is
fixed. The vector Bp_ is constant as
view from frame {B} BVQ -0

 Problem: describe the velocity of the
vector®P. representing the the point
Q relative to frame {A}

- Solution: Even though the vector Bp
is constant as view from frame {B} it
IS clear that point Q will have a
velocity as seen from frame {A} due
to the rotational velocity AQB

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA
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Angular Velocity - Rigid Body - Intuitive Approach
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Angular Velocity - Rigid Body - Intuitive Approach

« The figure shows to instants of time
as the vector P rotates around AQ
This is what an observer in frame {A}
would observe. N

« The Magnitude of the differential
change is

‘APQ‘sine -

4
A
" AR,
P, (t+At)

A A A .
‘A PQ‘ :Q QB‘AtN PQ‘sme)
« Using a vector cross product we get

AR
2=V, =", xR,
At

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA
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Angular Velocity - Rigid Body - Intuitive Approach

Rotation in 2D
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AVQ:AVBORG +|3ARBVQ +AQBX£RBPQ AVQ:AVBORG+$RBVQ+§RQ(£RBPQ)
Angular Velocity - Rigid Body - Intuitive Approach

In the general case, the vector Q may also be changing with respect to the frame {B}. Adding this component
we get.

Vo =" (BV, QX P,

Using the rotation matrix to remove the dual-superscript, and since the description of at any instance is
A ApB
we get P s R°P,

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA
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Definitions - Angular Velocity

)

* Angular Velocity: The instantaneous rate of change in the orientation of one
frame relative to another.

® Point - 1D

. i Plane - 2D / Body - 3D
. i Plane - 2D / Body - 3D

Linear Velocity

Instructor: Jacob Rosen A
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCL



Vo ="Vgons +oR®V, 4" Qp x 2RP, Vo ="Vpors +ER®V, +R, (2R°P, )

Definitions - Angular Velocity

Just as there are many ways to represent orientation (Euler Angles, Roll-Pitch-Yaw Angles, Rotation
Matrices, etc.) there are also many ways to represent the rate of change in orientation.

Angular Velocity
Representation

3

Angular Velocity
Matrix

The angular velocity vector is convenient to use because it has an easy to grasp physical meaning.
However, the matrix form is useful when performing algebraic manipulations.

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA
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Definitions - Angular Velocity - Vector

Angular Velocity Vector: A vector whose direction is the instantaneous axis of rotation of one frame relative
to another and whose magnitude is the rate of rotation about that axis.

AQp

>

e
Il

®

The angular velocity vector AQB describes the instantaneous change of rotation of frame {B} relative to
frame {A}

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA
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Definitions - Angular Velocity - Matrix

« Angular Velocity Matrix:

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA



aY

Q

A ApB A ApB
="Vgorg teR Vot QgxzR7F,

N, ="V

Q

Ap B
BORG+BR VQ+

A
BRQ

Definitions - Angular Velocity - Matrix

(sR°P,)

R

The rotation matrix (
of

) defines t

sR=

Rl [r] R

rientation of frame {B} relative to frame {A}. Specifically, the columns
are the unit vectors of {B} represented in £/E§.

If we look at the derivative of the rotation matrix, the columns will be the velocity of each unit vector of {B}

relative to {A}.

RARRAREA

Instructor: Jacob Rosen

Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA

UCLA
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Definitions - Angular Velocity - Matrix

- The relationship between the rotation matrix QR and the derivative of the rotation matrix E/:F\" can be

expressed as follows:
AV W x ’K

- where is definedé*@'{sgthe angular velocity matrix

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA



N = Vo HRV HAQ AR, NVo="Vgors +oR?V, HaR, (#R%P,)

Angular Velocity - Matrix & Vector Forms

Matrix Form Vector Form
0 -0, Q] Q.
Definition o E/;\RQ =| Q, 0 -Q AQB = Q,
—Qy QX 0 _Qz_
. T T,
Multiply by Constant o K [B RQ] E [ Qp |
] ]
Multiply by Vector .
ply Dy —_— [QRQ] y AQBX y g W = \
L | —
VA z

Multiply by Matrix o m[ BX@] @‘D [&][ Ai)fb]

Instructor: Jacob Rosen
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Ao ="Vions +EREV, + QxS RPP, NV ="Vgors +oRV,H2R, ( 2R°P, )

Simultaneous Linear and Rotational Velocity -
Vector Versus Matrix Representation

Vector Form Matrix Form
A AP B A AP B A AP B A ApB
Vo ="Vgore 2RV, +4 Qg < R®P, Vo ="Vgors +eRV,+2R, (2R°P, )

| ]k
QxP=|Q, Q, Q,/=i(Q,P,-Q,P)-j(QP-Q,P)+k(QP,-Q,P,)
P P, P
0 -0, Q [R] [-QP+QP
R,P=| Q, 0 -Q.|P |=| QP-QP
-Q, Q, 0 |P| |-QP+Q,P,

Instructor: Jacob Rosen
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Simultaneous Linear and Rotational Velocity

The final results for the derivative of a vector in a moving frame (linear and rotation velocities) as seen from a
stationary frame

Vector Form

A Ap B A ApB
— Vo ="Vyors +6R Vo +" Qg x4 R°P,

{A}

Matrix Form

) Vo ="Vpors +EREV,+/R, (4R®P, )

Instructor: Jacob Rosen
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Velocity — Derivation Method No. 3

Homogeneous Transformation Form

Instructor: Jacob Rosen
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Changing Frame of Representation - Linear Velocity

« We have already used the homogeneous
transform matrix to compute the location of
position vectors in other frames:

e\ﬁp@ =57 BPQ J

. . A
« To compute the relationship between A

velocity vectors in different frames, we will
take the derivative:

d
at APQ]: 4 BPQ

i %1

"By=aT Py +oT

Instructor: Jacob Rosen
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Ap=AT R +AT R,
‘ Changing Frame of Representation - Linear Velocity

Recall that

so that the derivative is

g—l- :@ [QR] [APBorg] _ @ @ __ @
dt
b 0 0 O 0

Instructor: Jacob Rosen
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AR AT A -
P, =T P, +4T P,

J Changing Frame of Representation - Linear Velocity

g—l- — [QRQQR] [A\/Borg]

0 0 0 0

«  Substitute the previous results into the original equation APQ=QT BPQ +2T BPQ we get

4{[“?%{[;‘5%?] [Avgorgﬂ{[fq]} L[)ORJ 'R TJ

« This expression is equivalent to the following three-part expression:

—a AVL=IR, (AR, BV, +ERBY,

Instructor: Jacob Rosen
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Changing Frame of Representation - Linear Velocity

V=R, (8R®P, JAVy o +2REV,

« Converting from matrix to vector form yields

Vo= x(2RPP, AV, +aR%V,

Instructor: Jacob Rosen
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Angular Velocity —
Changing Frame of Representation

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA



AQC:AQB"'BARBQC CARQ:BARQ"'QRCE:;RQBART

Angular Velocity

« Frame @ is rotated around frame by BQC
. Frame is rotated around frame@by A Q,

« Given BQC‘AQB!
* Find @

Instructor: Jacob Rosen
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AQC:AQB"'BARBQC CARQ:BARQ"'QRCE:;RQBART

Changing Frame of Representation - Angular Velocity

« We use rotation matrices to represent angular position so that we can compute the
angular position of {C} in {A} if we know the angular position of {C} in {B} and {B} in
{A} by

A Ap B
c R=gRcR

« To derive the relationship describing how angular velocity propagates between
frames, we will take the derivative

SRHARPR+ARCR

«  Substituting the angular velocity matrixes
Ap_Ap A BS_ BS Bp | AD_Ap A
g R=gRyg R | &:_E:RQCRJ \ C RZCRQcﬂ
 we find CARQCAR:QRQ\QRSRS-FQRSRggR
/

C'ZARQC':AR:I,BARQ °R BAR(IZBRQC?R

Instructor: Jacob Rosen
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Changing Frame of Representation - Angular Velocity

Post-multiplying both sides by 2R" ,which for rotation matrices, is equivalentto *R™*

A ApS Ap B ART
B CRQ:BRQ+BRCRQBR

The above equation provides the relationship for changing the frame of representation of angular velocity
matrices.

The vector form is given by

7 ®Qc: ="Q, @@QC

To summarize, the angular velocities of frames may be added as long as they are expressed in the same
frame.
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Summary — Changing Frame of Representation

Linear and Rotational Velocity
— Vector Form

AQB

A ApB A ApB (4)
Vo ="Vaors +5R Vo + Qg x4 R°P,

APporc

— Matrix Form

Vo ="Viors +eRV,+2R, (2R°P, )

Angular Velocity

— A _A ApB
Vector Form Q.="Q,+;R° Q.

— Matrix Form A AR Ap By ApT
CRQ:BRQ+BRCRQBR

Instructor: Jacob Rosen
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Linear Algebra - Review
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Brief Linear Algebra Review - 1/

* Inverse of Matrix A exists if and only if the determinant of A is non-zero.
A Exists if and only if
Det(A) =|A/ =0
« If the determinant of A is equal to zero, then the matrix A is a singular matrix
Det(A) =|A/=0

A Singular

Instructor: Jacob Rosen
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; Brief Linear Algebra Review - 2/

The rank of the matrix A is the size of the largest squared Matrix S for which

Det(S) #0
2 -1 2 -1
Example 1 - A= A=S = ‘A‘:‘S‘:IB Rank(A) =2
-1 2 -1 2
(1 1 1 1]
1111
Example 2 - A= = S|=1 Rank(A) =1
p 111 S =[] S| (A
111 1)
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; Brief Linear Algebra Review - 3/

If two rows or columns of matrix A are equal or related by a constant, then

Det(A) =0
Example _ _
2 0 -1
A=6 -3 -3
_10 -6 —5_

-3 —3‘ ‘6 —3‘ 46 -3
—0 _

det(A) =|A=2 =6+0-6=0
-6 -5 [10 -5 [10 -6

Instructor: Jacob Rosen
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Brief Linear Algebra Review - 4/

Eigenvalues

AX = AX
(A—A1)X =0
Eigenvalues are the roots of the polynomial
Det(A—Al)
If each sxutiqm to the characteristic equation  (Eigenvalue) has a corresponding Eigenvector

Instructor: Jacob Rosen
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Brief Linear Algebra Review - 4/

« Wikipedai - https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

74

Instructor: Jacob Rosen
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Brief Linear Algebra Review - 4/

2

A=

1 2

(A—M)x{z_’l L }{Xl}:o
1 2-1|X,

2- 4
Det(A—AI):‘
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Brief Linear Algebra Review - 4/

Il
o
>
Il
1
N

gl
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Brief Linear Algebra Review - 5/

* Any singular matrix ( ) dstéipasOone Eigenvalue equal to zero

Instructor: Jacob Rosen
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Brief Linear Algebra Review - 6/

« If Ais non-singular ( Pet(®) = s an eigenvialue of A with corresponding to eigenvector X,
then

A*X =1*X

Instructor: Jacob Rosen
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Brief Linear Algebra Review - 7/

If the N X N matrix A is of full rank (that is, Rank (A) = n), then the only solution to
AX =0
Is the trivial one
X =0

If A is of less than full rank (that is Rank (A) < N), then there are N-I linearly independent (orthogonal)
solutions

) <1<n-
for which XJ O< J=n=t

Ax;. =0

J
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Brief Linear Algebra Review - 8/

« If Ais square, then A and AT have the same eigenvalues

Instructor: Jacob Rosen
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