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Jacobian Matrix - Calculation Methods

Jacobian Matrix

Explicit Derivation 

Differentiation the 

Forward Kinematics Eqs.
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Jacobian Matrix - Introduction

In the field of robotics the Jacobian matrix 

describe the  relationship between 

• The joint angle rates  (       ) and the 

translation and rotation velocities of the end 

effector (       ).  

• The robot joint torques (     ) and the forces 

and moments (     ) at the robot end effector 

(Static Conditions).  This relationship is 

given by:
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Velocity Propagation – Intuitive Explanation 

• Show a demo with the stick like frames

• Three Actions

– The origin of frame B moves as a function of time with respect to the origin 

of frame A

– Point Q moves with respect to frame B

– Frame B rotates with respect to frame A along an axis defined by 
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Central Topic -

Simultaneous Linear and Rotational Velocity

• Vector Form (Method No. 1)

• Matrix Form (Method No. 2)

• Matrix Formulation – Homogeneous 

Transformation Form – Method No. 3 
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• Angular Velocity Representation in 

Various Frames 

– Vector Form

– Matrix Form

Central Topic -

Changing Frame of Representation – Angular Velocity
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Velocity – Derivation Method No. 1 & 2

Vector Form

Matrix Form 
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Definitions - Linear Velocity 

• Linear velocity - The instantaneous rate of change in linear position of a point relative to some frame.
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Definitions - Linear Velocity 

• Linear velocity - The instantaneous rate of change in linear position of a point relative to some frame.
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Definitions - Linear Velocity

• The position of point Q in frame {A} is represented by the linear position vector

• The velocity of a point Q relative to frame {A} is represented by the linear velocity vector
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Linear Velocity - Rigid Body

• Given: Consider a frame {B} attached 

to a rigid body whereas frame {A} is 

fixed. The orientation of frame {A} 

with respect to frame {B} is not 

changing as a function of time

• Problem: describe the motion of of 

the vector         relative to frame {A} 

• Solution: Frame {B} is located 

relative to frame {A} by a position 

vector             and the rotation matrix        

(assume that the orientation is not 

changing in time              ) expressing 

both components of the velocity in 

terms of frame {A} gives 
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Linear Velocity – Translation (No Rotation)- Problem 1

Derivation  

• Problem No. 1 – Change in a position of 

Point Q

• Conditions 

– Point Q is fixed in frame {B}

– Frame {B} translates with respect to 

Frame {A} 

Instructor: Jacob Rosen 
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Linear Velocity – Translation (No Rotation) – Problem 2

Derivation  

• Problem No. 2 – Translation of frame {B}

• Conditions 

– Point Q is fixed in frame {B}

– Frame {B} translates with respect to 

Frame {A} 
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Linear Velocity – Translation (No Rotation) – Problem 1&2 -Derivation 

Summary   

• Problem No. 1 – Change in a position of Point Q

• Problem No. 2 – Translation of frame {B}

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA

Q

BA

BBORG

A

Q

BA

BORG

A

Q

A VRVVVV  )(

Q

BP



Linear Velocity – Translation – Simultaneous Derivation  

• Differentiate with respect to coordinate system {A}
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Linear & Angular Velocities - Frames

• When describing the velocity (linear or angular) of an object, there are two 

important frames that are being used:

– Represented Frame (Reference Frame) : e.g. [A]

This is the frame used to represent (express) the object’s velocity.

– Computed Frame: e.g. [B]

This is the frame in which the velocity is measured (differentiate the position).
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Frame - Velocity

• As with any vector, a velocity vector may be described in terms of any frame, and this frame of reference is 

noted with a leading superscript. 

• A velocity vector computed in frame {B} and represented in frame {A} would be written 
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Frame - Linear Velocity

• We can always remove the outer, leading superscript by explicitly including the rotation matrix which 

accomplishes the change in the reference frame 

• Note that in the general case                                          because        may be time-verging

• If the calculated velocity is written in terms of of the frame of differentiation the result could be indicated by a 

single leading superscript.

• In a similar fashion when the angular velocity is expresses and measured as a vector
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• Given: The driver of the car maintains a speed of 100 km/h (as shown to the driver by the car’s 

speedometer).

• Problem: Express the velocities                                                               in each section of the road A, B, C, 

D, E, F where {C} - Car frame, and {W} - World frame 

Frames - Linear Velocity - Example
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Frames - Linear Velocity - Example

Models of Robot Manipulation - EE 543 - Department of Electrical Engineering - University of Washington
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Frames - Linear Velocity - Example
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Frames - Linear Velocity - Example

• is not time-varying (in this example)
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Frames - Linear Velocity - Example
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Frames - Linear Velocity - Example
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Frames - Linear Velocity - Example
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Frames - Linear Velocity - Example
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Frames - Linear Velocity - Example
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Linear Velocity - Free Vector

• Linear velocity vectors are insensitive to shifts in origin.  

• Consider the following example:

• The velocity of the object in {C} relative to both {A} and {B} is the same, that is

• As long as {A} and {B} remain fixed relative to each other (translational but not rotational), then the velocity 

vector remains unchanged (that is, a free vector).
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Angular Velocity - Rigid Body - Intuitive Approach
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Angular Velocity - Rigid Body

Q

Q

BP

• Given: Consider a frame {B} attached 

to a rigid body whereas frame {A} is 

fixed. The vector        is constant as 

view from frame {B} 

• Problem: describe the velocity of the 

vector       representing the the point 

Q relative to frame {A} 

• Solution: Even though the vector     

is constant as view from frame {B} it 

is clear that point Q will have a 

velocity as seen from frame {A} due 

to the rotational velocity 
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Angular Velocity - Rigid Body - Intuitive Approach
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Angular Velocity - Rigid Body - Intuitive Approach

• The figure shows to instants of time 

as the vector       rotates around          

This is what an observer in frame {A} 

would observe.  

• The Magnitude of the differential 

change is

• Using a vector cross product we get 
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Angular Velocity - Rigid Body - Intuitive Approach
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Angular Velocity - Rigid Body - Intuitive Approach

• In the general case, the vector Q may also be changing with respect to the frame {B}. Adding this component 

we get.

• Using the rotation matrix to remove the dual-superscript, and since the description of          at any instance is              

we get 
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Definitions - Angular Velocity

• Angular Velocity: The instantaneous rate of change in the orientation of one 

frame relative to another.  

Angular Velocity

Linear Velocity

Point - 1D

Plane - 2D / Body - 3D

Plane - 2D / Body - 3D
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Definitions - Angular Velocity

• Just as there are many ways to represent orientation (Euler Angles, Roll-Pitch-Yaw Angles, Rotation 

Matrices, etc.) there are also many ways to represent the rate of change in orientation.  

• The angular velocity vector is convenient to use because it has an easy to grasp physical meaning.  

However, the matrix form is useful when performing algebraic manipulations.

Angular Velocity

Representation

Angular Velocity

Vector
Angular Velocity

Matrix
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Definitions - Angular Velocity - Vector

• Angular Velocity Vector: A vector whose direction is the instantaneous axis of rotation of one frame relative 

to another and whose magnitude is the rate of rotation about that axis.

• The angular velocity vector           describes the instantaneous change of rotation of frame {B} relative to 

frame {A}
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Definitions - Angular Velocity - Matrix

• Angular Velocity Matrix:
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Definitions - Angular Velocity - Matrix

• The rotation matrix (       ) defines the orientation of frame {B} relative to frame {A}.  Specifically, the columns 

of       are the unit vectors of {B} represented in {A}.

• If we look at the derivative of the rotation matrix, the columns will be the velocity of each unit vector of {B} 

relative to {A}:
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Definitions - Angular Velocity - Matrix

• The relationship between the rotation matrix        and the derivative of the rotation matrix            can be 

expressed as follows:

• where          is defined as the angular velocity matrix
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Angular Velocity - Matrix & Vector Forms

Matrix Form                            Vector Form

Definition

Multiply by Constant

Multiply by Vector

Multiply by Matrix
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Simultaneous Linear and Rotational Velocity -

Vector Versus Matrix Representation  

Vector Form                                                          Matrix Form
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Simultaneous Linear and Rotational Velocity

• The final results for the derivative of a vector in a moving frame (linear and rotation velocities) as seen from a 

stationary frame

• Vector Form

• Matrix Form
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Velocity – Derivation Method No. 3

Homogeneous Transformation Form
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Changing Frame of Representation - Linear Velocity 

• We have already used the homogeneous 

transform matrix to compute the location of 

position vectors in other frames:

• To compute the relationship between 

velocity vectors in different frames, we will 

take the derivative:
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Changing Frame of Representation - Linear Velocity

• Recall that

• so that the derivative is
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Changing Frame of Representation - Linear Velocity

• Substitute the previous results into the original equation                                    we get

• This expression is equivalent to the following three-part expression:
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Changing Frame of Representation - Linear Velocity

• Converting from matrix to vector form yields
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Angular Velocity –

Changing Frame of Representation  

Instructor: Jacob Rosen 
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Angular Velocity

• Frame {C}  is rotated around frame {B} by    

• Frame {B}  is rotated around frame {A} by    

• Given 

• Find 
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Changing Frame of Representation - Angular Velocity

• We use rotation matrices to represent angular position so that we can compute the 

angular position of {C} in {A} if we know the angular position of {C} in {B} and {B} in 

{A} by

• To derive the relationship describing how angular velocity propagates between 

frames, we will take the derivative

• Substituting the angular velocity matrixes                                             

• we find
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Changing Frame of Representation - Angular Velocity

• Post-multiplying both sides by          ,which for rotation matrices, is equivalent to                             

• The above equation provides the relationship for changing the frame of representation of angular velocity 

matrices.  

• The vector form is given by

• To summarize, the angular velocities of frames may be added as long as they are expressed in the same 

frame.
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Summary – Changing Frame of Representation

• Linear and Rotational Velocity 

– Vector Form

– Matrix Form

• Angular Velocity

– Vector Form

– Matrix Form
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Linear Algebra - Review
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• Inverse of Matrix A exists if and only if the determinant of A is non-zero.

Exists if and only if

• If the determinant of A is equal to zero, then the matrix A is a singular matrix

Singular
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• The rank of the matrix A is the size of the largest squared Matrix S for which

• Example 1 -

• Example 2 -

0)( SDet















21

12
A 3 SA 2)( ARank





















1111

1111

1111

1111

A 1)( ARank















21

12
SA

 1S 1S

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA



Brief Linear Algebra Review - 3/

• If two rows or columns of matrix A are equal or related by a constant, then

• Example 
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• Eigenvalues

• Eigenvalues are the roots of the polynomial

• If                each solution to the characteristic equation      (Eigenvalue)  has a corresponding  Eigenvector    
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0)(  XIA 
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• Wikipedai - https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors
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• Any singular matrix  (                      ) has at least one Eigenvalue equal to zero0)( ADet
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• If A is non-singular  (                        ), and        is an eigenvalue of  A with corresponding to eigenvector X, 

then 
0)( ADet 
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• If the n x n matrix A is of full rank (that is, Rank (A) = n), then the only solution to  

is the trivial one

• If A is of less than full rank (that is Rank (A) < n), then there are n-r linearly independent (orthogonal) 

solutions

for which
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• If A is square, then A and AT have the same eigenvalues
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