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Kinematics Relations - Joint & Cartesian Spaces 

• A robot is often used to manipulate object attached to its tip (end effector). 

• The location of the robot tip may be specified using one of the following 

descriptions: 

• Joint Space

• Cartesian Space
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Kinematics Relations - Forward & Inverse 

• The robot kinematic equations relate the two description of the robot tip location
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Kinematics Relations - Forward & Inverse 
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Jacobian Matrix - Introduction

• The Jacobian is a multi dimensional form of the derivative.

• Suppose that for example we have 6 functions, each of which is a function of 6 

independent variables

• We may also use a vector notation to write these equations as    
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Jacobian Matrix - Introduction

• If we wish to calculate the differential of         as a function of the differential          

we use the chain rule to get

• Which again might be written more simply using a vector notation as  
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Jacobian Matrix - Introduction

• The 6x6 matrix of partial derivative is defined as the Jacobian matrix

• By dividing both sides by the differential time element, we can think of the 

Jacobian as mapping velocities in X to those in Y

• Note that the Jacobian is time varying linear transformation   
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Jacobian Matrix - Introduction

• In the field of robotics the Jacobian 

matrix describe the  relationship 

between the joint angle rates  (       ) 

and the translation and rotation 

velocities of the end effector (       ).  

This relationship is given by:
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Jacobian Matrix - Introduction

• In the field of robotics the Jacobian 

matrix describe the  relationship 

between the joint angle rates  (       ) 

and the translation and rotation 
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Jacobian Matrix - Introduction

• This expression can be expanded to:

• Where:

– is a 6x1 vector of the end effector linear and angular velocities

– is a 6xN Jacobian matrix 

– is a Nx1 vector of the manipulator joint velocities

– is the number of joints 
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Jacobian Matrix - Introduction

• The meaning of each line (e.g. the first line) of the Jacobian matrix:

• The first line maps the contribution of the angular velocity of each joint to the 

linear velocity of the end effector along the x-axis 
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Jacobian Matrix - Introduction

• The meaning of each column (e.g. the first column) of the Jacobian matrix:

• The first column maps the contribution of the angular velocity of the first joint to 

the linear and angular velocities of the end effector along all the axis (x,y,z) 
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Jacobian Matrix - Introduction

• In addition to the velocity 

relationship, we are also interested in 

developing a relationship between 

the robot joint torques (     ) and the 

forces and moments (     ) at the 

robot end effector (Static 

Conditions).  This relationship is 

given by:
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Jacobian Matrix - Introduction

• This expression can be expanded to:

• Where:

– is a 6x1 vector of the robot joint torques 

– is a 6xN Transposed Jacobian matrix 

– is a Nx1 vector of the forces and moments at the robot end effector

– is the number of joints
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Jacobian Matrix - Introduction



Jacobian Matrix - Introduction



Jacobian Matrix - Calculation Methods

• There are three methods to derive the Jacobian matrix 

Jacobian Matrix

Explicit Approach

Diff. of the FK Eqs

(One Method)

Iterative Propagation Approach  

(Velocities or Forces / Torques)

(Two Methods)
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Jacobian Matrix by Differentiation - 1R - 1/4

• Consider a simple planar 1R robot

• The end effector position is given by 

x

y

 ,

eeV

xP

yP





sin

cos

0

0

ryP

rxP

y

x





r

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA



Jacobian Matrix by Differentiation - 1R - 2/4

• The velocity of the end effector is defined by

• Expressed in matrix form we have
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Jacobian Matrix by Differentiation - 1R - 3/4

• The moment about the joint generated by the force acting on the end effector is 

given by
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Jacobian Matrix by Differentiation - 1R - 4/4

• Expressed in matrix form we have
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Jacobian Matrix by Differanciation - 3R - 1/4

• Consider the following 3 DOF Planar manipulator
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Jacobian Matrix by Differanciation - 3R - 2/4

• Problem: Compute the Jacobian matrix that describes the relationship

• Solution:

• The end effector position and orientation is defined in the base frame by 
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Jacobian Matrix by Differanciation - 3R - 3/4

• The forward kinematics gives us relationship of the end effector to the joint 

angles:

• Differentiating the three expressions gives
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Jacobian Matrix by Differanciation - 3R - 4/4

• Using a matrix form we get

• The Jacobian provides a linear transformation, giving a velocity map and a force 

map for a robot manipulator.  For the simple example above, the equations are 

trivial, but can easily become more complicated with robots that have additional 

degrees a freedom.  Before tackling these problems, consider this brief review of 

linear algebra. 
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Singularity - The Concept

• Motivation:  We would like the hand of a robot (end effecror) to move with a 

certain velocity vector in Cartesian space. Using linear transformation relating 

the joint velocity to the Cartesian velocity we could calculate the necessary joint 

rates at each instance along the path.  

• Given: a linear transformation relating the joint velocity to the Cartesian velocity 

(usually the end effector)

• Question:  Is the Jacobian matrix invertable? (Or) Is it nonsingular?

Is the Jacobian invertable for all values of       ?

If not, where is it not invertable?

  xJ  1
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Singularity - The Concept

• Answer (Conceptual): Most manipulator have  values of    where the Jacobian 

becomes singular . Such locations are called singularities of the mechanism

or singularities for short 



Singularities of the mechanism

Workspace interior SingularitiesWorkspace boundary singularities

End 

Effector
Workspace

Boundary

- Stretched out

- Folded back
- Two or more joints are lining up
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Singularity - The Concept

• Lost of DOF - Losing one or more DOF means that there is a some direction (or subspace) in Cartesian 

space along which it is impossible to move the hand of the robot (end effector) no matter which joint rate 

are selected 

• Load Balance – A finite force can be applied to the end effector that produces no torque at the robot’s 

joints

• Joint Velocity – A zero end effector velocity will cause high joint velocity  

Manipulator 

Singular 

Configuration 

Losing 

One or More DOF 

General 

Configuration 

All DOF 

Are Available 
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Singularity – Physical Interpretation - Examples
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Brief Linear Algebra Review - 1/

• Inverse of Matrix A exists if and only if the determinant of A is non-zero.

Exists if and only if

• If the determinant of A is equal to zero, then the matrix A is a singular matrix

Singular

1A

0)(  AADet
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A
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Brief Linear Algebra Review - 2/

• The rank of the matrix A is the size of the largest squared Matrix S for which

• Example 1 -

• Example 2 -
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• If two rows or columns of matrix A are equal or related by a constant, then

• Example 
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• Eigenvalues

• Eigenvalues are the roots of the polynomial

• If                each solution to the characteristic equation      (Eigenvalue)  has a 

corresponding  Eigenvector    

XAX 

0)(  XIA 

)( IADet 

0X
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• Wikipedai - https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA



Brief Linear Algebra Review - 4/











21

12
A

034
21

12
)( 2 




 




IADet

0
21

12
)(

2

1























X

X
XIA






3

1

2

1









Instructor: Jacob Rosen 

Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA



Brief Linear Algebra Review - 4/

11 

32 

0
11

11

2

1


















X

X












1

1
X

0
11

11

2

1






















X

X










1

1
X

Instructor: Jacob Rosen 

Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA



Brief Linear Algebra Review - 5/

• Any singular matrix  (                      ) has at least one Eigenvalue equal to zero0)( ADet
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• If A is non-singular  (                        ), and        is an eigenvalue of  A with 

corresponding to eigenvector X, then 
0)( ADet 

XXA 11   
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• If the n x n matrix A is of full rank (that is, Rank (A) = n), then the only 

solution to  

is the trivial one

• If A is of less than full rank (that is Rank (A) < n), then there are n-r linearly 

independent (orthogonal) solutions

for which

0AX

0X
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• If A is square, then A and AT have the same eigenvalues
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Properties of the Jacobian -

Velocity Mapping and Singularities

• Example: Planar 3R

• Note that                      is not a function of
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Properties of the Jacobian -

Velocity Mapping and Singularities

• The manipulator loses 1 DEF. The end effector can only move along the tangent 

direction of the arm. Motion along the radial direction is not possible. 


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2
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Properties of the Jacobian -

Force Mapping and Singularities

• The relationship between joint torque and end effector force and moments is  

given by:

• The rank of                is equals the rank of           .

• At a singular configuration there exists a non trivial force         such that 

• In other words, a finite force can be applied to the end effector that produces no 

torque at the robot’s joints.  In the singular configuration, the manipulator can 

“lock up.”   

  FJ
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Properties of the Jacobian -

Force Mapping and Singularities

• Example: Planar 3R

• In this case the force acting on the end effector (relative to the {0} frame) is 

given by

F
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Properties of the Jacobian -

Force Mapping and Singularities

• For                                       we get
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Properties of the Jacobian -

Force Mapping and Singularities

• This situation is an old and famous one in mechanical engineering. 

• For example, in the steam locomotive, “top dead center” refers to the following 

condition

• The piston force, F, cannot generate any torque around the drive wheel axis 

because the linkage is singular in the position shown.
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Properties of the Jacobian -

Velocity Mapping and Singularities

• We have shown the relationship between joint space velocity and end effector 

velocity, given by

• It is interesting to determine the inverse of this relationship, namely

   Jx 

  xJ  1
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Properties of the Jacobian -

Velocity Mapping and Singularities

• Consider the square 6x6 case for            .  

• If rank  < 6  (                           )    , then there is no solution to the inverse 

equation (see Brief Linear Algebra Review - 1,7).  

• However, if the rank = 5, then there is at least one non-trivial solution to the 

forward equation (see Brief Linear Algebra Review - 7). That is, for

   6JRank
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Properties of the Jacobian -

Velocity Mapping and Singularities

• The solution is a direction          in the in joint velocity space for which joint 

motion produces no end effector motion.

• We call any joint configuration               for which

a singular configuration.
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Properties of the Jacobian -

Velocity Mapping and Singularities

• For certain directions of end effector motion ,

where:

– are the eigenvalues of   

– are the eigenvectors of

• If             is fully ranked (see Brief Linear Algebra Review - 6/ ), we have      
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Properties of the Jacobian -

Velocity Mapping and Singularities

• As the joint approach a singular configuration                there is at least one 

eigenvalue for which                . This results in  

• In other word, as the joints approach the singular configuration, the end effector 

motion in a particular task direction       causes the joint velocities to approach 

infinity.  However, there are task velocities that can have solutions.  

• If            loses rank by only one, then there are n-1 eigenvectors in the task 

velocity space (    ) for which solutions do exist.  However, there can be multiple 

solutions. 
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Properties of the Jacobian -

Velocity Mapping and Singularities

• Note: See Mathematica Simulations 

– Two Link: https://demonstrations.wolfram.com/ForwardAndInverseKinematicsForTwoLinkArm/ 

– Three links : https://demonstrations.wolfram.com/ManipulabilityEllipsoidOfARobotArm/ 

https://demonstrations.wolfram.com/ForwardAndInverseKinematicsForTwoLinkArm/
https://demonstrations.wolfram.com/ManipulabilityEllipsoidOfARobotArm/
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