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Jacobian: Velocity propagation

• The recursive expressions for the adjacent joint linear and angular velocities 

describe a relationship between the joint angle rates (     ) and the transnational 

and rotational velocities of the end effector (    ):
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Jacobian: Velocity propagation

• Therefore the recursive expressions for the adjacent joint linear and angular 

velocities can be used to determine the Jacobian in the end effector frame

• This equation can be expanded to:
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Jacobian - 3R - Example

• The linear angular velocities of the end effector (N=4)  
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Jacobian - 3R - Example

• Re-arranged to previous two terms gives an expression that encapsulates  

• We can now factor out the joint velocities vector                         from the above 

vector to formulate the Jacobian matrix  
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Jacobian - 3R - Example

• The equations for           and          are always a linear combination of the joint 

velocities, so they can always be used to find the 6xN Jacobian matrix (           ) 

for any robot manipulator.

• Note that the Jacobian matrix is expressed in frame {4} 
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Jacobian: Frame of Representation

• Using the velocity propagation method we 

expressed the relationship between the 

velocity of the robot end effector 

measured relative to the robot base frame 

{0} and expressed in the end effector 

frame {N}.  

• Occasionally, it may be desirable to 

express (represent) the end effector 

velocities in another frame (e.g. frame 

{0}, in which case we will need a method 

to provide the transformation.  
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Jacobian: Frame of Representation

• There are two methods to change the references frame (frame of 

representation) of the Jacobian Matrix

– Method 1: Transforming the linear and angular velocities to the new frame 

prior to formulating the Jabobian matrix.

– Method 2: Transforming the Jacobian matrix from it existing frame to the 

new frame after it was formulated.     
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Jacobian: Frame of Representation – Method 1

• Consider the velocities in a different frame {B}

• We may use the rotation matrix to find the velocities in frame {A}:
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Jacobian: Frame of Representation – Method 1

• Example: Analyzing a 6 DOF manipulator while utilizing velocity propagation 

method results in an expressing the end effector (frame 6) linear and angular 

velocities. 

• Using the forward kinematics formulation the rotation matrix from frame 0 to 

frame 6 can be defined as    

• The linear and angular velocities can than be expressed in frame 0 prior to 

extracting the Jacobian in frame 0  
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Jacobian: Frame of Representation – Method 2

• It is possible to define a Jacobian transformation matrix            that can 

transform the Jacobian from frame A to frame B 

• The Jacobian rotation matrix           is given by 
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Jacobian: Frame of Representation

• or equivalently, 
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Jacobian: Frame of Representation - 3R Example

• The rotation matrix (       )  can be calculated base on the direct kinematics given 

by
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Inverse Jacobian 

• Given 

– Tool tip path (defined mathematically)

– Tool tip position/orientation 

– Tool tip velocity

– Jacobian Matrix 

• Problem: Calculate the joint velocities

• Solution:

– Compute the inverse Jacobian matrix

– Use the following equation to compute 

the joint velocity

  xJ  1
 

    Jx 
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Inverse Jacobian

• Cases in which the Jacobian matrix             is not inevitable (               does not 

exists). Non invertible matrix is called singular matrix

– Case 1 - The Jacobian matrix is not squared

In general the 6xN Jacobian matrix may be non-square in which case the 

inverse is not defined

– Case 2 - The determinant (                    ) is equal to zero
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Inverse Jacobian - Reduced Jacobian

• Problem 

– When the number of joints (N) is less than 6, the manipulator does not have 

the necessary degrees of freedom to achieve independent control of all six 

velocities components.  

• Solution

– We can reduce the number of rows in the original Jacobian to describe a 

reduced Cartesian vector.  For example, the full Cartesian velocity vector is 

given by
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Jacobian: Reduced Jacobian - 3R Example

• Matrix Reduction - Option 1

• Column of zeroes

• The determinate is equal to zero

• Only two out of the three variables can be independently specified
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• Matrix Reduction - Option 2

• Two columns of zeroes

• The determinate is equal to zero

• Only one out of the three variables can be independently specified
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• Matrix Reduction - Option 3

• The resulting reduced Jacobian will be square (the number of independent rows 

in the Jacobian are equal to the number of unknown variables) and can be 

inverted unless in a singular configuration.
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Jacobian: Singularities

• To avoid singular configurations, the determinant of the Jacobian is often 

computed symbolically to find the set of joint values for which singularities will 

occur.  Singularities often occur under two situations:

1. Workspace Boundary: the manipulator is fully extended or folded back upon itself.

2. Workspace Interior: generally caused by two or more axes intersecting.
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Jacobian: Singular Configuration - 3R Example 

• If we want to use the inverse Jacobian to compute the joint angular velocities we 

need to first find out at what points the inverse exists.

• Considering the 3R robot

• The determinate of the Jacobian is defined as follows 
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Jacobian: Singular Configuration - 3R Example

• The reduced Jacbian matrix is singular when it determinate is equal to zero

• The singular condition occur when either of the following are true
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Jacobian: Singular Configuration - 3R Example

• Case 1:

• The first row of the Jacobian is zero

• The 3R robot is loosing one DOF. 

• The robot can no longer move along the 

X-axis of frame {4} 
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Jacobian: Singular Configuration - 3R Example

• Case 2:

• Occur only if

• The third row of the Jacobian is zero

• The origin of frame {4} intersects the Z-

axis of frame {1}

• The 3R robot is loosing one DOF. 

• The robot can no longer move along the 

Z-axis of frame {4} 
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Joint Velocity Near Singular Position - 3R Example

• Robot : 3R robot  

• Task: Visual inspection

• Control   

Control RobotOperator
  xJ  1

 

Instructor: Jacob Rosen 
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Joint Velocity Near Singular Position - 3R Example

• Singularity (Case 2)- The origin of frame {4} intersects the Z-axis of frame {1}

• Solve for      in terms of     we find 
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Joint Velocity Near Singular Position - 3R Example

• Singularity  -

• Problems:

– Motor Constrains - The robot is physically limited from moving in unusual 

high joint velocities by motor power constrains. Therefore, the robot will be 

unable to track the required joint velocity trajectory exactly resulting in some 

perturbation to the commanded Cartesian velocity trajectory. 

– Gears and Shafts - The derivative of the angular velocity is the  angular 

acceleration. The high acceleration of the joint resulting form approaching 

too close to a singularity may cause damage to the gear/shafts. 

– DOF - At a singular configuration (specific point in space) the manipulator 

loses one or more DOF. 

• Consequences – Certain tasks can not be performed at a singular configuration 

   0det J

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA



Designing Well Conditioned Workspace 

• Difficulty in operating at 

– Workspace Boundaries  

– Neighborhood of singular point inside the workspace  

• The further the manipulator is away from singularities the better it moves 

uniformly and apply forces in all directions  

• Manipulability Measure - How far / close the manipulator is from singularity 

– Range 

– For Non redundant manipulators  

– For redundant manipulators

– A good manipulator design has large area of characterized by high value of 

the manipulability 

  Jw det

     TJJw det

 w0

)(w
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Jacobian Explicit Method -

Differentiation the Forward Kinematics Eqs. (Method  No. 1) 

Instructor: Jacob Rosen 
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Jacobian Matrix - Derivation Methods

Jacobian Matrix

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA

Explicit Method

Differentiation the 

Forward Kinematics Eqs. 

(Method 1)

Iterative Methods 

Recursive Equations

Velocity

Propagation –

Base to EE 

(Method 2)

Force/Torque

Propagation –

EE to Base

(Method 3)  



Jacobian – Explicit Form – Overview 
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Jacobian – Explicit Form 

Instructor: Jacob Rosen 
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Jacobian – Explicit Form – Angular Velocity  

Instructor: Jacob Rosen 
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Jacobian – Explicit Form – Angular Velocity

Instructor: Jacob Rosen 
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Jacobian – Explicit Form – Angular Velocity

Instructor: Jacob Rosen 
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Jacobian – Explicit Form – Linear Velocity  

Instructor: Jacob Rosen 
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Jacobian – Explicit Form – Linear Velocity

Case 1- Prismatic Joint 

Instructor: Jacob Rosen 
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Jacobian – Explicit Form – Linear Velocity

Case 2 – Revolute Joint

Instructor: Jacob Rosen 
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Jacobian Iterative Method -

Force/Torque Propagation (Method No. 3)

Instructor: Jacob Rosen 
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Jacobian Matrix - Derivation Methods

Jacobian Matrix

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA

Explicit Method

Differentiation the 

Forward Kinematics Eqs. 

(Method 1)

Iterative Methods 

Recursive Equations

Velocity

Propagation –

Base to EE 

(Method 2)

Force/Torque

Propagation –

EE to Base

(Method 3)  



Statics - Forces & Torques

Problem

Given: Typically the robot’s end effector is

applying forces and torques on an object in the

environment or carrying an object (gravitational

load).

Compute: The joint torques which must be

acting to keep the system in static equilibrium.

Solution

Jacobian - Mapping from the joint

force/torques - to forces/torque in the

Cartesian space applied on the end effector) -

.

Free Body Diagram - The chain like nature of 

a manipulator leads to decompose the chain 

into individual links and calculate how forces 

and moments propagate from one link to the 

next. 

fT
Jτ

f

f


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Static Analysis Protocol - Free Body Diagram 1/ 

Step 1 

Lock all the joints - Converting the 

manipulator (mechanism) to a structure

Step 2

Consider each link in the structure as a 

free body and write the force / moment 

equilibrium equations

(3 Eqs.)

(3 Eqs.) 

Step 3

Solve the equations - 6 Eq. for each link.

Apply backward solution starting from 

the last link (end effector) and end up at 

the first link (base) 

  0F

f

  0M
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Static Analysis Protocol - Free Body Diagram 2/

• Special Symbols are defined for the 

force and torque exerted by the 

neighbor link

- Force exerted on link  i by link i-1

- Torque exerted on link  i by link i-1

• For easy solution superscript index 

(A) should the same as the subscript 

(B)

if

in

A

BC

Exerted on link A by link A-1

Reference coordinate 

system {B}

Force f or torque n

Instructor: Jacob Rosen 
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Static Analysis Protocol - Free Body Diagram 3/

• For serial manipulator in static equilibrium (joints locked), the sum the forces and 

torques acting on link   i in the link frame {i} are equal to zero. 

00 1   i
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i fPnnMM
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Static Analysis Protocol - Free Body Diagram 4/

• Procedural Note: The solution starts at the end effector and ends at the base

• Re-writing these equations in order such that the known forces (or torques) are 

on the right-hand side and the unknown forces (or torques) are on the left, we 

find
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Static Analysis Protocol - Free Body Diagram 5/

• Changing the reference frame such that each force (and torque) is expressed 

upon their link’s frame, we find the static force (and torque) propagation from link 

i+1 to link i

• These equations provide the static force (and torque) propagation from link to 

link.  They allow us to start with the force and torque applied at the end effector, 

and calculate the force and torque at each joint all the way back to the robot 

base frame.
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Static Analysis Protocol - Free Body Diagram 6/

• Question: What torques are needed at the joints in order to balance the 

reaction moments acting on the link (Revolute Joint). 

Instructor: Jacob Rosen 
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Static Analysis Protocol - Free Body Diagram 7/

• Question: What forces are needed at the joints in order to balance the reaction 

forces acting on the link (Prismatic Joint). 

Instructor: Jacob Rosen 
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Static Analysis Protocol - Free Body Diagram 8/

• Answer: All the components of the force and moment vectors are resisted by 

the structure of mechanism itself, except for the torque about the joint axis 

(revolute joint) or the force along the joint (prismatic joint). 

• Therefore, to find the joint the torque or force required to maintain the static 

equilibrium, the dot product of the joint axis vector with the moment vector or 

force vector acting on the link is computed
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Example - 2R Robot - Static Analysis 

Problem 

Given:

- 2R Robot

- A Force vector          is applied by the 

end effector

- A torque vector 

Compute: 

The required joint torque as a function of

the robot configuration and the applied

force   

3

3 f

03

3 n
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Example - 2R Robot - Static Analysis 

Instructor: Jacob Rosen 
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Example - 2R Robot - Static Analysis

Solution

• Lock the revolute joints

• Apply the static equilibrium equations starting from the end effector and going 

toward the base
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Example - 2R Robot - Static Analysis

• For i=2

3
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Example - 2R Robot - Static Analysis

• For i=1

2
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Example - 2R Robot - Static Analysis
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Example - 2R Robot - Static Analysis

• Re-writing the equations in a matrix form
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Jacobian Propagation to the Tip of the Tool 
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Jacobian Propagation to the Tip of the Tool 
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Jacobian Propagation to the Tip of the Tool 
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Jacobian Propagation to the Tip of the Tool 
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Jacobian Propagation to the Tip of the Tool 
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Jacobian Propagation to the Tip of the Tool 
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Jacobian Propagation to the Tip of the Tool 
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Jacobian Propagation to the Tip of the Tool 
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Jacobian Propagation to the Tip of the Tool 
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Jacobian Methods – Reference Frame - Summary 

Instructor: Jacob Rosen 
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Jacobian Methods of Derivation & the 

Corresponding Reference Frame   – Summary 

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA

Method Jacobian
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Jacobian – High Level Overview  
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Jacobian – Duality 

Instructor: Jacob Rosen 
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is a linear mapping of the joint space velocities       which is a n - dimensional 

vector space   to the end effector velocities        which is a m – dimensional vector 

space 

Joint Space End-Effector Space 

J

 X1S
2S

n
mX )(JR

 JX  
n X

mX 



Jacobian – Duality 

Instructor: Jacob Rosen 
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The subset of all the end effector velocities        resulting from the mapping              

represents all the possible end effector velocities that can be generated by the n joints 

given the arm configuration 

X  JX 

Joint Space End-Effector Space 

J

 X1S
2S

n
mX )(JR

Accessible  

None Accessible  



Jacobian – Duality 

Instructor: Jacob Rosen 
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If the rank of the Jacobian matrix      is at full of row rank (square matrix) the joint space     

covers the entire end effector vector          otherwise there is at least one direction in which 

the end effector can not be moved    

Joint Space End-Effector Space 

J

 X1S
2S

n
mX )(JR

In at least on direction 

0  JX

Accessible  

None Accessible  

J

X



Jacobian – Duality 
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The subset             is the null space of the linear mapping. Any element in this subspace is 

mapped into a zero vector in         such that                 therefore any joint velocity vector    

that belongs to the null space does not produce any velocity at the end effector    

Joint Space End-Effector Space 

J

 X1S
2S

n
mX )(JN )(JR

In at least on direction 
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If the Jacobian of a manipulator is full rank the dimension of the null space                  is the 

same as the redundant degrees of freedom (n-m). For example the human arm has 7 DOF 

whereas the hand may have 6 linear and angular velocities therefore the null dimension is 

one (n-m=7-1=1)  
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If the Jacobian of a manipulator is full rank (i.e. n>m full row rank where the rows are linearly 

independent)  the dimension of the null space                  is the same as the redundant 

degrees of freedom (n-m). For example the human arm has 7 DOF whereas the hand may 

have 6 linear and angular velocities therefore the null dimension is one (n-m=7-1=1)  
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If the Jacobian of a manipulator is full rank (i.e. for redundant manipulator n>m full row rank 

where the rows are linearly independent)  the dimension of the null space                  is the 

same as the redundant degrees of freedom (n-m). For example the human arm has 7 DOF 

whereas the end effector (hand) may have 6 linear and angular velocities therefore the null 

dimension is one (n-m=7-1=1)  
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When the Jacobian matrix degenerates (i.e. not full rank e.g. due to singularity) the 

dimension of the range space                  decreases at the same time as the dimension of the 

null space increases                     by the same amount. The sum of the two is always equal to 

n 
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If the null space is not empty set, the instantaneous kinematic equation has an infinite number 

of solutions that cause the same end effector velocities (recall the 3 axis end effector) 
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Joint Space End-Effector Space 
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Unlike the mapping of the instantaneous kinematics the mapping of the static external forces 

is from the m-th vector space                  associated with the end effector coordinates to the n-

th dimensional vector space              associated with the torques at the joint space. Therefore 

the joint torque are always determined uniquely from any end effector point force  
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Joint Space End-Effector Space 
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The null space               represents the set of all end point forces that do not require any 

torques at the joints to bear the corresponding load      (e.g. 2R fully stretched or collapsed 

elbow).  
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Joint Space End-Effector Space 
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When the Jacobian matrix is degenerated or the arm is in a singular configuration external 

endpoint force is borne entirely by the structure and not by the joint torque.  


