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Jacobian Matrix - Calculation Methods

Iterative Propagation
(Velocities or Forces / Torques)

o
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Jacobian Matrix
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Jacobian Matrix - Introduction

* In the field of robotics the Jacobian matrix
describe the relationship between the joint
angle rates (QN ) and the translation and
rotation velocities of the end effector ( X ).
This relationship is given by:

x=1J(0)0

« In addition to the velocity relationship, we are
also interested in developing a relationship
between the robot joint torques ( 7 ) and the
forces and moments ( F ) at the robot end
effector (Static Conditions). This
relationship is given by:

r=J(0) F
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Velocity Propagation — Link / Joint Abstraction
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Velocity Propagation — Intuitive Explanation

e Show a demo with the stick like frames

« Three Actions

— The origin of frame B moves as a function of time with respect to the origin
of frame A AQB

— Point Q moves with respect to frame B
— Frame B rotates with respect to frame A along an axis defined by

Instructor: Jacob Rosen
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Velocity Propagation — Intuitive Explanation

Engineer's Computation Pad
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Central Topic -
Simultaneous Linear and Rotational Velocity

AVQ:f(BP’ BVQ’ AVBORG’ AQB’ BAR)

« Vector Form (Method No. 1)

AVQ ="V one +aR E‘VQ +4Q, ><E’$RBPQ

« Matrix Form (Method No. 2)
{A)

Vo ="Vgore +R®V,+2R, (2R°P, )

« Matrix Formulation — Homogeneous
Transformation Form — Method No. 3

et b P
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Central Topic -
Changing Frame of Representation — Angular Velocity

« Angular Velocity Representation in
Various Frames

{A}

A A ApB
— Vector Form Q.="Qz+,R"Q,

— Matrix Form A _ AR AR By ApPpT
CRQ_BRQ+BRCRQBR
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Velocity — Derivation Method No. 1 & 2

Vector Form
Matrix Form

Instructor: Jacob Rosen
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Vo ="Vgora e REV+Q x 2RP, Vo ="Vpors +EREV, +2R, (2R°P, )

Definitions - Linear Velocity

« Linear velocity - The instantaneous rate of change in linear position of a point
relative to some frame.
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Definitions - Linear Velocity

« Linear velocity - The instantaneous rate of change in linear position of a point
relative to some frame.

AP (t+ At)-"P. (t AP. (1) ="P. (t — At
Ny =—"Py = lim AR iy Tl Fot =AY
dt At—0 At At—0 At
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Definitions - Linear Velocity

« The position of point Q in frame {A} is represented by the linear position vector

-
Pox
A A
PQ - PQy
A
Po

« The velocity of a point Q relative to frame {A} is represented by the linear
velocity vector

A Ap
Aq P, Pox
A Ap
o= | Fo|=| Py
dt A Ap
Py | | Py |
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"V, ="Vgore HaR BVQ +4Q, ><E§\RBPQ

A\/Q :AVBORG * é\ R BVQ

Linear Velocity - Rigid Body

« Given: Consider a frame {B} attached
to a rigid body whereas frame {A} is
fixed. The orientation of frame {A}
with respect to frame {B} is not
changing as a function of time E’jR =0

*  Problem: describe the motion of of
the vector BpQ relative to frame {A}

- Solution: Frame {B} is located
relative to frame {A} by a position
vector “P, . and the rotation matrix 'R
(assume that the orientation is not
changing in time QR = () expressing
both components of the velocity in
terms of frame {A} gives

A
\/

aY

Q

— AVBORG +7 ( BVQ ): AVBORG + Q R BVQ
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Vo ="VaorsHeR Vot ' Qyx RP,

Vo ="Vpors 1RV, R, (2RP, )

Linear Velocity - Rigid Body

« Given: Consider a frame {B} attached
to a rigid body whereas frame {A} is
fixed. The orientation of frame {A}
with respect to frame {B} is not
changing as a function of time E’jR =0

*  Problem: describe the motion of of
the vector BpQ relative to frame {A}

- Solution: Frame {B} is located
relative to frame {A} by a position
vector “P, . and the rotation matrix 'R
(assume that the orientation is not
changing in time QR = () expressing
both components of the velocity in
terms of frame {A} gives

{B} ®

A
Pporc

AR=0

aY

Q

— AVBORG +7 ( BVQ ): AVBORG + Q R BVQ
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Linear Velocity — Translation (No Rotation)
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Linear Velocity — Translation
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Linear & Angular Velocities - Frames

 When describing the velocity (linear or angular) of an object, there are two
important frames that are being used:

— Represented Frame (Reference Frame) : e.g. [A]
This is the frame used m_(e/xpress) the object’s velocity.

Computed Frame: e.g. [B]
This is the frame in which the velocity is measured (differentiate the position).

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA
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Frame - Velocity

« As with any vector, a velocity vector may be described in terms of any frame,
and this frame of reference is noted with a leading superscript.

« A velocity vector computed in frame {B} and represented in frame {A} would be
written

Represented
(F\LGE[@]@ Frame) -— Projected on

dt

Computed
(Measured) - Differentiate with respect to

ABQ)

Instructor: Jacob Rosen
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Frame - Linear Velocity

« We can always remove the outer, leading superscript by explicitly including the
rotation matrix which accomplishes the change in the reference frame

A3V, )=2R®V,

A/B ApB A
* Note that in the general case  ( VQ):BR VQ¢ VQ because E/?R may be
time-verging 2R #0

« If the calculated velocity is written in terms of of the frame of differentiation the
result could be indicated by a single leading superscript.

A(AvQ ):AvQ

* In a similar fashion when the angular velocity is expresses and measured as a
vector

(*Qe)=gRQ

Instructor: Jacob Rosen
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Frame - Linear Velocity
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Frames - Linear Velocity - Example

« Given: The driver of the car maintains a speed of 100 km/h (as shown to the
driver by the car’s speedometer).

" / /
- Problem: Express the velocmeSC[ |) W[WV ] W[CV ] VJ

in each section of the road A, B, , F where {C} - Car frame, and
{W} - World frame

Represented
(Reference Frame)

AY Computed
e, B 5 / (Measured)
v
v v,
X
Object Frame
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Frames - Linear Velocity - Example
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A% :AVBORG +BAR BVQ +AQB ><E/:RBF)Q AVQ:AVBORG N QR BVQ +BARQ(£RBPQ)

Q
‘ Frames - Linear Velocity - Example
(cO —s@ O]
*R=Rot(2,0)=|s® cO 0
0 0 1

[0.707 —0.707 0.000]
Rot(2,+45°) =| 0.707 0.707  0.000
10.000 0.000 1.000]

[ 0.707 0.707 0.000°
Rot(2,-45°) =| —0.707 0.707 0.000
| 0.000 0.000 1.000]

o
o O -
— O O

0
0| Rot(2,-90°)=|-1
1

0
Rot(2,+90°) =| 1
0

o

Instructor: Jacob Rosen
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Frames - Linear Velocity - Example

. CoMPUTE O !;/‘” \
AsB ApB
( VQ):BR VQ

R 1

)
(

o ,’;’R =0 s not time-‘\;ar)}/ivrvxé (in this example)
“(Ve)=cRV = 110]=[0]
"V )z RV =I"V
Y, )SERCV, =T R[0]=[0]

5 (W‘ V(‘ ):\’;Yeli’ V('
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N ="Vaore TaR Vo i+ Qp xs R°P, Vo ="Vgors HsR "V,

+§RQ(£RBPQ)

Q
& Frames - Linear Velocity - Example

A(BVQ):QRBVQ
QR =0 is not time-varying (in this example)
©(Ve)=ERV, = 1[0] =[0]
T (Ve)= RV =11V,
" ("Ve)=cR"V:=cRI0]=[0]

(V)R
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<

Frames - Linear Velocity - Example

Velocity

Road Section C[CVC] W[WVC] W[CVC] C[WVC]
A @D

E
B @D

E

E
0

E
E @D

E
)

E
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Linear Velocity - Free Vector

« Linear velocity vectors are insensitive to shifts in origin.

* Consider the following example:

« The velocity of the object in {C} relative to both {A} and {B} is the same, that is

LY

« Aslong as {A} and {B} remain fixed relative to each other (translational but not
rotational), then the velocity vector remains unchanged (that is, a free vector).

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA
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Angular Velocity - Rigid Body - Intuitive Approach

Ay f

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA



N = Vgons HRV HAQ xR, NVo="Vgors +oR?V +4R, (#R%P,)

Angular Velocity - Rigid Body

« Given: Consider a frame {B} attached
to a rigid body whereas frame {A} is
fixed. The vector Bp_ is constant as
view from frame {B} BVQ -0

Problem: describe the velocity of the
vector®P. representing the the point
Q relative to frame {A}

- Solution: Even though the vector Bp
is constant as view from frame {B} it
is clear that point Q will have a
velocity as seen from frame {A} due
to the rotational velocity AQB

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA
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Angular Velocity - Rigid Body - Intuitive Approach
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Angular Velocity - Rigid Body - Intuitive Approach

« The figure shows to instants of time
as the vector P rotates around AQ
This is what an observer in frame {A}
would observe. e

« The Magnitude of the differential
change is

‘APQ‘sine -

4
A
" AR,
P, (t+At)

A A A .
‘A PQ‘ = Q QB‘AtN PQ‘sme)
« Using a vector cross product we get

AR,
2=V, =", xR,
At

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA
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Angular Velocity - Rigid Body - Intuitive Approach

 Rotation in 2D
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Angular Velocity - Rigid Body - Intuitive Approach

* Inthe general case, the vector Q may also be changing with respect to the
frame {B}. Adding this component we get.

Vo =" (BV, QX P,

« Using the rotation matrix to remove the dual-superscript, and since the
description of AF’Q at any instance is QRBPQ we get

\”v =RV +"Q . x R °R,

Instructor: Jacob Rosen
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Definitions - Angular Velocity

* Angular Velocity: The instantaneous rate of change in the orientation of one
frame relative to another.

® Point - 1D

. i Plane - 2D / Body - 3D
. i Plane - 2D / Body - 3D

Linear Velocity

Instructor: Jacob Rosen A
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCL
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Definitions - Angular Velocity

« Just as there are many ways to represent orientation (Euler Angles, Roll-Pitch-
Yaw Angles, Rotation Matrices, etc.) there are also many ways to represent the
rate of change in orientation.

Angular Velocity
Representation

3

Angular Velocity
Matrix

« The angular velocity vector is convenient to use because it has an easy to grasp
physical meaning. However, the matrix form is useful when performing
algebraic manipulations.

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA
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Definitions - Angular Velocity - Vector

« Angular Velocity Vector: A vector whose direction is the instantaneous axis of
rotation of one frame relative to another and whose magnitude is the rate of
rotation about that axis.

AQp

>

e
Il

®

« The angular velocity vector AQB describes the instantaneous change of
rotation of frame {B} relative to frame {A}

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA
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Definitions - Angular Velocity - Matrix

« Angular Velocity Matrix:

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA
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Definitions - Angular Velocity - Matrix

« The rotation matrix ( AR ) defines the orientation of frame {B} relative to frame
{A}. Specifically, the columns of R are the unit vectors of {B} represented in

{A}.

A_ —_

sR=|[R] [°R] [P]

« If we look at the derivative of the rotation matrix, the columns will be the velocity
of each unit vector of {B} relative to {A}:

A_ —_

R= Rk ] ] ]

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA
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Q

Definitions - Angular Velocity - Matrix

A ApB A ApB
="Vgorg teR Vot QgxzR7F,

Vo ="Vions +EREV, +R, (2R®P

Q

* The relationship between the rotation matrix E’f R and the derivative of the
rotation matrix E/:F\') can be expressed as follows:

sR=gRos R

RARNARA

— AR
=gRq

A_

Rl PR [°R]

 where I?RQ is defined as the angular velocity matrix

0 —Q
QRQEE Q, 0
-Q, Q

Instructor: Jacob Rosen

Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA

UCLA
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NV,="V

"

Ap B
BORG+BR VQ+

"y xsRP,

Ny ="V

Angular Velocity - Matrix & Vector Forms

BORG +E§\RBVQ+BARQ(E?RBPQ)

Matrix Form

Vector Form

0 -Q Q,
Definition é\ =| Q, 0 AQBE Qy
—Qy Q, _Qz_
Multiply by Constant K [QRQ] K [AQB
- ]
Multiply by Vector :
ply Oy [QRQ] y AQBX y g W =y \

Z | Z ]

Multiply by Matrix

[RI[oR JLRT

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA



A% :AVBORG +BAR BVQ +AQB ><E/:RBF)Q AVQ:AVBORG +BAR BVQ y BARQ(E?RBPQ)

Q
a Simultaneous Linear and Rotational Velocity -
Vector Versus Matrix Representation

Vector Form Matrix Form

Vo ="Vgore +oRV,+4 Qg x2R®P, Vo ="Vgors +eRV,+2R, (2R°P, )

| ]k
QxP=|Q, Q, Q,/=i(Q,P,-Q,P)-j(QP,-Q,P)+k(QP,-Q,P,)
P P, P
0 -0, Q [R] [-QP+QP
R,P=| Q, 0 -Q.|P |=| QP-QP
-Q, Q, 0 |P| |-QP+Q,P,

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Simultaneous Linear and Rotational Velocity

« The final results for the derivative of a vector in a moving frame (linear and
rotation velocities) as seen from a stationary frame

« Vector Form

AVQ ="V one +aR E‘VQ +4Q, ><E’$RBPQ

{A}

« Matrix Form

Vo ="Vgors +eR%V,+2R, (2R°P, )

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Velocity — Derivation Method No. 3

Homogeneous Transformation Form

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Changing Frame of Representation - Linear Velocity

« We have already used the homogeneous
transform matrix to compute the location of
position vectors in other frames:

A A
P, =AT P,

. . A
« To compute the relationship between A

velocity vectors in different frames, we will
take the derivative:

d ap 1. d [s
a PQ]—dt[BTBPQ]

AR AT A -
P, =4T %P, +A4T %,

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA



AR AT A -
P, =T P, +4T P,

& Changing Frame of Representation - Linear Velocity

* Recall that

AT —_ [QR] [APBorg]
B

so that the derivative is

q_d LR Drall | BRE PRl | [5RaR]

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA



AR AT A -
P, =T P, +4T P,

& Changing Frame of Representation - Linear Velocity

g—l- — [QRQQR] [A\/Borg]

0 0 0 0

- Substitute the previous results into the original equation Ap AT Bp +ATBp
we get

R e e T

« This expression is equivalent to the following three-part expression:

V=R (AREP, JAV4 o +2REV,

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Changing Frame of Representation - Linear Velocity

V=R, (8R%P, JAVy o +2REV,

« Converting from matrix to vector form yields

Vo= x(2RPP, AV, +aR%V,

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Angular Velocity —
Changing Frame of Representation

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA



AQC:AQB"'BARBQC CARQ:BARQ"'QRCE:;RQBART

Angular Velocity

« Frame @ is rotated around frame by ° Q.
. Frame is rotated around frame@by A Q,
« Given BQC‘AQB \

* Find AQC

—
>
~—
.
7~

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA



AQC:AQB"'BARBQC €R92£R9+$R5RQQRT

Changing Frame of Representation - Angular Velocity

« We use rotation matrices to represent angular position so that we can compute the
angular position of {C} in {A} if we know the angular position of {C} in {B} and {B} in
{A} by

A Ap B
c R=gRcR

« To derive the relationship describing how angular velocity propagates between
frames, we will take the derivative

SRHARPR+ARCR

«  Substituting the angular velocity matrixes
Ap_Ap A B BS Bp| AD_Ap A
g R=gRg R | &:—E:RQCR‘) \ C R:CRQCES
« we find CARQCAR:QRQ\QRSRFQRSRggR
/

C':ARQC':AR:I,BARQ °R BAR(IZBRQC?R

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Changing Frame of Representation - Angular Velocity

- Post-multiplying both sides by £R" ,which for rotation matrices, is equivalent to AR

A ApS Ap BB ART
CRQ:BRQ+BRCRQBR

« The above equation provides the relationship for changing the frame of
representation of angular velocity matrices.

« The vector form is given by

Q. ="Q+LRQ

« To summarize, the angular velocities of frames may be added as long as they
are expressed in the same frame.

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Summary — Changing Frame of Representation

« Linear and Rotational Velocity

— Vector Form

Q

NV ="Vgore +aR Vg +"Qy x4 RP, (4)

— Matrix Form

Q

Vo ="Viors +RV,+2R, (2R°P, )

AQB

APporc

« Angular Velocity

— Vector Form

— Matrix Form

Q. ="Q +IRQ

A ApS Ap B ART
CRQ:BRQ+BRCRQBR

Instructor: Jacob Rosen

Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering -

UCLA
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