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Dynamics Modeling Application — Motivation
Motion Capture

Instructor: Jacob Rosen Ph.D.
Models of Robot Manipulation - EE 543 - Department of Electrical Engineering - University of Washington



é\,é? Dynamics Model Application — Motivation
T3y, Position Control
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Manipulator Dynamics — Newton Euler Equations

Instructor: Jacob Rosen
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A o Iterative Newton Euler Equations
i

% Steps of the Algorithm
* | (1) Outward Iterations (i=0—>n-1)
— Starting With velocities and accelerations
of the base @
w
‘0,=0, °a, =0, v, =0, *v,=+0Z v ‘0, =
Vem @, =0
— Calculate velocities accelerations, along F / %, =0
with forces and torques (at the CM) N Vy =+02
@, ®,V, Ve, Fo N
* | (2) Inward Iteration (i=n—1) (I=n—1)
— Starting with forces and torques (at the {E
CM)
F,N
— Calculate forces and torques at the joints
f,n

Instructor: Jacob Rosen
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éﬁ‘h\i? lterative Newton-Euler Equations - Solution Procedure
T Phase 1: Outward Iteration

Outward lteration: 1 :0—55

« Calculate the link velocities and accelerations iteratively from the robot’s base to
the end effector

i+1 _iHlp i ) i+l
0,= R w+60, "Z,

1+

i+l - iHlp i il i ) i+l i+1<%
0, = R o+ R o %0, Z|+1+9 Ziy

i+1vi+1:i+i1R(id)i X II:)|+1"‘ia)i X ( @; X I|:)|+1)‘|‘i\./i)

i+1,- _i+1 . i+1 i+1 i+1 i+1
Vein™ Point @ x (T xR,

) + i+l\./i+1

« Calculate the force and torques applied on the CM of each link using the Newton
and Euler equations

i+1 i+1,-
Fa= VCi+1

C .
|+1N |+1| 0).+1+ a) X |+1|_ i+1

Q).

i+1
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;\\hé‘; Iterative Newton-Euler Equations - Solution Procedure
T3y, Phase 2: Inward Iteration

Inward Iteration: 1:6—>1

» Use the forces and torques generated at the joints starting with forces and
torques generating by interacting with the environment (that is, tools, work
stations, parts etc.) at the end effector al the way the robot’s base.

f |+1IR IJrl|:|+1—|_
'n='N; + R " +P x B+ P xR T
|+1nTI+ iz"
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:3“\% Dynamics - Newton-Euler Equations

To solve the Newton and Euler equations, we’ll need to develop mathematical
terms for:

LV, The linear acceleration of the center of mass
L @ — The angular acceleration

¢ — The Inertia tensor (moment of inertia)

>F - The sum of all the forces applied on the center of mass
EN - The sum of all the moments applied on the center of mass

l R\é\g

F =my, \ cr

v

N=lo+ ox‘lw
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Newton Euler Equations
Derivation Based on Momentum
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?“\% Dynamics - Newton-Euler Equations

Newton Equation

« For arigid body (like a robot link)
whose center of mass is
experiencing an acceleration, the
force acting at the center of mass
that caused the acceleration is given
by Newton’s equation

= _ d(mv,)
dt

« For our robot manipulators, whose
link masses are constant, this
equation simplifies to

F =mv, =ma,

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA
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Dynamics - Newton-Euler Equations

Eular Equation

For a rotating rigid body, the moment
that causes an angular acceleration
is given by Euler's equation

)
- dt

For our robot manipulators, whose
link moment of inertia is constant,
this equation simplifies to

T

N=lo+ ox‘lw
—

The second term on the right will be
non-zero when the link’s angular
velocity vector is not coincident with
the link’s principle axis of inertia.
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;‘“\% Linear Momentum — Particle
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y }:,4 Linear Momentum — Rigid Body
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Angular Momentum - Particle
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¥ U Angular Momentum — Rigid Body
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o, Angular Momentum — Rigid Body

T,
o
=

2L T, - d H, - -OL(IW>

21T = Tw+ WxTw
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5 Transport Theory

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Manipulator Dynamics — Newton Euler Equations

The Angular Acceleration

8,

Instructor: Jacob Rosen
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e, Dynamics - Newton-Euler Equations

To solve the Newton and Euler equations, we’ll need to develop mathematical
terms for:

V, = The linear acceleration of the center of mass
@ — The angular acceleration
¢ — The Inertia tensor (moment of inertia)

F - The sum of all the forces applied on the center of mass

N - The sum of all the moments applied on the center of mass

N="llot ox‘lw

Instructor: Jacob Rosen
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Deriving Angular Acceleration — Vector Approach
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A é? Propagation of Acceleration — Angular

; e Vector Approach
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&\hér*? Propagation of Acceleration — Angular
%};% Vector Approach
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Deriving Angular Acceleration — Matrix Approach
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A Oy Propagation of Acceleration — Angular
B 4N Matrix Approach

« To derive a general formula for the angular acceleration, we will differentiate the
angular velocity

iJrla)prl:iJrilRia)i'|'[O 0 é”l]T

«  Applying the chain rule, we find:

i, =R+ Ro+0 0 4,]

1+

 Recall that

; 0 -Q, Q
;\R:a Rl @, 0 - |fR=/R,/R
-Q, Q0

«  Substitution of this result yields

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA



N, Propagation of Acceleration - Angular

Matrix form (Revolute Joint) o, ="R'o+"R, "R o, + [0 0 9i+1]T

« Converting from matrix to vector form gives the angular acceleration vector

01 To"
i+1 - _i+lpi . i+lpi
Vector form (Revolute Joint) D= RO+ R0 ,O " O
_9i+1 _9i+1

- If joint I+1 is prismatic, the angular terms are zero ( .i+1 = ém =(0) and the
above equation simplifies to:

i+l - i+lpi -
Matrix form (Prismatic Joint) &= R o,

Instructor: Jacob Rosen
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Manipulator Dynamics — Newton Euler Equations

The Liner Acceleration of the Center of Mass
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e, Dynamics - Newton-Euler Equations

To solve the Newton and Euler equations, we’ll need to develop mathematical
terms for:

V, — The linear acceleration of the center of mass
@ — The angular acceleration

¢ — The Inertia tensor (moment of inertia)

F - The sum of all the forces applied on the center of mass

N - The sum of all the moments applied on the center of mass

F=mv

c

N=loo+ox‘lw

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA



j& Propagation of Acceleration - Linear
W Simultaneous Linear and Rotational Velocity

w('gj»

AVQ:f(BP’ BVQ’ AVBORG’ AQB’ QR)

e Vector Form

AVQ ="Vyore +aR BVQ +4Q, ><E§\RBPQ

{A}

« Matrix Form

Vo ="Vgor +R%V,+2R, (2R°P, )
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Deriving Linear Acceleration — Matrix Approach

Instructor: Jacob Rosen
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A O Propagation of Acceleration — Linear
e AN Matrix Approach

« To derive a general formula for the linear acceleration, we will differentiate the
linear velocity. However, instead of differentiating the recursive equation like we
did for the angular acceleration derivation, we’ll begin at a slightly earlier step.
Recall the three-part expression:

Vo =2R, (2ARP

A ApB
Qorg)+ VBorg_i_BR VQ

* Re-assigning the link frames ( A—0 B—>1 Q—i+1), wefind

O\/i+1:3?RQ (?RIP +0V’ +'(i)RiVi+1

i+1 i

- Differentiating using the chain rule gives:

YV, .5 R,RP,

i+1 i+1

+R,°R,°R'P

i+1

+'?RQ ? Ripiﬂ‘" v ‘|"?RQ (i) RV +9Rivi+l

i+1 i

Instructor: Jacob Rosen
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Propagation of Acceleration — Linear

0V.i+1:(i)|§£2 ? RIP

i+1

+?RQ?RQ?RiP *'?RQ?Ri

i+1

B

i+1 i

« Combining the two like terms, we find:

V,.=R,/R'P

i+17 i

i+1

+R, R, R'P,, +%V. +

i+1 i

+Ov' 1 ?RQ ? Ri\/i+1_|_?Ri\/.i+l

2°R, RV [+R'V.

i i+1

*  Pre-multiplying both sides of the equation by i+01R gives:

i+1 90Oy 2
OF\ V

« Expanding terms gives

iJrolRov.nl: iJrilRoiR?FéQ (i) RiPi+1+

ROR

i+1

="RR,°R'P,,+"R°R, R, °R'P,# RV, +2'"R

oo SRR

i+1

+ MRV, +7

"R,R

iRai RV, 4 0RIRV,

i+1

?RQ?RiViJrl

+i4E)1R(i)Rivi+l
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;%‘\\ 8 Propagation of Acceleration — Linear
3

Matrix Approach

=""R,R{R,R'P,

i+1

+"R/RR,’R,’R'P

i+1

« Simplifying the previous equation using (Note:

+H RV +2™R

RIRIRY,

1+1

oRRa7R=gRR,gR" =,R°(2=)Ray,'d

;

JR?RQ?RQ?R:

oX o

i—lal.RO\/'i :i+ilR0iRO\/'i :i+i1Ri\'/i

oRiR,R=R'0='0)

« we have

i+1\'/i+1:i+i1R @X P+ @< wx'P

+1

i+1

ijL(;LR?Rile

*RIRLRT=R "0,

i+1

i+1
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f@,é‘i Propagation of Acceleration — Linear
LA Matrix Approach

i+ly,  _iHlp i o i i i i I\ i+1 i+1 i+1,°
Vian= iR[a)uXI:)i+1+a)|Xa)|X|Di+1+Vi]+2 DX Vigt Vig

i+1

« This equation can be written equivalently as:

01 lo
General form i+1\-/i+l:i+i1R[ia-)iXil:,i+1+ia)ixiwixil:,i+1+ivi]+2i+1wi+1 < o |+l 0o
Frm-{ ( ” #V‘oh! d d
s P chp => (13 ] L

[CWR Vt'u\_ - l\/; .

If joint 1+1 is revolute joint, the linear terms are zero and the above equation
simplifies to: ot

e
Re vxl;/t“ 3°‘l\c5

Revolute Joint —s iy 1:‘+i1R[‘a')i><‘P +‘\'/i] 10 + 0

i+ i+1
J/ K

Le . fem (G t l "(; . ‘ . Iy - ] !
tem = LR[( be PI-CM‘L W\, l'\/l.‘< P\cw\"'\jtl LAl = (o,

+ia)i><i a)ixiP

i+1

Instructor: Jacob Rosen
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M, Propagation of Acceleration - Linear

« From the general equation, we can also get the solution for the acceleration of
the center of mass for link i. Appropriate frame substitution and elimination of
prismatic terms gives we find:

— 'V J\ia’)ixiPcﬁia)ixi w.x'P. +'V, >
f
l

i(_EnR:[I) _ ):— Il #CM

« Frame {C;} attached to each link with its origin located at the Center of mass of
the link, and with the same orientation as the link frame {i}

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Deriving Linear Acceleration — Vector Approach
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U 8 Propagation of Acceleration — Linear

&\h 2
T4, Vector Approach
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A Propagation of Acceleration — Linear
oRé [B) Acc wpYegtpr Approach
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e Propagation of Acceleration — Linear
?@“}f\\& Vector Approach
§ra4t‘»( Cage ??& IS cotg ZLGA—-/f‘ ,4 )
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Manipulator Dynamics — Newton Euler Equations

Forces & Torques

Applied at the Center of Mass | N

Applied at the Joints ifi ini

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA
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e, Dynamics - Newton-Euler Equations

terms for:

V, = The linear acceleration of the center of mass

@ — The angular acceleration

¢ — The Inertia tensor (moment of inertia)

F - The sum of all the forces applied on the center of mass

N - The sum of all the moments applied on the center of mass

F|=mv,

Z

=l + x|l w

To solve the Newton and Euler equations, we’ll need to develop mathematical

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA

UCLA



?“{i Expression of Force & Torque With Respect to the CM

A\

T-: ("XF

.

Instructor: Jacob Rosen
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:3“\% lterative Newton-Euler Equations

each link:

i i
Fi =M Vg

INi:CIIiIa‘)i_|_la)i><CI|iIa)i

The Newton and Euler equations are re-written for the forces and moments at

Where {C;} is a frame who has its origin at the link’s center of mass and has the

same orientation as the link frame {i}.

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA
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Sl Sum of Forces and Moment on a Link

‘&\

0‘“‘( 'g)a

« In addition to calculating the forces and torques arising from link accelerations,
we also need to account for how they affect the neighboring links as well as the
end effectors interactions with the environment.

« Balancing the forces shown in the above figure, we can find the total force and
torque on each link.

Instructor: Jacob Rosen
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Sum of Forces and Moment on a Link
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FEP, Sum of Forces and Moment on a Link

ny -« 1

fi o1

n; L

fj
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_ \“\;\ Sum of Forces and Moment on a Link

i . i _Cip c

i |+1IRI+]T

FI :ifi _ifi+

IN - n o n|+1 (_iPci )Xifi _( P + P+1)><'f

'N.='n—_R"n ,P.xXf+P.x R |-'P x R™f

i+1 i+1 i+1771+1

Pa x(fi=,1R ™)

i+1

iPciXiFi

|N_n_ |R|+1 IPciXiF |P X |R|+J_f

i+1 i+1771+1
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Sum of Forces and Moment on a Link

« Rearranging the force / torque equations so that they appear as iterative
relationship from higher number neighbor to lower number neighbor. The total
force and torque on each link.

— 2 =R +F

i+1 i+1 i

2 'n=N+ RN AP X R xR

i i |+1 i+1 i+177i+1

« Compare with the same equation for the static conditions

|R |+l|:

i+1

R "n,,+P, <

i+l i+1 i+1

o

Instructor: Jacob Rosen
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?\'M\ Sum of Forces and Moment on a Link

« The joint torque is simply the component of torque that projects onto the joint
axis (Z axis by definition)

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA



?“\% Sum of Forces and Moment on a Link

For a robot moving in free space

N+1
' fN+1:O

N+1 _
nN+1 - O

If the robot is contacting the environment, the forces/ torques due to this contact
may be included in the equations

N +1 fN+1 + O

N +1
Ny, =0

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Manipulator Dynamics — Newton Euler Equations

Equation Formulation Procedure

Instructor: Jacob Rosen
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A o Iterative Newton Euler Equations
i

% Steps of the Algorithm
* | (1) Outward Iterations (i=0—>n-1)
— Starting With velocities and accelerations
of the base @
w
‘0,=0, °a, =0, v, =0, *v,=+0Z v ‘0, =
Vem @, =0
— Calculate velocities accelerations, along F / %, =0
with forces and torques (at the CM) N Vy =+02
@, ®,V, Ve, Fo N
* | (2) Inward Iteration (i=n—1) (I=n—1)
— Starting with forces and torques (at the {E
CM)
F,N
— Calculate forces and torques at the joints
f,n

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA



éﬁ‘h\i? lterative Newton-Euler Equations - Solution Procedure
T Phase 1: Outward Iteration

Outward lteration: 1 :0—55

« Calculate the link velocities and accelerations iteratively from the robot’s base to
the end effector

i+1 _iHlp i ) i+l
0,= R w+60, "Z,

1+

i+l - iHlp i il i ) i+l i+1<%
0, = R o+ R o %0, Z|+1+9 Ziy

i+1vi+1:i+i1R(id)i X II:)|+1"‘ia)i X ( @; X I|:)|+1)‘|‘i\./i)

i+1,- _i+1 . i+1 i+1 i+1 i+1
Vein™ Point @ x (T xR,

) + i+l\./i+1

« Calculate the force and torques applied on the CM of each link using the Newton
and Euler equations

i+1 i+1,-
Fa= VCi+1

C .
|+1N |+1| 0).+1+ a) X |+1|_ i+1

Q).

i+1

Instructor: Jacob Rosen
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;\\hé‘; Iterative Newton-Euler Equations - Solution Procedure
T3y, Phase 2: Inward Iteration

Inward Iteration: 1:6—>1

» Use the forces and torques generated at the joints starting with forces and
torques generating by interacting with the environment (that is, tools, work
stations, parts etc.) at the end effector al the way the robot’s base.

f |+1IR IJrl|:|+1—|_
'n='N; + R " +P x B+ P xR T
|+1nTI+ iz"

Instructor: Jacob Rosen
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_ﬁf“i‘ii' lterative Newton-Euler Equations - Solution Procedure

« Error Checking - Check the units of each term in the resulting equations

« Gravity Effect - The effect of gravity can be included by setting c)\'/0 =(g . This
is the equivalent to saying that the base of the robot is accelerating upward at 1
g. The result of this accelerating is the same as accelerating all the links

individually as gravity does.

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Manipulator Dynamics — Newton Euler Equations

The Inertia Tensor (Moment of Inertia)

d

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA

UCLA



e, Dynamics - Newton-Euler Equations

To solve the Newton and Euler equations, we’ll need to develop mathematical
terms for:

V, = The linear acceleration of the center of mass

@ — The angular acceleration

¢ — The Inertia tensor (moment of inertia)

F - The sum of all the forces applied on the center of mass

N - The sum of all the moments applied on the center of mass

F =my,

N=loo+ox‘lw

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA



