Jacobian: Velocities and Static Forces 1/4
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Kinematics Relations - Joint & Cartesian Spaces

« Avrrobot is often used to manipulate object attached to its tip (end effector).

« The location of the robot tip may be specified using one of the following
descriptions:

« Joint Space
Yot
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Kinematics Relations - Forward & Inverse

« The robot kinematic equations relate the two description of the robot tip location
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Kinematics Relations - Forward & Inverse

N
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Jacobian Matrix - Introduction

* The Jacobian is a multi dimensional form of the derivative.

« Suppose that for example we have 6 functions, each of which is a function of 6
independent variables

Y= fl()\(;’XZ’X3’X4’X5’)\(Q)
Y, = fz(Xl,XZ,XB,X4,X5,X6)

Yo = T (X0 %50 X5, %40 X5, Xg)

« We may also use a vector notation to write these equations as

Y =B
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Jacobian Matrix - Introduction

« If we wish to calculate the differential of Y; as a function of the differential X;
we use the chain rule to get

— N
5y1®x1+8f15x2+...+8fldxs )% ¥
2 \oX = OX,) ~— (/8x) 2

- 6 J’e

of, of, of, ‘ —
O, =—=K +—=0K, +... + —= K,

OX OX, OXg -
. % )}
5y6:6—](65x1+8—f65x2+...+5—f65x6 I

OX, OX, OXq

«  Which again might be written more simply using a vector notation as
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Jacobian Matrix - Introduction

« The 6x6 matrix of partial derivative is defined as the Jacobian matrix

Y -3 X

« By dividing both sides by the differential time element, we can think of the
Jacobian as mapping velocitjes in X tQ those in Y
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Jacobian Matrix - Introduction

* In the field of robotics the Jacobian
matrix describe the relationship
between the joint angle rates ( QN)
and the translation and rotation
velocities of the end effector ( X ).
This relationship is given by:

.

x

/
I ><-

I

o
—~~

N
~—"
Q.
(=S

<
aN. . DA

D a- > N-
|

~N

% ..

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA




Jacobian Matrix - Introduction

In the field of robotics the Jacobian
matrix describe the relationship
between the joint angle rates ( QN)
and the translation and rotation
velocities of the end effector ( X ). b, q
This relationship is given by:

x=J(0)0
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« Note: The Jacobian is a function of joint angle (§) meaning that the Jacobian
varies as the configuration of the arm changes
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Jacobian Matrix - Introduction

« This expression can be expanded to:

x| <6,
y JU(Q) ‘92
Z
o, | :
o, 1(0)
| @] L —_HN -
6x1 6XN Nx1

«  Where:

— X is a6x1 vector of the end effector linear and angular velocities

-] (Q) is a 6xN Jacobian matrix

— gN Is a Nx1 vector of the manipulator joint velocities

— N is the number of joints
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Jacobian Matrix - Introduction

« The meaning of each line (e.g. the first line) of the Jacobian matrix:

0]
o, 1,(0)

@) I /;?\—J@

* The first line maps the contribution of the angular velocity of each joint to the
linear velocity of the end effector along the x-axis
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Jacobian Matrix - Introduction

« The meaning of each column (e.g. the first column) of the Jacobian matrix:

« The first column maps the contribution of the angular velocity of the first joint to
the linear and angular velocities of the end effector along all the axis (x,y,z)
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Jacobian Matrix - Introduction

* In addition to the velocity
relationship, we are also interested in

developing a relationship between
the robot joint torques ( 7 ) and the
forces and moments ( F ) at the
robot end effector (Static
Conditions). This relationship is

iven by:

g y fF,
T, 7y
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Jacobian Matrix - Introduction

« This expression can be expanded to:

@

J,(6)

6XN

— T is a6x1 vector of the robot joint torques

-] (Q)T is a 6xN Transposed Jacobian matrix

— F is a Nx1 vector of the forces and moments at the robot end effector

— N is the number of joints
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Jacobian Matrix -

Introduction
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‘ Jacobian Matrix - Introduction




Jacobian Matrix - Calculation Methods

» There are three methods to derive the Jacobian matrix

Iterative Propagation Approach
(Velocities or Forces / Torques)
(Two Methods)

3

Jacobian Matrix

oc"’oo
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Jacobian Matrix by Differentiation - 1R - 1/4

« Consider a simple planar 1R robot

r
\9,9

—/\/\/C> > X

P

X

« The end effector position is given by

{ °P,=x=rcosd /0({

O\Py/:y:rsiné’ /0‘{:
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Jacobian Matrix by Differentiation - 1R - 2/4

« The velocity of the end effector is defined by

&
—(V,FP, =x=-0rsing =

X

—( VP, =y =0rcosd wrcosd

L

« Expressed in matrix form we have

N

x=J(0 £~ |
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Jacobian Matrix by Differentiation - 1R - 3/4

57C,- O

v
pas

« The moment about the joint generated by the force acting on the end effector is
given by

r=—TFsInf+rkF cosé,
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‘ Jacobian Matrix by Differentiation - 1R - 4/4

Expressed in matrix form we have

r=1(0)
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Jacobian Matrix by Differanciation - 3R - 1/4

« Consider the following 3 DOF Planar manipulator

v
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Jacobian Matrix by Differanciation - 3R - 2/4

*  Problem: Compute the Jacobian matrix that describes the relationship

 Solution:

« The end effector position and orientation is defined in the base frame by

I><
I
<
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Jacobian Matrix by Differanciation - 3R - 3/4

« The forward kinematics gives us relationship of the end effector to the joint

angles: 1 ij Q.
0 o l\é 4
I:)30rg,x =X= Llcl + I—2012 + I—30123 L 4 !
2
0
I:):sorg,y =Yy =Ls + LS, + LS L. L 9,4
0 d
Paorg,o = =6, +0, +0, 1

« Differentiating the three expressions gives
| N Ciy C.
=-Ls,6, - L;sp, (‘91 +6, )_ LsS12s (6)1 t0,+ 93)
= (LS, + LSy, + LsSia )6 — (oS, + LaS155 )0, — (LaSi5)0s
= I—1(:16.’1 +L,C, (91 T 92 ) +L4Cpy (01 * 92 + 6’3)

(Llcl + L2C12 + L3C123 )91 + (L2C12 + L3C123 )92 + (L30123 )6.3

y
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Jacobian Matrix by Differanciation - 3R - 4/4

« Using a matrix form we get FRAME O

x=3(0)0 J
Y P

X [ — L131 o I—2512 o I-33123 o I—2512 o L33123 o L35123_ 91
y - L101 + L2C12 + I—sclzs LZClZ + L3C123 L3C123 92
ol | 1 1 1 e,

« The Jacobian provides a linear transformation, giving a velocity map and a force
map for a robot manipulator. For the simple example above, the equations are
trivial, but can easily become more complicated with robots that have additional

degrees a freedom. Before tackling these problems, consider this brief review of
linear algebra.
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Singularity - The Concept

« Motivation: We would like the hand of a robot (end effecror) to move with a
certain velocity vector in Cartesian space. Using linear transformation relating
the joint velocity to the Cartesian velocity we could calculate the necessary joint
rates at each instance along the path.

6=3(0)"x SR

« Given: a linear transformation relating the joint velocity to the Cartesian velocity
(usually the end effector)

* Question: Is the Jacobian matrix invertable? (Or) Is it nonsingular?
Is the Jacobian invertable for all values of @ ?
If not, where is it not invertable?

Instructor: Jacob Rosen
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Singularity - The Concept

- Answer (Conceptual): Most manipulator have values of & where the Jacobian
becomes singular . Such locations are called singularities of the mechanism
or singularities for short

Workspace interior Singularities

- Stretched out End

_Folded back Effector - Two or more joints are lining up

Instructor: Jacob Rosen
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Singularity - The Concept

Manipulator

Slngular
Configuration

. Lost of DOF - Losing one or more DOF means that there is a some direction (or subspace) in Cartesian
space along which it is impossible to move the hand of the robot (end effector) no matter which joint rate
are selected

. Load Balance — A finite force can be applied to the end effector that produces no torque at the robot’s
joints

. Joint Velocity — A zero end effector velocity will cause high joint velocity

All DOF
Are Available

Instructor: Jacob Rosen
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Singularity — Physical Interpretation - Examples

| ge—  —

@?
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Singularities

» Youlube



https://youtu.be/lD2HQcxeNoA
https://youtu.be/lD2HQcxeNoA

ROBOT
SINGULARITY

roboticsbook.com

Singularities

> Youlube


https://youtu.be/BJnZvwAE0PY
https://youtu.be/BJnZvwAE0PY

Singularities

> Youlube


https://youtu.be/L7J_9OSxGvA
https://youtu.be/L7J_9OSxGvA

Brief Linear Algebra Review - 1/

* Inverse of Matrix A exists if and only if the determinant of A is non-zero.
Al Existsif and only if
Det(A) =|A/ =0

« If the determinant of A is equal to zero, then the matrix A is a singular matrix
Det(A) =|A/=0

A Singular

Instructor: Jacob Rosen
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‘ Brief Linear Algebra Review - 2/

« The rank of the matrix A is the size of the largest squared Matrix S for which

Det(S) #0

2 -1 2 -1
Example 1 - A:{ } A:S:{ } |Al=[S|=3 Rank(A)=2

-1 2 -1 2
(1 1 1 1]
1111
Example2 - A= =1 S|=1 Rank(A) =1
111 1)
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& Brief Linear Algebra Review - 3/

« If two rows or columns of matrix A are equal or related by a constant, then

Det(A) =0
Example _ _
2 0 -1
A=l6 -3 -3
_10 -6 —5_

-3 -3 6 -3 |6 -3

det(A) =|A =2 -0 - =6+0-6=0
-6 -5 {10 -5 (10 -6

Instructor: Jacob Rosen UCLA
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Brief Linear Algebra Review - 4/

« Eigenvalues
AX = AX
(A-—A)X =0
« Eigenvalues are the roots of the polynomial
Det(A—Al)

 If X % (Q each solution to the characteristic equation ; (Eigenvalue) has a
corresponding Eigenvector

Instructor: Jacob Rosen
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Brief Linear Algebra Review - 4/

« Wikipedai - https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

B

74
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& Brief Linear Algebra Review - 4/

2

A=

1 2

(A—M)x{z_’l L }{Xl}:o
1 2-1|X,

2—A

Det(A—Al) = ‘
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& Brief Linear Algebra Review - 4/
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Brief Linear Algebra Review - 5/

 Any singular matrix ( Det(A) =0 ) has at least one Eigenvalue equal to zero

Instructor: Jacob Rosen
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Brief Linear Algebra Review - 6/

« If Aisnon-singular (Det(A)=0 ), and A isan eigenvalue of A with
corresponding to eigenvector X, then

A*X =21*X

Instructor: Jacob Rosen
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Brief Linear Algebra Review - 7/

« Ifthe N X N matrix A is of full rank (that is, Rank (A) = n), then the only
solution to
AX =0

is the trivial one

X =0

« If Ais of less than full rank (that is Rank (A) < n), then there are N-I linearly
independent (orthogonal) solutions

X; 0<j<n-r

for which

Ax;. =0

J

Instructor: Jacob Rosen
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Brief Linear Algebra Review - 8/

« If Ais square, then A and AT have the same eigenvalues

Instructor: Jacob Rosen
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Velocity Mapping and Singularities

‘ Properties of the Jacobian -

Example: Planar 3R

1 1
4o
det(J (6)) = LL,s, =0 %
. i

* Note that det(J(#)) is nota function of &,,6,

— LS = LS, — LSy — LS, — LSy — LS
det(J (9)) = L, +Lc, + LiCpg L,C;, + LsCs L,Cpss

1

= L1L232

Instructor: Jacob Rosen
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Properties of the Jacobian -
Velocity Mapping and Singularities

6, =0 Stretched Out

singular configuration
0,=r Fold Back

Locus of
singular points

« The manipulator loses 1 DEF. The end effector can only move along the tangent
direction of the arm. Motion along the radial direction is not possible.

Instructor: Jacob Rosen
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Properties of the Jacobian -
Force Mapping and Singularities

« The relationship between joint torque and end effector force and moments is
given by:

r=J(0) F
« Therank of ] ((9)T is equals the rank of J (0)

« At a singular configuration there exists a non trivial force F such that

J(@)F=0

« In other words, a finite force can be applied to the end effector that produces no
torque at the robot’s joints. In the singular configuration, the manipulator can
“lock up.”

Instructor: Jacob Rosen
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Properties of the Jacobian -
Force Mapping and Singularities

«  Example: Planar 3R 6,=60;, 6,=0,=0

« In this case the force acting on the end effector (relative to the {0} frame) is
given by

Fc,
°F =| Fs,
0

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Properties of the Jacobian -
Force Mapping and Singularities

[ — L151 o L2512 o L33123 L101 + L2C12 + I—30123 1“FC1_
O_TZO‘J (Q)T O_F — - I—2312 - L35123 chlz + L3C123 1 FSl
B — L35123 L3C123 1__ 0 |

For 6,=0; 0,=0,=0 we get

—Ls —Ls —-Ls Lc+Lc+Lc 1] Fc,]
°2="3(0) °F =| -L,s,—Ls, Lc +Lc, 1| Fs,
L, L,C, 1 0 |
- Fsc(L+L +L)+Fsc(L+L +L)]| [0
—Fs.c, (L, +L,)+ Fs,c (L, + L,) =|0
B T Fslcl(LB) + FS101(|—3) _O_
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Properties of the Jacobian -
Force Mapping and Singularities

« This situation is an old and famous one in mechanical engineering.

 For example, in the steam locomotive, “top dead center” refers to the following
condition

Drive Wheel

« The piston force, F, cannot generate any torque around the drive wheel axis
because the linkage is singular in the position shown.

Instructor: Jacob Rosen
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Properties of the Jacobian -
Velocity Mapping and Singularities

« We have shown the relationship between joint space velocity and end effector
velocity, given by

« Itis interesting to determine the inverse of this relationship, namely

Instructor: Jacob Rosen
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Properties of the Jacobian -
Velocity Mapping and Singularities

« Consider the square 6x6 case for J (Q) :

- Ifrank <6 ( Det(J(8))=0) .then there is no solution to the inverse
equation (see Brief Linear Algebra Review - 1,7).

Rank(J(8))< 6
0=13(0)" x

« However, if the rank = 5, then there is at least one non-trivial solution to the
forward equation (see Brief Linear Algebra Review - 7). That is, for

x=J3(6)6=0

Instructor: Jacob Rosen
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Properties of the Jacobian -
Velocity Mapping and Singularities

» The solution is a direction () in the in joint velocity space for which joint
motion produces no end effector motion.

- We call any joint configuration @ =Q for which

Rank(J(8))< 6

a singular configuration.

Instructor: Jacob Rosen
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Properties of the Jacobian -
Velocity Mapping and Singularities

«  For certain directions of end effector motion , Xi 1<1<6

x=3(0)6 = 4(0)e

where:
— ], are the eigenvalues of J(0)
— m,are the eigenvectors of ] (9)

- If J(@) is fully ranked (see Brief Linear Algebra Review - 6/ ), we have

@ =3(0)"%=2(0)"x

Instructor: Jacob Rosen
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Properties of the Jacobian -
Velocity Mapping and Singularities

* Asthe joint approach a singular configuration @ = (Q there is at least one
eigenvalue for which A4 — 0 . This results in

X X
Oi=—F<—>= >0
~ Al@) 0

« In other word, as the joints approach the singular configuration, the end effector
motion in a particular task direction Xj causes the joint velocities to approach
infinity. However, there are task velocities that can have solutions.

e If ] (Q) loses rank by only one, then there are n-1 eigenvectors in the task
velocity space ( Xj) for which solutions do exist. However, there can be multiple
solutions.

Instructor: Jacob Rosen
Advanced Robotic - MAE 263B - Department of Mechanical & Aerospace Engineering - UCLA UCLA



Properties of the Jacobian -
Velocity Mapping and Singularities

Scale of
¢ 1 ellipsoid

CON

77%//; =X

Note: See Mathematica Simulations
— Two Link:
— Three links :



https://demonstrations.wolfram.com/ForwardAndInverseKinematicsForTwoLinkArm/
https://demonstrations.wolfram.com/ManipulabilityEllipsoidOfARobotArm/

Jacobian - 2R
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