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Langrangian Formulation of Manipulator Dynamics 1/ 

1.   Define a set of generalized coordinates  for i=1,2,3…N. 

 These coordinates can be chosen arbitrarily as long as they provide a set of 

independent variables that map the system in a 1-to-1 manner.  The usual 

variable set for serial manipulators is: 

 

 

 

 

2.    Define a set of generalized velocities       for i=1,2,3…N 

 

3.    Define a set of generalized forces (and moments)         for i=1,2,3…N 

       The generalized forces must satisfy 

 

 

       where        is a small change in the generalized coordinate and        is the work 

done corresponding to that small change. 
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Langrangian Formulation of Manipulator Dynamics 2/ 

4. Write the equations describing the kinetic and potential energies as functions of 

the generalized coordinates as well as the resulting Lagrangian. 

 

Let K denote the expression describing the kinetic energy.   where 

 

 

 

 

Let P denote the expression describing the potential energy.   where 

 

 

Let L denote the Lagrangian given by: 

 

L = K - P 
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Langrangian Formulation of Manipulator Dynamics 3/ 

5. The equations of motion are given by 

 

 

 

 

 

 

 

 

 

 

or, more practically, by 
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Langrangian Formulation - 2R Robot Example 
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Langrangian Formulation - 2R Robot Example 

Step 1: Let               and  

 

Step 2: Let                 and  

 

Step 3: Let external forces/torques 

 

Step 4:  

 

• Kinetic Energy:  

 

 

• For i=1 
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Langrangian Formulation - 2R Robot Example 

• To find the velocity of the center of mass of link 2, first consider its position given 

by 

 

 

 

• The derivative squared gives 

 

 

 

 

 

 

• For i=2 
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Langrangian Formulation - 2R Robot Example 

• Potential Energy: 

 

 

• For i=1 

 

• For i=2  

 

 

 

• Lagrangian: 
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Langrangian Formulation - 2R Robot Example 

• Step 5: Solving  
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Langrangian Formulation - 2R Robot Example 
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Gravity Effects - Langrangian Formulation 
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Manipulators - Control Problem 
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Manipulators – Non Linear Control Problem 

          ,, FGVM 

Instructor: Jacob Rosen  

Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA  



Manipulators – Non Linear Control Problem 
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Equation of Motion – Non Rigid Body Effects  

 

 

 

• Viscous Friction 

 

 

• Coulomb Friction 

 

 

• Model of Friction    
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Langrangian Formulation of Manipulator Dynamics 
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Dynamic Equations - State Space Equation 

• It is often convenient to express the dynamic equations of a manipulator in a 

single equation  

 

 

 

 

 

 

where 

 

         - Mass matrix  (includes inertia terms) - nxn Matrix 

          - Centrifugal (square of joint velocity) and Coriolis (product of two different   

             joint  velocities) terms - nx1 Vector 

          - gravitational terms - nx1 Vector. 
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Dynamic Equations - Configuration Space Equation 

• By rewriting the velocity  dependent term                in a different form, we can 

write the dynamic equations as 

 

 

 

 

 

where 

 

                   - Centrifugal coefficients(square of joint velocity)  

                   - Coriolis coefficients (product of two different  joint  velocities)  

 

• This form can be useful for applications using force control.  Each of the 

matrices is a function of manipulator configuration only (that is, joint position) 

and can be updated at a rate depending on the magnitude of joint changes. 

 

          GCBM  2

  ,V

 C

 B

Instructor: Jacob Rosen  

Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA  



Dynamic Equations - Cartesian State Space Equation 

• It can sometimes be desirable to have a relationship between the end effector’s 

Cartesian accelerations and the joint torques.  Beginning from the Configuration 

Space equation 

 

 

• we can substitute the joint moments using our definition of the Jacobian matrix: 

 

 

 

 

 

• By differentiation, we find 
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Dynamic Equations - Cartesian State Space Equation 

• Solving for joint acceleration gives 

 

• Substitution yields 

 

 

 

 

Where 

 

 

 

 

 

• This equation relates the forces and moments at the end effector to the 

Cartesian accelerations of the end effector and the manipulator joint positions 

and velocities.  
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