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Homework

❑ Homework - Review 
- On CCLE, you can check your score and download an annotated pdf 

version for your homework. 

- All reasons for deduction are described in the pdf file. 

❑ Solution will be uploaded on CCLE too
- The solution for homework2 on the bionics lab – course website is 

wrong. 

- The solution for homework3 is not uploaded on the course website.

→ From this week, solution files will be uploaded on CCLE too. 



Contents

❑ Jacobian with SCARA example

• Force/Torque propagation

• Review 

- Velocity propagation 

- Direct differentiation



Kinematics Relations - Joint & Cartesian Spaces 

• The location of the robot end-effector may be specified using one of the 

following descriptions: 

- Cartesian Space / Operational Space

- Joint Space
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Kinematics Relations - Forward & Inverse 

• The robot kinematic equations relate the two description of the robot tip location
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Velocity relationship

: Jacobian Matrix – Joint velocity / End-effector velocity

• The velocity relationship: The  relationship between the joint angle rates  ( ሶ𝑋)      

and the linear and angular velocities of the end effector ( ሶ𝜃).  
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Jacobian Matrix - Introduction

• This expression can be expanded to:

• Where:

– is a 6x1 vector of the end effector linear and angular velocities

– is a 6xN Jacobian matrix 

– is a Nx1 vector of the manipulator joint velocities

– is the number of joints 
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Jacobian Matrix - Introduction

• The velocity relationship

: The  relationship between 

the joint angle rates  (       ) 

and the translation and rotation velocities of the end        

effector (       ).  

• The relationship between 

the robot joint torques (     ) 

and the forces and moments (     ) 

at the robot end effector (Static Conditions).  
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Jacobian Matrix - Introduction

• This expression (𝜏 = 𝐽 𝜃
𝑇
𝐹) can be expanded to:

• Where:

– is a Nx1 vector of the robot joint torques 

– is a Nx6 Transposed Jacobian matrix 

– is a 6x1 vector of the forces and moments at the robot end effector

– is the number of joints
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Jacobian Matrix - Derivation Methods

Jacobian Matrix

Explicit Method

Differentiation the 

Forward Kinematics Eqs. 

(Method 1)

Iterative Methods 

Recursive Equations

Velocity

Propagation –

Base to EE 

(Method 2)

Force/Torque

Propagation –

EE to Base

(Method 3)  



Jacobian – static force & torque 

• In addition to the velocity 

relationship, we are also interested in 

developing a relationship between 

the robot joint torques (     ) and the 

forces and moments (     ) at the 

robot end effector (Static 

Conditions).  This relationship is 

given by:
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Jacobian – static force & torque 

F
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Jacobian – static force & torque 
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• Typically, the robot is pushing on something in the environment with the 

end-effector or is perhaps supporting a load at the hand. 

• We wish to solve for the joint torques that must be acting to keep the 

system in static equilibrium.



Jacobian – static force & torque 
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• Static force analysis is of practical importance in determining the quality of force 

transmission through the various joints of a mechanism. 

• It serves as a basis for sizing the links and bearings of a robot manipulator and for 

selecting appropriate actuators. 

• The result also be used for force control of robot manipulator. 



Statics - Forces & Torques

Problem

Given: Typically the robot’s end effector is applying forces and torques on an object in the

environment or carrying an object (gravitational load).

Compute: The joint torques must be acting to keep the system in static equilibrium.

𝐹𝑥
𝐹𝑦
𝐹𝑧
𝑀𝑥

𝑀𝑦

𝑀𝑧

𝐹



Statics - Forces & Torques

Solution

Jacobian - Mapping from the joint force/torques - 𝜏 to forces/torque in the Cartesian space

applied on the end effector) - 𝐹 .

Free Body Diagram - The chain like nature of a manipulator leads to decompose the chain into 

individual links and calculate how forces and moments propagate from one link to the next. 

𝜏 = 𝐽 𝜃
𝑇
𝐹

𝐹 𝐹𝑥
𝐹𝑦
𝐹𝑧
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𝑀𝑦

𝑀𝑧



Static Analysis Protocol - Free Body Diagram 1/ 

Step 1 

Lock all the joints - Converting the 

manipulator (mechanism) to a structure

Step 2

Consider each link in the structure as a 

free body and write the force / moment 

equilibrium equations

(3 Eqs.)

(3 Eqs.) 

Step 3

Solve the equations - 6 Eq. for each link.

Apply backward solution starting from 

the last link (end effector) and end up at 

the first link (base) 

 = 0F

 = 0M

𝐹



Static Analysis Protocol - Free Body Diagram 2/

• Special Symbols are defined for the 

force and torque exerted by the 

neighbor link

- Force exerted on link  i by link i-1

- Torque exerted on link  i by link i-1

• For easy solution superscript index 

(B) should the same as the subscript 

(A)

if

in

Exerted on link A by link A-1

Reference coordinate 

system {B}

Force f or torque n

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA

𝐵𝑓𝐴
𝐵𝑛𝐴

𝑙𝑖𝑛𝑘 𝑖

𝑙𝑖𝑛𝑘 𝑖 + 1



Static Analysis Protocol - Free Body Diagram 3/ 

• For serial manipulator in static equilibrium (joints locked), the sum the forces and 

torques acting on Link 𝑖 in the link frame {𝑖} are equal to zero. 

෍𝐹 =0 ⇒ ෍𝐹 = 𝑖𝑓𝑖 −
𝑖𝑓𝑖+1 = 0

෍𝑀 =0 ⇒ ෍𝑀 = 𝑖𝑛𝑖 −
𝑖𝑛𝑖+1 −

𝑖𝑃𝑖+1 ×
𝑖𝑓𝑖+1 = 0

Link 𝑖

𝑖𝑛𝑖+1

𝑖𝑓𝑖+1

− 𝑖𝑛𝑖+1

− 𝑖𝑓𝑖+1

𝑖𝑓𝑖

𝑖𝑛𝑖

{𝑖 + 1}

{𝑖}

𝑖𝑃𝑖+1



Static Analysis Protocol - Free Body Diagram  4/

• For serial manipulator in static equilibrium (joints locked), the sum the forces and 

torques acting on Link 𝑖 in the link frame {𝑖} are equal to zero. 

෍𝐹 =0 ⇒ ෍𝐹 = 𝑖𝑓𝑖 −
𝑖𝑓𝑖+1 = 0

෍𝑀 =0 ⇒ ෍𝑀 = 𝑖𝑛𝑖 −
𝑖𝑛𝑖+1 −

𝑖𝑃𝑖+1 ×
𝑖𝑓𝑖+1 = 0

Link 𝑖

𝑖𝑛𝑖+1

𝑖𝑓𝑖+1

− 𝑖𝑛𝑖+1

− 𝑖𝑓𝑖+1

𝑖𝑓𝑖

𝑖𝑛𝑖

{𝑖 + 1}

{𝑖}

𝑖𝑃𝑖+1

→ 𝑖𝑛𝑖 =
𝑖𝑛𝑖+1 +

𝑖𝑃𝑖+1 ×
𝑖𝑓𝑖+1

→ 𝑖𝑓𝑖 =
𝑖𝑓𝑖+1

𝐹



Static Analysis Protocol - Free Body Diagram 5/ 

• Changing the reference frame such that each force (and torque) is expressed 

upon their link’s frame, we find the static force (and torque) propagation from link 

i+1 to link i
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• These equations provide the static force (and 

torque) propagation from link to link.  

• They allow us to start with the force and torque 

applied at the end effector and calculate the force 

and torque at each joint all the way back to the robot 

base frame.



Static Analysis Protocol - Free Body Diagram 6/

• Question: What torques are needed at the joints in order to balance the 

reaction moments acting on the link (Revolute Joint). 



Static Analysis Protocol - Free Body Diagram 7/

• Question: What torques are needed at the joints in order to balance the 

reaction moments acting on the link (Revolute Joint). 

• Answer: All the components of the moment vectors are resisted by the structure 

of mechanism itself, except for the torque about the joint axis (Revolute Joint). 

𝜏𝑖 =
𝑖𝑛𝑖

𝑇 መ𝑍𝑖

= [ 𝑖𝑛𝑖𝑥
𝑖𝑛𝑖𝑦

𝑖𝑛𝑖𝑧]
0
0
1



Static Analysis Protocol - Free Body Diagram 8/

• Question: What forces are needed at the joints in order to balance the reaction 

forces acting on the link (Prismatic Joint). 



Static Analysis Protocol - Free Body Diagram 9/

• Question: What forces are needed at the joints in order to balance the reaction 

forces acting on the link (Prismatic Joint). 

• Answer: All the components of the force vectors are resisted by the structure of 

mechanism itself, except for the force along the joint (Prismatic joint). 

𝑓𝑖 =
𝑖𝑓𝑖

𝑇 መ𝑍𝑖

= [ 𝑖𝑓𝑖𝑥
𝑖𝑓𝑖𝑦

𝑖𝑓𝑖𝑧]
0
0
1



Static Analysis Protocol - Free Body Diagram 10/

• Answer: All the components of the force and moment vectors are resisted by 

the structure of mechanism itself, except for the torque about the joint axis 

(revolute joint) or the force along the joint (prismatic joint). 

• Therefore, to find the joint the torque or force required to maintain the static 

equilibrium, the dot product of the joint axis vector with the moment vector or 

force vector acting on the link is computed
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• To find the joint torque or force required to maintain the static equilibrium, 

the dot product of the joint axis vector with the moment vector or force vector 

acting on the link is computed

Static Analysis

Solution

• Apply the static equilibrium equations starting from the end effector and going 

toward the base
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Revolute Joint Prismatic Joint

Static force “propagation” from link to link



SCARA – RRRP – DH Parameter (Modified form)



SCARA – RRRP



Simplify Function



syms pi



SCARA example _ Jacobian: Static force propagation

• The recursive equations for static force and torque from link i+1 to link i

𝑖𝑓𝑖 = 𝑖+1
𝑖𝑅 𝑖+1𝑓𝑖+1

𝑖𝑛𝑖 = 𝑖+1
𝑖𝑅 𝑖+1𝑛𝑖+1 +

𝑖𝑃𝑖+1 ×
𝑖𝑓𝑖

- It allows us to start with the force and torque applied at the end effector.

- By using this recursive equation, we can calculate the force and torque 

at each joint all the way back to the robot base frame
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SCARA example _ Jacobian: Static force propagation

• Force propagation

3 3 4

3 4 4
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𝑖𝑅𝑖+1𝑓𝑖+1



SCARA example _ Jacobian: Static force propagation

• Force propagation
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SCARA example _ Jacobian: Static force propagation

• Force propagation
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SCARA example _ Jacobian: Static force propagation

3 3 4 3 3

3 4 4 4 3

2 2 3 2 2

2 3 3 3 2

1 1 2 1 1

1 2 2 2 1

n R n P f

n R n P f

n R n P f

= + 

= + 

= + 

4

4

x

y

z

n

n n

n

 
 

=
 
  

• Torque propagation
𝑖𝑛𝑖 = 𝑖+1

𝑖𝑅𝑖+1𝑛𝑖+1 +
𝑖𝑃𝑖+1 ×

𝑖𝑓𝑖



SCARA example _ Jacobian: Static force propagation

3 3 4 3 3

3 4 4 4 3

2 2 3 2 2

2 3 3 3 2

1 1 2 1 1

1 2 2 2 1

n R n P f

n R n P f

n R n P f

= + 

= + 

= + 

4

4

x

y

z

n

n n

n

 
 

=
 
  

• Torque propagation
𝑖𝑛𝑖 = 𝑖+1

𝑖𝑅𝑖+1𝑛𝑖+1 +
𝑖𝑃𝑖+1 ×

𝑖𝑓𝑖



• To find the joint torque required to maintain the static equilibrium for a revolute 

joint,

𝜏𝑖 =
𝑖𝑛𝑖

𝑇
Ƹ𝑧𝑖 =

𝑖𝑛𝑖,𝑥
𝑖𝑛𝑖,𝑦

𝑖𝑛𝑖,𝑧

0
0
1

• To find the joint force required to maintain the static equilibrium for a prismatic 

joint,

𝑓𝑖 =
𝑖𝑓𝑖

𝑇
Ƹ𝑧𝑖 =

𝑖𝑓𝑖,𝑥
𝑖𝑓𝑖,𝑦

𝑖𝑓𝑖,𝑧

0
0
1

• We are only interested in 𝑖𝑛𝑖,𝑧 𝑎𝑛𝑑
𝑖𝑓𝑖,𝑧

𝜏 =

𝜏1
𝜏2
𝜏3
𝜏4

=

1𝑛1,𝑧
2𝑛2,𝑧
3𝑛3,𝑧
4𝑓4,𝑧



SCARA example _ Jacobian: Static force propagation

𝜏 =

𝜏1
𝜏2
𝜏3
𝜏4

=

1𝑛1,𝑧
2𝑛2,𝑧
3𝑛3,𝑧
4𝑓4,𝑧

=

1𝑛1,𝑥
1𝑛1,𝑦

1𝑛1𝑧

0
0
1

2𝑛2,𝑧
3𝑛3,𝑧

4𝑓4,𝑥
4𝑓4,𝑦

4𝑓4,𝑧

0
0
1



SCARA example _ Jacobian: Static force propagation

The Jacobian 4𝐽4 is defined as

𝜏 = 4𝐽4
𝑇

𝑓𝑥
𝑓𝑦
𝑓𝑧
𝑛𝑥
𝑛𝑦
𝑛𝑧

According to the definition

𝜏1
𝜏2
𝜏3
𝜏4

=

1𝑛1,𝑧
2𝑛2,𝑧
3𝑛3,𝑧
4𝑓4,𝑧

, 

1𝑛1,𝑧
2𝑛2,𝑧
3𝑛3,𝑧
4𝑓4,𝑧

= 4𝐽4
𝑇

𝑓𝑥
𝑓𝑦
𝑓𝑧
𝑛𝑥
𝑛𝑦
𝑛𝑧



SCARA example _ Jacobian: Static force propagation

1𝑛1,𝑧
2𝑛2,𝑧
3𝑛3,𝑧
4𝑓4,𝑧

= 4𝐽4
𝑇

𝑓𝑥
𝑓𝑦
𝑓𝑧
𝑛𝑥
𝑛𝑦
𝑛𝑧



SCARA example _ Jacobian: Static force propagation

4𝐽4 = 4𝐽4
𝑇 𝑇



Jacobian: Frame of Representation 



Jacobian: Frame of Representation
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   
 =
  
      
    



SCARA example _ Jacobian Matrix

Differentiation the 

Forward Kinematics Eqs. 

(Method 1)

Velocity Propagation –

Base to EE  (Method 2)

Force/Torque Propagation –

EE to Base (Method 3)  



{N}

𝐴

𝐵

Kinematics Relations - Forward & Inverse 

• The robot kinematic equations relate the two description of the robot tip location













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


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
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𝑋 = 𝐹𝐾(𝜃)
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
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




=
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0 NN

N
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Velocity relationship

: Jacobian Matrix – Joint velocity / End-effector velocity

• The velocity relationship: The  relationship between the joint angle rates  ( ሶ𝑋)      

and the linear and angular velocities of the end effector ( ሶ𝜃).  



















==

N

dt

d
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


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

 2

1

][
 
 

























=







==

z

y

x

z

y

x

N

N
v

v

v

v
X

dt

d
X






][

Tip Velocity in 

Joint Space
Tip velocity in 

Cartesian Space

ሶ𝑋 = 𝐽 ሶ𝜃

ሶ𝜃 = 𝐽−1 ሶ𝑋



Jacobian Matrix - Introduction

• The velocity relationship

: The  relationship between 

the joint angle rates  (       ) 

and the translation and rotation velocities of the end        

effector (       ).  

• The relationship between 

the robot joint torques (     ) 

and the forces and moments (     ) 

at the robot end effector (Static Conditions).  

N


x

( )  Jx =



F

F

( ) FJ
T

 =



Jacobian Matrix - Derivation Methods

Jacobian Matrix

Explicit Method

Differentiation the 

Forward Kinematics Eqs. 

(Method 1)

Iterative Methods 

Recursive Equations

Velocity

Propagation –

Base to EE 

(Method 2)

Force/Torque

Propagation –

EE to Base

(Method 3)  



Jacobian: Direct Differentiation



Jacobian: Direct Differentiation 



Jacobian Matrix - Derivation Methods

Jacobian Matrix

Explicit Method

Differentiation the 

Forward Kinematics Eqs. 

(Method 1)

Iterative Methods 

Recursive Equations

Velocity

Propagation –

Base to EE 

(Method 2)

Force/Torque

Propagation –

EE to Base

(Method 3)  



Velocity Propagation

• Given: A manipulator - A chain of 

rigid bodies each one capable of 

moving relative to its neighbor  

• Problem: Calculate the linear and 

angular velocities of the link of a 

robot  

• Solution (Concept): Due to the robot 

structure (serial mechanism) we can 

compute the velocities of each link 

in order starting  from the base. 

The velocity of link i+1

= The velocity of link i

+ whatever new velocity components were added by joint i+1



Velocity Propagation – Intuitive Explanation 

• Three Actions

– The origin of frame B moves with respect to the origin of frame A

– Point Q moves with respect to frame B

– Frame B rotates with respect to frame A about an axis defined by 
B

A

B

A Q

BP

Q

BA

BB

A

Q

BA

BBORG

A

Q

A PRVRVV ++=

( )Q

BA

B

A

BQ

BA

BBORG

A

Q

A PRRVRVV ++= 

• Vector Form

• Matrix Form



Jacobian: Velocity propagation

• The recursive equation for the Angular Velocity is

𝑖+1𝜔𝑖+1 = 𝑖
𝑖+1𝑅 𝑖𝜔𝑖 + 𝜌

0
0
ሶ𝜃𝑖+1

,
𝜌 = 0 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐 𝑗𝑜𝑖𝑛𝑡
𝝆 = 𝟏 𝒊𝒏 𝒕𝒉𝒆 𝒓𝒆𝒗𝒐𝒍𝒖𝒕𝒆 𝒋𝒐𝒊𝒏𝒕

• The recursive equation for Linear Velocity is 

𝑖+1𝑣𝑖+1 = 𝑖
𝑖+1𝑅 𝑖𝜔𝑖 ×

𝑖𝑃𝑖+1 +
𝑖𝑣𝑖 + 𝜌

0
0
ሶ𝑑
,
𝜌 = 1 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐 𝑗𝑜𝑖𝑛𝑡
𝝆 = 𝟎 𝒊𝒏 𝒕𝒉𝒆 𝒓𝒆𝒗𝒐𝒍𝒖𝒕𝒆 𝒋𝒐𝒊𝒏𝒕

• According to the definition 
4𝑣4
4𝜔4

= 4𝐽4

ሶ𝜃1
ሶ𝜃2
ሶ𝜃3
ሶ𝑑4

, 
4𝑣4
4𝜔4

=

4𝑣4,𝑥
4𝑣4,𝑦
4𝑣4,𝑧
4𝑤4,1
4𝑤4,2
4𝑤4,3



Jacobian Matrix - Derivation Methods

Jacobian Matrix

Explicit Method

Differentiation the 

Forward Kinematics Eqs. 

(Method 1)

Iterative Methods 

Recursive Equations

Velocity

Propagation –

Base to EE 

(Method 2)

Force/Torque

Propagation –

EE to Base

(Method 3)  



• To find the joint torque or force required to maintain the static equilibrium, the dot 
product of the joint axis vector with the moment vector or force vector acting on the 
link is computed

Jacobian: Force/Torque propagation

Solution

Apply the static equilibrium equations starting from the end effector and going toward 

the base

1
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Revolute Joint Prismatic Joint

Static force “propagation” from link to link



SCARA example _ Jacobian: Static force propagation

The transpose of Jacobian 4𝐽4
𝑇 is defined as

𝜏 = 4𝐽4
𝑇

𝑓𝑥
𝑓𝑦
𝑓𝑧
𝑛𝑥
𝑛𝑦
𝑛𝑧

According to the definition

𝜏1
𝜏2
𝜏3
𝜏4

=

1𝑛1,𝑧
2𝑛2,𝑧
3𝑛3,𝑧
4𝑓4,𝑧

, 

1𝑛1,𝑧
2𝑛2,𝑧
3𝑛3,𝑧
4𝑓4,𝑧

= 4𝐽4
𝑇

𝑓𝑥
𝑓𝑦
𝑓𝑧
𝑛𝑥
𝑛𝑦
𝑛𝑧



SCARA example _ Jacobian Matrix

Differentiation the 

Forward Kinematics Eqs. 

(Method 1)

Velocity Propagation –

Base to EE  (Method 2)

Force/Torque Propagation –

EE to Base (Method 3)  



Jacobian: Frame of Representation 



Summary

✓ Jacobian with SCARA example

• Velocity propagation 

• Direct differentiation 

• Force/Torque propagation 

✓ Frame of Representation 



Next Discussion Section

❑ Manipulator Dynamics - Concept

• Forward Dynamics

• Inverse Dynamics

❑ Manipulator Dynamics - Solution

• Newton-Euler Equations 

• Lagrangian Dynamics

❑ Or Lab section with DENSO robot


