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6 Series Solutions of Linear Equations

6.1 Review of Power Series
6.2 Solutions About Ordinary Points
6.3 Solutions About Singular Points
6.4 Special Functions

Chapter 6 in Review

Up to this point in our study of differential equations we have primarily solved
linear equations of order two (or higher) that have constant coefficients. The only
exception was the Cauchy-Euler equation in Section 4.7.  In applications, higher-
order linear equations with variable coefficients are just as important as, if not mor
than, differential equations with constant coefficients. As pointed out in Section 4.7,
even a simple linear second-order equation with variable coefficients such a

does not possess solutions that are elementary functions.  But this is
not to say that we can’t find two linearly independent solutions of we
can.  In Sections 6.2 and 6.4 we shall see that the functions that are solutions of this
equation are defined by infinite series.

In this chapter we shall study two infinite-series methods for finding solutio
of homogeneous linear second-order DEs where
the variable coefficients are, for the most part, simple
polynomial functions.

a2(x), a1(x), and  a0(x)
a2(x)y� � a1(x)y� � a0(x)y � 0,

y� � xy � 0;
y� � xy � 0
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232 ● CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS
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at endpoints

FIGURE 6.1.1 Absolute convergence
within the interval of convergence and
divergence outside of this interval

REVIEW OF POWER SERIES

REVIEW MATERIAL
● Infinite series of constants, p-series, harmonic series, alternating harmonic series, geometric

series, tests for convergence especially the ratio test
● Power series, Taylor series, Maclaurin series (See any calculus text)

INTRODUCTION In Section 4.3 we saw that solving a homogeneous linear DE with constant
coefficients was essentially a problem in algebra. By finding the roots of the auxiliary equation, we
could write a general solution of the DE as a linear combination of the elementary functions

But as was pointed out in the introduction to Section 4.7,
most linear higher-order DEs with variable coefficients cannot be solved in terms of elementary
functions.  A usual course of action for equations of this sort is to assume a solution in the form of
an infinite series and proceed in a manner similar to the method of undetermined coefficient
(Section 4.4). In Section 6.2 we consider linear second-order DEs with variable coefficients that
possess solutions in the form of a power series, and so it is appropriate that we begin this chapter
with a review of that topic.

eax, xkeax, xkeaxcosbx, and xkeaxsinbx.

6.1

Power Series Recall from calculus that power series in is an infinit
series of the form

Such a series also said to be a power series centered at a. For example, the power
series is centered at a � �1. In the next section we will be concerned
principally with power series in x, in other words, power series that are centered at

. For example, 

is a power series in x.

Important Facts The following bulleted list summarizes some important
facts about power series 

• Convergence A power series is convergent at a specified value of x if 
its sequence of partial sums converges, that is, 

exists. If the limit does not exist at x, then the series
is said to be divergent.

• Interval of Convergence Every power series has an interval of convergence.
The interval of convergence is the set of all real numbers x for which the series
converges. The center of the interval of convergence is the center a of the series.

• Radius of Convergence The radius R of the interval of convergence of a
power series is called its radius of convergence. If then a power series
converges for and diverges for If the series
converges only at its center a, then If the series converges for all x, then
we write Recall, the absolute-value inequality is
equivalent to the simultaneous inequality A power series
may or may not converge at the endpoints of this interval.

• Absolute Convergence Within its interval of convergence a power series
converges absolutely. In other words, if x is in the interval of convergence
and is not an endpoint of the interval, then the series of absolute values

converges. See Figure 6.1.1.��
n�0� cn(x � a)n �

a � R and a � R
a � R � x � a � R.

� x � a � � RR � �.
R � 0.

� x � a � 	 R.� x � a � � R
R 	 0,

cn (x � a)nlim
N : �

 �N
n�0

lim
N : �

 SN (x) �{SN(x)}

��
n�0cn(x � a)n.

�
�

n�0
2nxn � 1 � 2x � 4x2 � . . .

a � 0

��
n�0 (x � 1)n

�
�

n�0
cn(x � a)n � c0 � c1(x � a) � c2(x � a)2 � . . ..

x � a

The index of summation need not 
start at n � 0. �
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• Ratio Test Convergence of power series can often be determined by the
ratio test. Suppose for all n in and that

If the series converges absolutely; if the series diverges; and
if the test is inconclusive. The ratio test is always inconclusive at an
endpoint a 
 R.

L � 1
L 	 1L � 1,

lim
n:� �  cn�1(x � a)n�1 

cn(x � a)n �� � x � a � lim
n:� � cn�1

 

cn
� � L.

��
n�0 cn(x � a)n,cn � 0
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EXAMPLE 1 Interval of Convergence

Find the interval and radius of convergence for 

SOLUTION The ratio test gives

The series converges absolutely for or or 1 � x � 5.
This last inequality defines the open interval of convergence. The series diverges for

, that is, for x 	 5 or x � 1. At the left endpoint x � 1 of the open
interval of convergence, the series of constants is convergent by
the alternating series test. At the right endpoint x � 5, the series is the
divergent harmonic series. The interval of convergence of the series is [1, 5), and the
radius of convergence is R � 2.

• A Power Series Defines a Functio A power series defines a function
that is, whose domain is the interval of
convergence of the series. If the radius of convergence is R 	 0 or 
then f is continuous, differentiable, and integrable on the intervals 
(a � R, a � R) or , respectively. Moreover, f�(x) and �f (x) dx can be
found by term-by-term differentiation and integration. Convergence at an
endpoint may be either lost by differentiation or gained through integration. If

is a power series in x, then the first two derivatives are and
Notice that the first term in the first derivative and

the first two terms in the second derivative are zero. We omit these zero
terms and write

.

(1)

Be sure you understand the two results given in (1); especially note where
the index of summation starts in each series. These results are important and
will be used in all examples in the next section.

• Identity Property If � 0, R 	 0, for all numbers x in
some open interval, then for all n.

• Analytic at a Point A function f is said to be analytic at a point a if it
can be represented by a power series in x � a with either a positive or an
infinite radius of conve gence. In calculus it is seen that infinitel

cn � 0
��

n�0 cn(x � a)n

y� � �
�

n�2
cnn(n � 1)xn�2 � 2c2 � 6c3x � 12c4x2 � . . .

y� � �
�

n�1
cnnxn�1 � c1 � 2c2x � 3c3x2 � 4c4x3 � . . .

y � � ��
n�0 n(n � 1)xn�2.

y� � ��
n�0 nxn�1

y � �
�

n�1
cnxn � c0 � c1x � c2x2 � c3x3 � . . .

(��, �)

R � �,
f (x) � ��

n�0 cn(x � a)n

� �
n�1 (1>n)

��
n�1 ((�1)n>n)

� x � 3 � 	 2

� x � 3 � � 21
2 � x � 3 � � 1

lim
n:� � (x � 3)n�1

2n�1(n � 1)
(x � 3)n

2nn
� � � x � 3 �  lim

n:�   

n � 1
2n

�
1
2

 � x � 3 �.

�
�

n�1

(x � 3)n

2nn
.
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234 ● CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

differentiable functions such as ex and so on, can
be represented by Taylor series

or by a Maclaurin series

.

You might remember some of the following Maclaurin series representations.

Interval
Maclaurin Series of Convergence

(2)

These results can be used to obtain power series representations of other
functions. For example, if we wish to find the Maclaurin series representatio
of, say, we need only replace x in the Maclaurin series for 

Similarly, to obtain a Taylor series representation of centered at 
we replace x by in the Maclaurin series for ln(1 � x):x � 1

a � 1ln x

ex2
� 1 �

x2

1!
�

x4

2!
�

x6

3!
� . . . � �

�

n�0

1
n!

 x2n.

ex:ex2

(�1, 1) 
1

1 � x
� 1 � x � x2 � x3 � . . . � �

�

n�0
xn

(�1, 1] ln(1 � x) � x �
x2

2
�

x3

3
�

x4

4
� . . . � �

�

n�1

(�1)n�1

n
xn

(��, �) sinh x � x �
x3

3!
�

x5

5!
�

x7

7!
� . . . � �

�

n�0

1
(2n � 1)!

x2n�1

(��, �) cosh x � 1 �
x2

2!
�

x4

4!
�

x6

6!
� . . . � �

�

n�0

1
(2n)!

x2n

[�1, 1] tan�1 x � x �
x3

3
�

x5

5
�

x7

7
� . . . � �

�

n�0

(�1)n

2n � 1
x2n�1

(��, �) sin x � x �
x3

3!
�

x5

5!
�

x7

7!
� . . . � �

�

n�0

(�1)n

(2n � 1)!
x2n�1

(��, �) cos x � 1 �
x2

2!
�

x4

4!
�

x6

6!
� . . . � �

�

n�0

(�1)n

(2n)!
x2n

(��, �) ex � 1 �
x
1!

�
x2

2!
�

x3

3!
� . . . � �

�

n�0

1
n!

xn

�
�

n�0

f (n)(0)
n!

xn � f(0) �
f �(0)
1!

x �
f �(0)

1!
x2 � . . .

�
�

n�0

f (n)(a)
n!

(x � a)n � f (a) �
f �(a)

1!
(x � a) �

f �(a)
1!

(x � a)2 � . . .

ln(1 � x),cos x,ex, sinx,

ln x � ln(1 � (x � 1)) � (x � 1) �
(x � 1)2

2
�

(x � 1)3

3
�

(x � 1)4

4
� . . . � �

�

n�1

(�1)n�1

n
 (x � 1)n.

The interval of convergence for the power series representation of is the
same as that of that is, But the interval of convergence of the
Taylor series of is now this interval is shifted 1 unit to
the right.

• Arithmetic of Power Series Power series can be combined through the
operations of addition, multiplication, and division. The procedures for
powers series are similar to the way in which two polynomials are added,
multiplied, and divided —that is, we add coefficients of like powers of x,
use the distributive law and collect like terms, and perform long division. 

(�1, 1](0, 2];ln x
(��, �).ex,

ex2

You can also verify that the interval of
convergence is (0, 2] by using the ratio
test.

�
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6.1 REVIEW OF POWER SERIES ● 235

EXAMPLE 2 Multiplication of Power Series

Find a power series representation of 

SOLUTION We use the power series for and 

Since the power series of and both converge on the product series
converges on the same interval. Problems involving multiplication or division of
power series can be done with minimal fuss using a computer algebra system.

Shifting the Summation Index For the three remaining sections of this chap-
ter, it is crucial that you become adept at simplifying the sum of two or more power
series, each series expressed in summation notation, to an expression with a single 
As the next example illustrates, combining two or more summations as a single summa-
tion often requires a reindexing, that is, a shift in the index of summation.

�.

(��, �),sin xex

 � x � x2 �
x3

3
�

x5

30
� . . .  .

 � (1)x � (1)x2 � ��1
6

�
1
2
 �x3 � ��1

6
�

1
6�x4 � � 1

120
�

1
12

�
1

24�x5 � . . .

 exsinx � �1 � x �
x2

2
�

x3

6
�

x4

24
� . . .��x �

x3

6
�

x5

120
�

x7

5040
� . . .�

sinx:ex

ex sin x.

EXAMPLE 3 Addition of Power Series

Write

as one power series.

SOLUTION In order to add the two series given in summation notation, it is neces-
sary that both indices of summation start with the same number and that the powers
of x in each series be “in phase,” in other words, if one series starts with a multiple
of, say, x to the first power, then we want the other series to start with the same power.
Note that in the given problem, the first series starts with x0 whereas the second
series starts with x1. By writing the first term of the first series outside of the summa-
tion notation,

(3)

we see that both series on the right side start with the same power of x, namely, x1.
Now to get the same summation index we are inspired by the exponents of x; we let

in the first series and at the same time let in the second series.
For in we get and for in we get and
so the right-hand side of (3) becomes

(4)

same

same

2c2 � � (k � 2)(k � 1)ck�2xk � � ck�1xk.
k�1

�

k�1

�

k � 1,k � n � 1n � 0k � 1,k � n � 2n � 3
k � n � 1k � n � 2

series starts
with x
for n � 3

series starts
with x
for n � 0

� n(n � 1)cnxn�2 � � cnxn�1 � 2 � 1c2x 0 � � n(n � 1)cnxn�2 � � cnxn�1

n�2

�

n�0

�

n�3

�

n�0

�

�
�

n�2
n(n � 1)cnxn�2 � �

�

n�0
cnxn�1
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Remember the summation index is a “dummy” variable; the fact that in
one case and in the other should cause no confusion if you keep in mind
that it is the value of the summation index that is important. In both cases k takes 
on the same successive values when n takes on the values

for and for We are now in a
position to add the series in (4) term-by-term:

(5)

If you are not totally convinced of the result in (5), then write out a few terms on
both sides of the equality. 

A Preview The point of this section is to remind you of the salient facts about
power series so that you are comfortable using power series in the next section to fin
solutions of linear second-order DEs. In the last example in this section we tie up
many of the concepts just discussed; it also gives a preview of the method that will
used in Section 6.2. We purposely keep the example simple by solving a linear first
order equation. Also suspend, for the sake of illustration, the fact that you already
know how to solve the given equation by the integrating-factor method in Section 2.3.

�
�

n�2
n(n � 1)cnxn�2 � �

�

n�0
cnxn�1 � 2c2 � �

�

k�1
[(k � 2)(k � 1)ck�2 � ck�1]xk.

k � n � 1.n � 0, 1, 2, . . .k � n � 1n � 2, 3, 4, . . .
k � 1, 2, 3, . . . 

k � n � 1
k � n � 2
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EXAMPLE 4 A Power Series Solution

Find a power series solution of the differential equation 

SOLUTION We break down the solution into a sequence of steps.

(i) First calculate the derivative of the assumed solution:

(ii) Then substitute into the given DE: 

(iii) Now shift the indices of summation. When the indices of summation have the
same starting point and the powers of x agree, combine the summations:

 y� � y � �
�

n�1
cnnxn�1 � �

�

n�0
cnxn

y� � y � �
�

n�1
cnnxn�1 � �

�

n�0
cnxn.

y and y�

; see the first line in (1)y� � �
�

n�1
cnnxn�1

y� � y � 0.y � �
�

n�0
cnxn

 
k � n�1  k � n

(iv) Because we want for all x in some interval, 

is an identity and so we must have 

 ck�1 � �
1

k � 1
 ck,  k � 0, 1, 2, . . . .

ck�1(k � 1) � ck � 0, or

�
�

k�0
[ck�1(k � 1) � ck]xk � 0

y� � y � 0

 � �
�

k�0
[ck�1(k � 1) � ck]xk.

 � �
�

k�0
ck�1(k � 1)xk � �

�

k�0
ckxk
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(v) By letting k take on successive integer values starting with we fin

and so on, where is arbitrary.
(vi) Using the original assumed solution and the results in part (v) we obtain a formal
power series solution 

It should be fairly obvious that the pattern of the coefficients in part (v) is
so that in summation notation we can write

(8)

From the first power series representation in (2) the solution in (8) is recognized
as Had you used the method of Section 2.3, you would have found that

is a solution of on the interval This interval is also the
interval of convergence of the power series in (8).

(��, �).y� � y � 0y � ce�x
y � c0e�x.

y � c0 �
�

k�0

(�1)k

k!
xk.

ck � c0(�1)k>k!, k � 0, 1, 2, . . . .

 � c0�1 � x �
1
2

x2 �
1

3 � 2
x3 �

1
4 � 3 � 2

x4 � . . .�.

 � c0 � c0x �
1
2
c0x2 � c0

1
3 � 2

x3 � c0
1

4 � 3 � 2
x4 � . . .

y � c0 � c1x � c2x2 � c3x3 � c4x4 � . . .

c0

 c4 � �
1
4
c2 � �

1
4��

1
3 � 2

c0� �
1

4 � 3 � 2
c0

 c3 � �
1
3
c2 � �

1
3�

1
2
c0� � �

1
3 � 2

c0

 c2 � �
1
2

c1 � �
1
2

(�c0) �
1
2

c0

  c1 � �
1
1

c0 � �c0

k � 0,

6.1 REVIEW OF POWER SERIES ● 237

If desired we could switch back to n as 
the index of summation. �

EXERCISES 6.1 Answers to selected odd-numbered problems begin on page ANS-9.

In Problems 1–10 find the interval and radius of convergence
for the given power series.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

In Problems 11–16 use an appropriate series in (2) to find the
Maclaurin series of the given function. Write your answer in
summation notation.

11. 12.

13. 14.
x

1 � x2
1

2 � x

xe3xe�x>2

�
�

n�0

(�1)n

9n x2n�1�
�

k�1

25k

52k�x
3�

k

�
�

k�0
3�k(4x � 5)k�

�

k�1

1
k2 � k

(3x � 1)k

�
�

k�0
k!(x � 1)k�

�

k�1

(�1)k

10k  (x � 5)k

�
�

n�0

5n

n!
xn�

�

n�1

2n

n
xn

�
�

n�1

1
n2 xn�

�

n�1

(�1)n

n
xn

15. 16.

In Problems 17 and 18 use an appropriate series in (2) to fin
the Taylor series of the given function centered at the indi-
cated value of a. Write your answer in summation notation.

17. [Hint: Use periodicity.]

18. [Hint: ]

In Problems 19 and 20 the given function is analytic at
Use appropriate series in (2) and multiplication to

find the first four nonzero terms of the Maclaurin series of
the given function.

19. 20.

In Problems 21 and 22 the given function is analytic at
Use appropriate series in (2) and long division to fin

the first four nonzero terms of the Maclaurin series of the
given function.

21. 22. tan xsec x

a � 0.

e�xcos xsin x cos x

a � 0.

x � 2[1 � (x � 2)>2]ln x; a � 2

sinx, a � 2p

sin x2ln(1 � x)
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238 ● CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

In Problems 23 and 24 use a substitution to shift the summa-
tion index so that the general term of given power series
involves 

23.

24.

In Problems 25–30 proceed as in Example 3 to rewrite the
given expression using a single power series whose general
term involves 

25.

26.

27.

28.

29.

30. �
�

n�2
n(n � 1)cnxn � 2 �

�

n�2
n(n � 1)cnxn�2 � 3 �

�

n�1
ncnxn

�
�

n�2
n(n � 1)cnxn�2 � 2 �

�

n�1
ncnxn � �

�

n�0
cnxn

�
�

n�2
n(n � 1)cnxn�2 � �

�

n�0
cnxn�2

�
�

n�1
2ncnxn�1 � �

�

n�0
6cnxn�1

�
�

n�1
ncnxn�1 � 3 �

�

n�0
cnxn�2

�
�

n�1
ncnxn�1 � �

�

n�0
cnxn

xk.

�
�

n�3
(2n � 1)cnxn�3

�
�

n�1
ncnxn�2

xk.

In Problems 31–34 verify by direct substitution that the
given power series is a solution of the indicated differential
equation.  [Hint: For a power let 

31.

32.

33.

34.

In Problems 35–38 proceed as in Example 4 and find a
power series solution of the given linear first
order differential equation.

35. 36.
37. 38.

Discussion Problems

39. In Problem 19, find an easier way than multiplying two
power series to obtain the Maclaurin series representa-
tion of 

40. In Problem 21, what do you think is the interval of con-
vergence for the Maclaurin series of sec x?

sin x cos x.

(1 � x)y� � y � 0y� � xy
4y� � y � 0y� � 5y � 0

y � �
�

n�0
cnxn

y � �
�

n�0

(�1)n

22n(n!)2x2n, xy� � y� � xy � 0

y � �
�

n�1

(�1)n�1

n
xn, (x � 1)y� � y� � 0

y � �
�

n�0
(�1)nx2n, (1 � x2)y� � 2xy � 0

y � �
�

n�0

(�1)n

n!
x2n, y� � 2xy � 0

k � n � 1.]x2n�1

SOLUTIONS ABOUT ORDINARY POINTS

REVIEW MATERIAL
● Power series, analytic at a point, shifting the index of summation in Section 6.1

INTRODUCTION At the end of the last section we illustrated how to obtain a power series
solution of a linear first-order differential equation. In this section we turn to the more important
problem of finding power series solutions of linear second-order equations. More to the point, we
are going to find solutions of linear second-order equations in the form of power series whose
center is a number that is an ordinary point of the DE. We begin with the definition of an
ordinary point.

x0

6.2

A Definition If we divide the homogeneous linear second-order differential
equation 

(1)

by the lead coefficient we obtain the standard form

(2)

We have the following definition

y� � P(x)y� � Q(x)y � 0.

a2(x)

a2(x)y� � a1(x)y� � a0(x)y � 0
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6.2 SOLUTIONS ABOUT ORDINARY POINTS ● 239

DEFINITION 6.2.1 Ordinary and Singular Points

A point is said to be an ordinary point of the differential of the
differential equation (1) if both coefficients and in the standard
form (2) are analytic at A point that is not an ordinary point of (1) is said
to be a singular point of the DE.

x0.
Q(x)P(x)

x � x0

EXAMPLE 1 Ordinary Points

(a) A homogeneous linear second-order differential equation with constant coefficients
such as

can have no singular points. In other words, every finite value* of x is an ordinary
point of such equations.
(b) Every finite value of x is an ordinary point of the differential equation

Specifically is an ordinary point of the DE, because we have already seen in
(2) of Section 6.1 that both  and   are analytic at this point.

The negation of the second sentence in Definition 6.2.1 stipulates that if at least
one of the coefficient functions in (2) fails to be analytic at then 
is a singular point.

x0x0,P(x) and Q(x)

sin xex
x � 0

y� � exy� � (sin x)y � 0.

y� � y � 0 and y� � 3y� � 2y � 0,

EXAMPLE 2 Singular Points

(a) The differential equation

is already in standard form. The coefficient functions ar

Now is analytic at every real number, and is analytic at every
positive real number. However, since is discontinuous at it cannot
be represented by a power series in x, that is, a power series centered at 0. We
conclude  that is a singular point of the DE. 

(b) By putting in the standard form

,

we see that fails to be analytic at . Hence is a singular point
of the equation.

Polynomial Coefficients We will primarily be interested in the case when the
coefficients in (1) are polynomial functions with no common
factors. A polynomial function is analytic at any value of x, and a rational function is
analytic except at points where its denominator is zero. Thus, in (2) both coefficients

P(x) �
a1(x)
a2(x)

 and Q(x) �
a0(x)
a2(x)

a2(x), a1(x), and a0(x)

x � 0 x � 0P(x) � 1/x

y� �
1
x
 y� � y � 0

xy� � y� � xy � 0

x � 0

x � 0Q(x) � ln x
Q(x) � ln xP(x) � x

P(x) � x and Q(x) � ln x.

y� � xy� � (lnx)y � 0

*For our purposes, ordinary points and singular points will always be finite points. It is possible for a
ODE to have, say, a singular point at infinit .
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240 ● CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

are analytic except at those numbers for which It follows, then, that

A number is an ordinary point of (1) if whereas is a
singular point of (1) if a2(x0) � 0.

x � x0a2(x0) � 0,x � x0

a2(x) � 0.

EXAMPLE 3 Ordinary and Singular Points

(a) The only singular points of the differential equation

are the solutions of All other values of x are ordinary points.

(b) Inspection of the Cauchy-Euler

shows that it has a singular point at All other values of x are ordinary
points.

(c) Singular points need not be real numbers. The equation

has singular points at the solutions of —namely, All other values
of x, real or complex, are ordinary points.

We state the following theorem about the existence of power series solutions
without proof.

x � 
i.x2 � 1 � 0

(x2 � 1)y� � xy� � y � 0

x � 0.

x2y� � y � 0

a2(x) � x2 � 0 at x � 0b

x2 � 1 � 0 or x � 
 1.

(x2 � 1)y� � 2xy� � 6y � 0

THEOREM 6.2.1 Existence of Power Series Solutions

If is an ordinary point of the differential equation (1), we can always find two
linearly independent solutions in the form of a power series centered at that is,

A power series solution converges at least on some interval defined by
, where R is the distance from to the closest singular point.x0�x � x0&� R

y � �
�

n�0
cn(x � x0)n.

x0,
x � x0

A solution of the form is said to be a solution about the
ordinary point x0. The distance R in Theorem 6.2.1 is the minimum value or lower
bound for the radius of convergence.

y � ��
n�0 cn(x � x0)n

EXAMPLE 4 Minimum Radius of Convergence

Find the minimum radius of convergence of a power series solution of the second-
order differential equation

(a) about the ordinary point (b) about the ordinary point 

SOLUTION By the quadratic formula we see from that the singular
points of the given differential equation are the complex numbers 1 
 2i.

x2 � 2x � 5 � 0

x � �1.x � 0,

(x2 � 2x � 5)y� � xy� � y � 0
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(a) Because is an ordinary point of the DE, Theorem 6.2.1 guarantees that we
can find two power series solutions centered at 0. That is, solutions that look like

and, moreover, we know without actually finding these solutions that
each series must converge at least for , where is the distance in the
complex plane from either of the numbers (the point or (the
point to the ordinary point 0 (the point See Figure 6.2.1. 

(b) Because is an ordinary point of the DE, Theorem 6.2.1 guarantees that
we can find two power series solutions that look like Each of
power series converges at least for since the distance from each of
the singular points to  (the point is

In part (a) of Example 4, one of the two power series solutions centered at 0 of
the differential equation is valid on an interval much larger than in
actual fact this solution is valid on the interval because it can be shown that
one of the two solutions about 0 reduces to a polynomial.

Note In the examples that follow as well as in the problems of Exercises 6.2
we will, for the sake of simplicity, find only power series solutions about the ordinary
point If it is necessary to find a power series solutions of an ODE about an
ordinary point we can simply make the change of variable in the
equation (this translates to find solutions of the new equation of the
form , and then resubstitute

Finding a Power Series Solution Finding a power series solution of a homo-
geneous linear second-order ODE has been accurately described as “the method of
undetermined series coefficients” since the procedure is quite analogous to what we
did in Section 4.4. In case you did not work through Example 4 of Section 6.1 here,
in brief, is the idea. Substitute into the differential equation, combine
series as we did in Example 3 of Section 6.1, and then equate the all coefficients to
the right-hand side of the equation to determine the coefficients But because the
right-hand side is zero, the last step requires, by the identity property in the bulleted
list in Section 6.1, that all coefficients of x must be equated to zero. No, this does not
mean that all coefficients are zero; this would not make sense, after all Theorem 6.2.1
guarantees that we can find two solutions. We will see in Example 5 how the single
assumption that leads to two sets of coeffi
cients so that we have two distinct power series and both expanded about
the ordinary point The general solution of the differential equation is

; indeed, it can be shown that and .C2 � c1C1 � c0y � C1y1(x) � C2y2(x)
x � 0.

y2 (x),y1(x)
y � ��

n�0cnxn � c0 � c1x � c2x2 � . . .

cn.

y � ��
n�0cnxn

t � x � x0.y � ��
n�0cntn

t � 0),x � x0

t � x � x0x0 � 0,
x � 0.

(��, �)
(�15, 15);

R � 18 � 212.(�1, 0))�1
� x � 1 � � 212

y � ��
n�0cn(x � 1)n.

x � �1

(0, 0)).(1, � 2))
1 � 2i(1, 2))1 � 2i

 R � 25� x � � 25
y � ��

n�0 cnxn

x � 0
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FIGURE 6.2.1 Distance from singular
points to the ordinary point 0 in Example 4

y

x1

1 + 2i

1 − 2i

i 	5

	5

EXAMPLE 5 Power Series Solutions

Solve 

SOLUTION Since there are no singular points, Theorem 6.2.1 guarantees two
power series solutions centered at 0 that converge for Substituting

and the second derivative (see (1) in
Section 6.1) into the differential equation give

(3)

We have already added the last two series on the right-hand side of the equality in (3)
by shifting the summation index. From the result given in (5) of Section 6.1

(4)y� � xy � 2c2 � �
�

k�1
[(k � 1)(k � 2)ck�2 � ck�1]xk � 0.

y � � xy � �
�

n�2
cnn(n � 1)xn�2 � x �

�

n�0
cnxn � �

�

n�2
cnn(n � 1)xn�2 � �

�

n�0
cnxn�1.

y� � ��
n�2 n(n � 1)cnxn�2 y � ��

n�0 cnxn
� x � � �.

y� � xy � 0.
Before working through this example, we
recommend that you reread Example 4 of
Section 6.1.

�
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At this point we invoke the identity property. Since (4) is identically zero, it is neces-
sary that the coefficient of each power of x be set equal to zero—that is, 2c2 � 0
(it is the coefficient of x0), and

(5)

Now 2c2 � 0 obviously dictates that c2 � 0. But the expression in (5), called a
recurrence relation, determines the ck in such a manner that we can choose a certain
subset of the set of coefficients to be nonzero. Since (k � 1)(k � 2) � 0 for all val-
ues of k, we can solve (5) for ck�2 in terms of ck�1:

(6)

This relation generates consecutive coefficients of the assumed solution one at a time
as we let k take on the successive integers indicated in (6):

and so on. Now substituting the coefficients just obtained into the original
assumption

; c8 is zero k � 9,     c11 � � c8

10 � 11
� 0

 k � 8,     c10 � � c7

9 � 10
� �

1
3 � 4 � 6 � 7 � 9 � 10

 c1

 k � 7,     c9 � � c6

8 � 9
� �

1
2 � 3 � 5 � 6 � 8 � 9

 c0

; c5 is zero k � 6,     c8 � � c5

7 � 8
� 0

 k � 5,     c7 � � c4

6 � 7
�

1
3 � 4 � 6 � 7

 c1

 k � 4,     c6 � � c3

5 � 6
�

1
2 � 3 � 5 � 6

 c0

; c2 is zero k � 3,     c5 � � c2

4 � 5
� 0

 k � 2,     c4 � � c1

3 � 4

 k � 1,     c3 � � c0

2 � 3

ck�2 � �
ck�1

(k � 1)(k � 2)
 ,    k � 1, 2, 3, . . . .

(k � 1)(k � 2)ck�2 � ck�1 � 0,    k � 1, 2, 3, . . . .
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y � c0 � c1x � c2x2 � c3x3 � c4x4 � c5x5 � c6x6 � c7x7 � c8x8 � c9x9 � c10x10 � c11x11 � � � �,

we get

 � 
c1

3 � 4 � 6 � 7
 x7 � 0 �

c0

2 � 3 � 5 � 6 � 8 � 9
 x9 �

c1

3 � 4 � 6 � 7 � 9 � 10
 x10 � 0 � � � �.

 y � c0 � c1x � 0 �
c0

2 � 3
 x3 �

c1

3 � 4
 x4 � 0 �

c0

2 � 3 � 5 � 6
 x6

After grouping the terms containing c0 and the terms containing c1, we obtain
y � c0y1(x) � c1y2(x), where

y2(x) � x �
1

3 � 4
 x4 �

1
3 � 4 � 6 � 7

 x7 �
1

3 � 4 � 6 � 7 � 9 � 10
    

x10 � � � � � x � �
�

k�1
 

(�1)k

3 � 4 � � � (3k)(3k � 1)
 x3k�1.

 y1(x) � 1 �
1

2 � 3
 x3 �

1
2 � 3 � 5 � 6

 x6 �
1

2 � 3 � 5 � 6 � 8 � 9
 x9 � � � � � 1 � �

�

k�1
 

(�1)k

2 � 3 � � � (3k � 1)(3k)
 x3k
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Because the recursive use of (6) leaves c0 and c1 completely undetermined, they
can be chosen arbitrarily. As was mentioned prior to this example, the linear
combination y � c0y1(x) � c1y2(x) actually represents the general solution of the
differential equation. Although we know from Theorem 6.2.1 that each series solu-
tion converges for that is, on the interval . This fact can also be ver-
ified by the ratio test

The differential equation in Example 5 is called Airy’s equation and is named
after the English mathematician and astronomer George Biddel Airy (1801–1892).
Airy’s differential equation is encountered in the study of diffraction of light, diffrac-
tion of radio waves around the surface of the Earth, aerodynamics, and the deflectio
of a uniform thin vertical column that bends under its own weight. Other common
forms of Airy’s equation are y� � xy � 0 and y� � �2xy � 0. See Problem 41 in
Exercises 6.4 for an application of the last equation.

(��, �)� x � � �,

6.2 SOLUTIONS ABOUT ORDINARY POINTS ● 243

EXAMPLE 6 Power Series Solution

Solve (x2 � 1)y� � xy� � y � 0.

SOLUTION As we have already seen on page 240, the given differential equation has
singular points at x � 
i, and so a power series solution centered at 0 will converge at
least for � 1, where 1 is the distance in the complex plane from 0 to either i or �i.
The assumption and its first two derivatives lead ty � ��

n�0 cnxn
� x �

(x 2 � 1) � n(n � 1)cnxn�2 � x � ncnxn�1 � � cnxn

n�2

�

n�1

�

n�0

�

� � n(n � 1)cnxn � � n(n � 1)cnxn�2 � � ncnxn � � cnxn

n�2

�

n�2

�

n�1

�

n�0

�

� 2c2 � c0 � 6c3x � � [k(k � 1)ck � (k � 2)(k � 1)ck�2 � kck � ck]xk 
k�2

�

� 2c2 � c0 � 6c3x � � [(k � 1)(k � 1)ck � (k � 2)(k � 1)ck�2]xk � 0.
k�2

�

� � n(n � 1)cnxn�2 � � ncnxn � � cnxn

n�4

�

n�2

�

n�2

�

� 2c2x 0 � c0x 0 � 6c3x � c1x � c1x � � n(n� 1)cnxn

n�2

�

k�n

k�n�2 k�n k�n

From this identity we conclude that 2c2 � c0 � 0, 6c3 � 0, and

Thus

Substituting k � 2, 3, 4, . . . into the last formula gives

c4 � � 1
4
 c2 � � 1

2 � 4
 c0 � � 1

222!
 c0

 ck�2 �
1 � k
k � 2

 ck ,    k � 2, 3, 4, . . . .

 c3 � 0

 c2 �
1
2
 c0

(k � 1)(k � 1)ck � (k � 2)(k � 1)ck�2 � 0.
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and so on. Therefore

c10 � � 7
10

 c8 �
3 � 5 � 7

2 � 4 � 6 � 8 � 10
 c0 �

1 � 3 � 5 � 7
255!

 c0,

; c7 is zeroc9 � � 6
9
 c7 � 0,

c8 � � 5
8
 c6 � � 3 � 5

2 � 4 � 6 � 8
 c0 � � 1 � 3 � 5

244!
 c0

; c5 is zeroc7 � � 4
7
 c5 � 0

c6 � � 3
6
 c4 �

3
2 � 4 � 6

 c0 �
1 � 3
233!

 c0

; c3 is zeroc5 � � 2
5
 c3 � 0
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c5 �
c3 � c2

4 � 5
�

c0

4 � 5
 �1

6
�

1
2� �

c0

30

 c4 �
c2 � c1

3 � 4
�

c0

2 � 3 � 4
�

c0

24

 c3 �
c1 � c0

2 � 3
�

c0

2 � 3
�

c0

6

 c2 �
1
2
 c0

 c0 � 0, c1 � 0

c5 �
c3 � c2

4 � 5
�

c1

4 � 5 � 6
�

c1

120

 c4 �
c2 � c1

3 � 4
�

c1

3 � 4
�

c1

12

 c3 �
c1 � c0

2 � 3
�

c1

2 � 3
�

c1

6

 c2 �
1
2
 c0 � 0

 c0 �  0, c1 � 0

 � c0y1(x) � c1y2(x).

 � c0�1 �
1
2
 x2 �

1
222!

 x4 �
1 � 3
233!

 x6 �
1 � 3 � 5

244!
 x8 �

1 � 3 � 5 � 7
255!

 x10 � � � �� � c1x

y � c0 � c1x � c2x2 � c3x3 � c4x4 � c5x5 � c6x6 � c7x7 � c8x8 � c9x9 � c10 x10 � � � �

The solutions are the polynomial y2(x) � x and the power series

y1(x) � 1 �
1
2
 x2 � �

�

n�2
(�1)n�11 � 3 � 5 � � � �2n � 3�

2nn!
 x2n ,    � x � � 1.

EXAMPLE 7 Three-Term Recurrence Relation

If we seek a power series solution for the differential equation

we obtain and the three-term recurrence relation

It follows from these two results that all coefficients cn, for n 
 3, are expressed in
terms of both c0 and c1. To simplify life, we can first choose c0 � 0, c1 � 0; this
yields coefficients for one solution expressed entirely in terms of c0. Next, if
we choose c0 � 0, c1 � 0, then coefficients for the other solution are expressed
in terms of c1. Using in both cases, the recurrence relation for
k � 1, 2, 3, . . . gives

c2 � 1
2 c0

ck�2 �
ck � ck�1

(k � 1)(k � 2)
,    k � 1, 2, 3, . . . .

c2 � 1
2 c0

y� � (1 � x)y � 0,

y � ��
n�0 cnxn
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and so on. Finally, we see that the general solution of the equation is
y � c0y1(x) � c1y2(x), where

and

Each series converges for all finite values of x.

Nonpolynomial Coefficients The next example illustrates how to find a
power series solution about the ordinary point x0 � 0 of a differential equation when
its coefficients are not polynomials. In this example we see an application of the
multiplication of two power series.

 y2(x) � x �
1
6
 x3 �

1
12

 x4 �
1

120
 x5 � � � �.

 y1(x) � 1 �
1
2
 x2 �

1
6
 x3 �

1
24

 x4 �
1

30
 x5 � � � �
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EXAMPLE 8 DE with Nonpolynomial Coefficient

Solve y� � (cos x)y � 0.

SOLUTION We see that x � 0 is an ordinary point of the equation because, as we
have already seen, cos x is analytic at that point. Using the Maclaurin series for cos x
given in (2) of Section 6.1, along with the usual assumption and the
results in (1) of Section 6.1 we fin

y � ��
n�0 cnxn

 � 2c2 � c0 � (6c3 � c1)x � �12c4 � c2 �
1
2
 c0�x2 � �20c5 � c3 �

1
2
 c1�x3 � � � � � 0.

 � 2c2 � 6c3x � 12c4x2 � 20c5x3 � � � � � �1 �
x2

2!
�

x4

4!
� � � ��(c0 � c1x � c2x2 � c3x3 � � � �)

 y� � (cos x)y � �
�

n�2
 n(n � 1)cnxn�2 � �1 �

x2

2!
�

x4

4!
�

x6

6!
� � � ���

�

n�0
 cnxn

It follows that

2c2 � c0 � 0,    6c3 � c1 � 0,    12c4 � c2 �
1
2
 c0 � 0,    20c5 � c3 �

1
2
 c1 � 0,

and so on. This gives By group-
ing terms, we arrive at the general solution y � c0y1(x) � c1y 2(x), where

Because the differential equation has no finite singular points, both power series con-
verge for

Solution Curves The approximate graph of a power series solution 
can be obtained in several ways. We can always resort to graphing the

terms in the sequence of partial sums of the series—in other words, the graphs of the
polynomials For large values of N, SN (x) should give us an indi-
cation of the behavior of y(x) near the ordinary point x � 0. We can also obtain an ap-
proximate or numerical solution curve by using a solver as we did in Section 4.10.
For example, if you carefully scrutinize the series solutions of Airy’s equation in

SN (x) � �N
n�0 cnxn.

��
n�0 cnxn

y(x) �

� x � � �.

y1(x) � 1 �
1
2
 x2 �

1
12

 x4 � � � �    and    y2(x) � x �
1
6
 x3 �

1
30

 x5 � � � �.

c5 � 1
30 c1, . . . .c4 � 1

12 c0,c3 � �1
6 c1,c2 � �1

2 c0,
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Example 5, you should see that y1(x) and y2(x) are, in turn, the solutions of the initial-
value problems

(11)

The specified initial conditions “pick out” the solutions y1(x) and y2(x) from
y � c0y1(x) � c1y2(x), since it should be apparent from our basic series assumption

that y(0) � c0 and y�(0) � c1. Now if your numerical solver requires
a system of equations, the substitution y� � u in y� � xy � 0 gives y� � u� � �xy,
and so a system of two first-order equations equivalent to Airy’s equation is

(12)

Initial conditions for the system in (12) are the two sets of initial conditions in (11)
rewritten as y(0) � 1, u(0) � 0, and y(0) � 0, u(0) � 1. The graphs of y1(x)
and y2(x) shown in Figure 6.2.2 were obtained with the aid of a numerical solver.
The fact that the numerical solution curves appear to be oscillatory is consistent
with the fact that Airy’s equation appeared in Section 5.1 (page 197) in the form
mx� � ktx � 0 as a model of a spring whose “spring constant” K(t) � kt increases
with time.

 u� � �xy.

 y� � u

y � ��
n�0 cnxn

 y � � xy � 0,  y(0) � 0, y�(0) � 1.

 y � � xy � 0,  y(0) � 1, y�(0) � 0,
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(a)  plot of y1(x)  

(b)  plot of y2(x)   

FIGURE 6.2.2 Numerical solution
curves for Airy’s DE REMARKS

(i) In the problems that follow, do not expect to be able to write a solution in
terms of summation notation in each case. Even though we can generate as
many terms as desired in a series solution either through the use
of a recurrence relation or, as in Example 8, by multiplication, it might not be
possible to deduce any general term for the coefficients cn. We might have to
settle, as we did in Examples 7 and 8, for just writing out the first few terms of
the series.
(ii) A point x0 is an ordinary point of a nonhomogeneous linear second-order
DE y� � P(x)y� � Q(x)y � f (x) if P(x), Q(x), and f (x) are analytic at x0.
Moreover, Theorem 6.2.1 extends to such DEs; in other words, we can
fin power series solutions of nonhomogeneous
linear DEs in the same manner as in Examples 5–8. See Problem 26 in
Exercises 6.2.

y � ��
n�0 cn (x � x0)n

y � ��
n�0 cnxn

EXERCISES 6.2 Answers to selected odd-numbered problems begin on page ANS-9.

In Problems 1 and 2 without actually solving the given
differential equation, find the minimum radius of convergence
of power series solutions about the ordinary point 
About the ordinary point 

1.

2.

In Problems 3–6 find two power series solutions of the given
differential equation about the ordinary point Compare
the series solutions with the solutions of the differential equa-
tions obtained using the method of Section 4.3.  Try to explain
any differences between the two forms of the solutions.
3. 4.

5. 6. y� � 2y� � 0y� � y� � 0

y� � y � 0y� � y � 0

x � 0.

(x2 � 2x � 10)y� � xy� � 4y � 0

(x2 � 25)y� � 2xy� � y � 0

x � 1.
x � 0.

In Problems 7–18 find two power series solutions of the
given differential equation about the ordinary point x � 0.

7. 8.

9. 10.

11. 12.

13. 14.

15.

16.

17.

18. (x2 � 1)y� � xy� � y � 0

(x2 � 2)y� � 3xy� � y � 0

(x2 � 1)y� � 6y � 0

y� � (x � 1)y� � y � 0

(x � 2)y� � xy� � y � 0(x � 1)y� � y� � 0

y� � 2xy� � 2y � 0y� � x2y� � xy � 0

y� � xy� � 2y � 0y� � 2xy� � y � 0

y� � x2y � 0y� � xy � 0
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6.3 SOLUTIONS ABOUT SINGULAR POINTS ● 247

In Problems 19–22 use the power series method to solve the
given initial-value problem. 

19.

20.

21.

22.

In Problems 23 and 24 use the procedure in Example 8 to
find two power series solutions of the given differential
equation about the ordinary point x � 0.

23.
24.

Discussion Problems

25. Without actually solving the differential equation
find the minimum radius of

convergence of power series solutions about the ordi-
nary point About the ordinary point 

26. How can the power series method be used to solve the
nonhomogeneous equation  about the ordi-
nary point Of ? Carry out
your ideas by solving both DEs.

27. Is x � 0 an ordinary or a singular point of the differen-
tial equation ? Defend your answer
with sound mathematics.  [Hint: Use the Maclaurin
series of and then examine (sin x)>x.sin x

xy� � (sin x)y � 0

y � � 4xy� � 4y � exx � 0?
y� � xy � 1

x � 1.x � 0.

(cos x)y� � y� � 5y � 0,

y� � exy� � y � 0
y� � (sin x)y � 0

(x2 � 1)y� � 2xy� � 0, y(0) � 0, y�(0) � 1

y� � 2xy� � 8y � 0, y(0) � 3, y�(0) � 0

(x � 1)y� � (2 � x)y� � y � 0, y(0) � 2, y�(0) � �1

(x � 1)y� � xy� � y � 0, y(0) � �2,y�(0) � 6

28. Is an ordinary point of the differential equation

Computer Lab Assignments

29. (a) Find two power series solutions for y� � xy� � y � 0
and express the solutions y1(x) and y2(x) in terms of
summation notation.

(b) Use a CAS to graph the partial sums SN (x) for
y1(x). Use N � 2, 3, 5, 6, 8, 10. Repeat using the
partial sums SN (x) for y2(x).

(c) Compare the graphs obtained in part (b) with
the curve obtained by using a numerical solver. Use
the initial-conditions y1(0) � 1, y�1(0) � 0, and
y2(0) � 0, y�2(0) � 1.

(d) Reexamine the solution y1(x) in part (a). Express
this series as an elementary function. Then use (5)
of Section 4.2 to find a second solution of the equa-
tion. Verify that this second solution is the same as
the power series solution y2(x).

30. (a) Find one more nonzero term for each of the solu-
tions y1(x) and y2(x) in Example 8.

(b) Find a series solution y(x) of the initial-value
problem y� � (cos x)y � 0, y(0) � 1, y�(0) � 1.

(c) Use a CAS to graph the partial sums SN (x) for the
solution y(x) in part (b). Use N � 2, 3, 4, 5, 6, 7.

(d) Compare the graphs obtained in part (c) with the
curve obtained using a numerical solver for the
initial-value problem in part (b).

y� � 5xy� � 1xy � 0?
x � 0

SOLUTIONS ABOUT SINGULAR POINTS

REVIEW MATERIAL
● Section 4.2 (especially (5) of that section)
● The definition of a singular point in Definition 6.2.1

INTRODUCTION The two differential equations

y� � xy � 0 and xy� � y � 0 

are similar only in that they are both examples of simple linear second-order DEs with variable
coefficients. That is all they have in common. Since x � 0 is an ordinary point of y� � xy � 0, we
saw in Section 6.2 that there was no problem in finding two distinct power series solutions centered
at that point. In contrast, because x � 0 is a singular point of xy� � y � 0, finding two infinit
series—notice that we did not say power series—solutions of the equation about that point becomes
a more difficult task

The solution method that is discussed in this section does not always yield two infinite series
solutions. When only one solution is found, we can use the formula given in (5) of Section 4.2 to
find a second solution

6.3
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A Definition A singular point x0 of a linear differential equation

(1)

is further classified as either regular or irregular. The classification again depends on
the functions P and Q in the standard form

(2) y � � P(x)y� � Q(x)y � 0.

a2(x)y � � a1(x)y� � a0(x)y � 0 

248 ● CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

DEFINITION 6.3.1 Regular and Irregular Singular Points

A singular point x � x0 is said to be a regular singular point of the differential
equation (1) if the functions p(x) � (x � x0) P(x) and q(x) � (x � x0)2Q(x) are
both analytic at x0. A singular point that is not regular is said to be an irregular
singular point of the equation.

The second sentence in Definition 6.3.1 indicates that if one or both of the func-
tions p (x) � (x � x0) P(x) and q(x) � (x � x0)2Q(x) fail to be analytic at x0, then
x0 is an irregular singular point.

Polynomial Coefficients As in Section 6.2, we are mainly interested in
linear equations (1) where the coefficients a2(x), a1(x), and a0(x) are polynomials
with no common factors. We have already seen that if a2(x0) � 0, then x � x0 is a
singular point of (1), since at least one of the rational functions P(x) � a1(x)
a2(x)
and Q(x) � a0(x) 
a2(x) in the standard form (2) fails to be analytic at that point.
But since a2(x) is a polynomial and x0 is one of its zeros, it follows from the Factor
Theorem of algebra that x � x0 is a factor of a2(x). This means that after a1(x)
a2(x)
and a0(x)
a2(x) are reduced to lowest terms, the factor x � x0 must remain, to some
positive integer power, in one or both denominators. Now suppose that x � x0 is
a singular point of (1) but both the functions defined by the products p(x) �
(x � x0) P(x) and q(x) � (x � x0)2Q(x) are analytic at x0. We are led to the conclu-
sion that multiplying P(x) by x � x0 and Q(x) by (x � x0)2 has the effect (through
cancellation) that x � x0 no longer appears in either denominator. We can now
determine whether x0 is regular by a quick visual check of denominators:

If x � x0 appears at most to the first power in the denominator of P(x) and at
most to the second power in the denominator of Q(x), then x � x0 is a regular
singular point.

Moreover, observe that if x � x0 is a regular singular point and we multiply (2) by
(x � x0)2, then the original DE can be put into the form

(3)

where p and q are analytic at x � x0.

 (x � x0)2y � � (x � x0)p(x)y� � q(x)y � 0,

EXAMPLE 1 Classification of Singula Points

It should be clear that x � 2 and x � �2 are singular points of

After dividing the equation by (x2 � 4)2 � (x � 2)2(x � 2)2 and reducing the
coefficients to lowest terms, we find th

We now test P(x) and Q(x) at each singular point.

P(x) �
3

(x � 2)(x � 2)2    and    Q(x) �
5

(x � 2)2(x � 2)2.

(x2 � 4)2y � � 3(x � 2)y� � 5y � 0.
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For x � 2 to be a regular singular point, the factor x � 2 can appear at most to the
first power in the denominator of P(x) and at most to the second power in the denom-
inator of Q(x). A check of the denominators of P(x) and Q(x) shows that both these
conditions are satisfied, so x � 2 is a regular singular point. Alternatively, we are led
to the same conclusion by noting that both rational functions

are analytic at x � 2.
Now since the factor x � (�2) � x � 2 appears to the second power in the

denominator of P(x), we can conclude immediately that x � �2 is an irregular
singular point of the equation. This also follows from the fact that

is not analytic at x � �2.

In Example 1, notice that since x � 2 is a regular singular point, the original
equation can be written as

As another example, we can see that x � 0 is an irregular singular point
of x3y� � 2xy� � 8y � 0 by inspection of the denominators of P(x) � �2
x2

and Q(x) � 8
x3. On the other hand, x � 0 is a regular singular point of
xy� � 2xy� � 8y � 0, since x � 0 and (x � 0)2 do not even appear in the respective
denominators of P(x) � �2 and Q(x) � 8
x. For a singular point x � x0 any
nonnegative power of x � x0 less than one (namely, zero) and any nonnegative
power less than two (namely, zero and one) in the denominators of P(x) and Q(x), re-
spectively, imply that x0 is a regular singular point. A singular point can be a complex
number. You should verify that x � 3i and x � �3i are two regular singular points
of (x2 � 9)y� � 3xy� � (1 � x)y � 0.

Note Any second-order Cauchy-Euler equation ax2y� � bxy� � cy � 0, where
a, b, and c are real constants, has a regular singular point at x � 0. You should verify that
two solutions of the Cauchy-Euler equation x2y� � 3xy� � 4y � 0 on the interval (0, �)
are y1 � x2 and y2 � x2 ln x. If we attempted to find a power series solution about the
regular singular point x � 0 (namely, ), we would succeed in obtaining
only the polynomial solution y1 � x2. The fact that we would not obtain the second so-
lution is not surprising because ln x (and consequently y2 � x2 ln x) is not analytic
at x � 0—that is, y2 does not possess a Taylor series expansion centered at x � 0.

Method of Frobenius To solve a differential equation (1) about a regular sin-
gular point, we employ the following theorem due to the eminent German mathe-
matician Ferdinand Georg Frobenius (1849–1917).

 y � ��
n�0 cnxn

(x � 2)2y � � (x � 2) y � � y � 0.

p(x) analytic
at x � 2

q(x) analytic
at x � 2

3––––––––
(x � 2)2

5––––––––
(x � 2)2

 p(x) � (x � 2)P(x) �
3

(x � 2)(x � 2)

p(x) � (x � 2)P(x) �
3

(x � 2)2    and    q(x) � (x � 2)2Q(x) �
5

(x � 2)2

6.3 SOLUTIONS ABOUT SINGULAR POINTS ● 249

THEOREM 6.3.1 Frobenius’ Theorem

If x � x0 is a regular singular point of the differential equation (1), then there
exists at least one solution of the form

(4)

where the number r is a constant to be determined. The series will converge at
least on some interval 0 � x � x0 � R.

 y � (x � x0) r �
�

n�0
cn(x � x0)n � �

�

n�0
cn(x � x0)n�r,
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Notice the words at least in the first sentence of Theorem 6.3.1. This means
that in contrast to Theorem 6.2.1, Theorem 6.3.1 gives us no assurance that two series
solutions of the type indicated in (4) can be found. The method of Frobenius, findin
series solutions about a regular singular point x0, is similar to the power-series method
in the preceding section in that we substitute into the given
differential equation and determine the unknown coefficients cn by a recurrence rela-
tion. However, we have an additional task in this procedure: Before determining the co-
efficients, we must find the unknown exponent r. If r is found to be a number that is not
a nonnegative integer, then the corresponding solution is not
a power series.

As we did in the discussion of solutions about ordinary points, we shall always
assume, for the sake of simplicity in solving differential equations, that the regular
singular point is x � 0.

y ���
n�0 cn(x � x0)n�r

 y ���
n�0 cn(x � x0)n�r

250 ● CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

EXAMPLE 2 Two Series Solutions

Because x � 0 is a regular singular point of the differential equation

(5)

we try to find a solution of the form Now

so

y� ��
�

n�0
 (n � r)cnxn�r�1    and    y � ��

�

n�0
 (n � r)(n � r � 1)cnxn�r�2,     

 y � ��
n�0 cnxn�r.

 3xy � � y� � y � 0,

   � xr�r (3r � 2)c0x�1 ��
�

k�0
 [(k � r � 1)(3k � 3r � 1)ck�1 � ck]xk� � 0,

 
k � n�1 k � n

 � xr�r (3r � 2)c0x�1 � �
�

n�1
    

    (n � r)(3n � 3r � 2)cnxn�1 ��
�

n�0
 cnxn�

  � �
�

n�0
 (n � r)(3n � 3r � 2)cnxn�r�1 � �

�

n�0
 cnxn�r

  3xy � � y� � y � 3�
�

n�0
 (n � r)(n � r � 1)cn xn�r�1 ��

�

n�0
 (n � r)cnxn�r�1 ��

�

n�0
 cnxn�r

which implies that r (3r � 2)c0 � 0

and

Because nothing is gained by taking c0 � 0, we must then have

(6)

and (7)

When substituted in (7), the two values of r that satisfy the quadratic equation 
(6), and r2 � 0, give two different recurrence relations:

(8)

(9)  r2 � 0,    ck�1 �
ck

(k � 1)(3k � 1)
,    k � 0, 1, 2, . . . .

  r1 � 2
3,    ck�1 �

ck

(3k � 5)(k � 1)
,    k � 0, 1, 2, . . .

r1 � 2
3

 ck�1 �
ck

(k � r � 1)(3k � 3r � 1)
,    k � 0, 1, 2, . . . .

 r (3r � 2) � 0

 (k � r � 1)(3k � 3r � 1)ck�1 � ck � 0,    k � 0, 1, 2, . . . .
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From (8) we fin From (9) we fin

6.3 SOLUTIONS ABOUT SINGULAR POINTS ● 251

 cn �
c0

n!5 � 8 � 11� � � (3n � 2)
.

�
�

�

  c4 �
c3

14 � 4
�

c0

4!5 � 8 � 11 � 14

  c3 �
c2

11 � 3
�

c0

3!5 � 8 � 11

  c2 �
c1

8 � 2
�

c0

2!5 � 8

  c1 �
c0

5 � 1

  cn �
c0

n!1 � 4 � 7 � � � (3n � 2)
.

�
�

�

  c4 �
c3

4 � 10
�

c0

4!1 � 4 � 7 � 10

  c3 �
c2

3 � 7
�

c0

3!1 � 4 � 7

  c2 �
c1

2 � 4
�

c0

2!1 � 4

  c1 �
c0

1 � 1

Here we encounter something that did not happen when we obtained solutions
about an ordinary point; we have what looks to be two different sets of coeffi
cients, but each set contains the same multiple c0. If we omit this term, the series
solutions are

(10)

(11)

By the ratio test it can be demonstrated that both (10) and (11) converge for all val-
ues of x—that is, Also, it should be apparent from the form of these
solutions that neither series is a constant multiple of the other, and therefore y1(x) and
y2(x) are linearly independent on the entire x-axis. Hence by the superposition prin-
ciple, y � C1y1(x) � C2y2(x) is another solution of (5). On any interval that does not
contain the origin, such as (0, �), this linear combination represents the general solu-
tion of the differential equation.

Indicial Equation Equation (6) is called the indicial equation of the problem, 
and the values and r2 � 0 are called the indicial roots, or exponents, of
the singularity x � 0. In general, after substituting into the given dif-
ferential equation and simplifying, the indicial equation is a quadratic equation in r
that results from equating the total coefficient of the lowest power of x to zero. We
solve for the two values of r and substitute these values into a recurrence relation
such as (7). Theorem 6.3.1 guarantees that at least one solution of the assumed series
form can be found.

It is possible to obtain the indicial equation in advance of substituting
into the differential equation. If x � 0 is a regular singular point of

(1), then by Definition 6.3.1 both functions p(x) � xP(x) and q(x) � x2Q(x), where 
P and Q are defined by the standard form (2), are analytic at x � 0; that is, the power
series expansions

y � ��
n�0 cnxn�r

y � ��
n�0 cnxn�r

r1 � 2
3

� x � � �.

 y2(x) � x0�1 ��
�

n�1
 

1
n!1 � 4 � 7 � � � (3n � 2)

 xn�.

 y1(x) � x2/3�1 ��
�

n�1
 

1
n!5 � 8 � 11� � � (3n � 2)

 xn� 

(12) p(x) � xP(x) � a0 � a1x � a2x2 � � � �    and    q(x) � x2Q(x) � b0 � b1x � b2x2 � � � �

are valid on intervals that have a positive radius of convergence. By multiplying 
(2) by x2, we get the form given in (3):

(13) x2y � � x[xP(x)]y� � [x2Q(x)]y � 0.
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After substituting and the two series in (12) into (13) and carrying
out the multiplication of series, we find the general indicial equation to b

(14)

where a0 and b0 are as defined in (12). See Problems 13 and 14 in Exercises 6.3

 r (r � 1) � a0r � b0 � 0,

y � ��
n�0 cnxn�r

252 ● CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

EXAMPLE 3 Two Series Solutions

Solve 2xy� � (1 � x)y� � y � 0.

SOLUTION Substituting givesy � ��
n�0 cnxn�r

2xy � � (1 � x)y� � y � 2 � (n � r)(n � r � 1)cnxn�r�1 � � (n � r )cnxn�r�1

n�0

�

n�0

�

� � (n � r)(2n � 2r � 1)cnxn�r�1 � � (n � r � 1)cnxn�r

n�0

�

n�0

�

� xr [r(2r � 1)c0x�1 �  � [(k � r � 1)(2k � 2r � 1)ck�1 � (k � r � 1)ck]xk],
k�0

�

� � (n � r)cnxn�r � � cnxn�r

n�0

�

n�0

�

� xr [r(2r � 1)c0x�1 � � (n � r)(2n � 2r � 1)cnxn�1 � � (n � r � 1)cnxn]
n�1

�

n�0

�

k�n�1 k�n

which implies that (15)

and (16)

k � 0, 1, 2, . . . . From (15) we see that the indicial roots are and r2 � 0.
For we can divide by in (16) to obtain

(17)

whereas for r2 � 0, (16) becomes

(18)

From (17) we fin From (18) we fin

 ck�1 �
�ck

2k � 1
,    k � 0, 1, 2, . . . .

  ck�1 �
�ck

2(k � 1)
,    k � 0, 1, 2, . . . ,

k � 3
2r1 � 1

2

r1 � 1
2

 (k � r � 1)(2k � 2r � 1)ck�1 � (k � r � 1)ck � 0,

 r (2r � 1) � 0

 cn �
(�1)nc0

2nn!
 .

�
�

�

 c4 �
�c3

2 � 4
�

c0

24 � 4!

 c3 �
�c2

2 � 3
�

�c0

23 � 3!

 c2 �
�c1

2 �  2
�

c0

22 � 2!

   c1 �
�c0

2 � 1
 

 cn �
(�1)nc0

1 � 3 � 5 � 7 � � � (2n � 1)
 .

�
�

�

 c4 �
�c3

7
�

c0

1 � 3 � 5 � 7

 c3 �
�c2

5
�

�c0

1 � 3 � 5

  c2 �
�c1

3
�

c0

1 � 3

  c1 �
�c0

1
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Thus for the indicial root we obtain the solution

where we have again omitted c0. The series converges for x 
 0; as given, the series
is not defined for negative values of x because of the presence of x1/2. For r2 � 0 a
second solution is

On the interval (0, �) the general solution is y � C1y1(x) � C2y2(x).

   y2(x) � 1 ��
�

n�1
 

(�1)n

1 � 3 � 5 � 7 � � � (2n � 1)
xn ,    � x � � �.

  y1(x) � x1/2�1 ��
�

n�1

 (�1)n

2nn!
xn� ��

�

n�0

 (�1)n

2nn!
xn�1/2 ,

 r1 � 1
2
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EXAMPLE 4 Only One Series Solution

Solve xy� � y � 0.

SOLUTION From xP(x) � 0, x2Q(x) � x and the fact that 0 and x are their own
power series centered at 0 we conclude that a0 � 0 and b0 � 0, so from (14) the
indicial equation is r (r � 1) � 0. You should verify that the two recurrence relations
corresponding to the indicial roots r1 � 1 and r2 � 0 yield exactly the same set of
coefficients. In other words, in this case the method of Frobenius produces only a
single series solution

Three Cases For the sake of discussion let us again suppose that x � 0 is a
regular singular point of equation (1) and that the indicial roots r1 and r2 of the
singularity are real. When using the method of Frobenius, we distinguish three cases
corresponding to the nature of the indicial roots r1 and r2. In the first two cases the
symbol r1 denotes the largest of two distinct roots, that is, r1 	 r2. In the last case
r1 � r2.

Case I: If r1 and r2 are distinct and the difference r1 � r2 is not a positive inte-
ger, then there exist two linearly independent solutions of equation (1) of the form

This is the case illustrated in Examples 2 and 3.

Next we assume that the difference of the roots is N, where N is a positive
integer. In this case the second solution may contain a logarithm.

Case II: If r1 and r2 are distinct and the difference r1 � r2 is a positive integer,
then there exist two linearly independent solutions of equation (1) of the form

(19)

(20)

where C is a constant that could be zero.

Finally, in the last case, the case when r1 � r2, a second solution will always
contain a logarithm. The situation is analogous to the solution of a Cauchy-Euler
equation when the roots of the auxiliary equation are equal.

 y2(x) � Cy1(x) ln x ��
�

n�0
 bnxn�r2,    b0 � 0,

 y1(x) ��
�

n�0
 cnxn�r1,    c0 � 0,

y1(x) � �
�

n�0
cn xn�r1,  c0 � 0,    y2(x) � �

�

n�0
bn xn�r2,  b0 � 0.

y1(x) ��
�

n�0
  

(�1)n

n!(n � 1)!
 xn�1 � x �

1
2
 x2 �

1
12

 x3 �
1

144
 x4 � � � �. 
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Case III: If r1 and r2 are equal, then there always exist two linearly indepen-
dent solutions of equation (1) of the form

(21)

(22)

Finding a Second Solution When the difference r1 � r2 is a positive integer
(Case II), we may or may not be able to find two solutions having the
form This is something that we do not know in advance but is
determined after we have found the indicial roots and have carefully examined the
recurrence relation that defines the coefficients cn. We just may be lucky enough
to find two solutions that involve only powers of x, that is, 
(equation (19)) and (equation (20) with C � 0). See Problem 31
in Exercises 6.3. On the other hand, in Example 4 we see that the difference of the in-
dicial roots is a positive integer (r1 � r2 � 1) and the method of Frobenius failed to
give a second series solution. In this situation equation (20), with C � 0, indicates what
the second solution looks like. Finally, when the difference r1 � r2 is a zero (Case III),
the method of Frobenius fails to give a second series solution; the second solution (22)
always contains a logarithm and can be shown to be equivalent to (20) with C � 1. One
way to obtain the second solution with the logarithmic term is to use the fact that

(23)

is also a solution of y� � P(x)y� � Q(x)y � 0 whenever y1(x) is a known solution.
We illustrate how to use (23) in the next example.

 y2(x) � y1(x) �  e�� P(x)dx

y2
1(x)

  dx

 y2(x) � ��
n�0 bnxn�r2

 y1(x) � ��
n�0 cnxn�r1

y � ��
n�0 cnxn�r.

  y2(x) � y1(x) ln x ��
�

n�1
 bnxn�r1.

 y1(x) ��
�

n�0
cnxn�r1,    c0 � 0,
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EXAMPLE 5 Example 4 Revisited Using a CAS

Find the general solution of xy� � y � 0.

SOLUTION From the known solution given in Example 4,

we can construct a second solution y2(x) using formula (23). Those with the time,
energy, and patience can carry out the drudgery of squaring a series, long division,
and integration of the quotient by hand. But all these operations can be done with
relative ease with the help of a CAS. We give the results:

  � y1(x) ln x � y1(x) �� 1
x

�
7

12
x �

19
144

x2 � � � ��,

  � y1(x) �� 1
x

� ln x �
7

12
x �

19
144

x2 � � � ��

  � y1(x) � 
 � 1

x2 �
1
x

�
7

12
�

19
72

x � � � ��dx

  � y1(x) � dx

  � x2 � x3 �
5

12
x4 �

7
72

x5 � � � �� 

  y2(x) � y1(x) � e�∫0dx

[y1(x)]2
 dx � y1(x) � dx

  � x �
1
2

x2 �
1

12
x3 �

1
144

x4 � � � ��
2

 y1(x) � x �
1
2

x2 �
1

12
x3 �

1
144

 x4 � � � � ,

; after long division

; after integrating

; after squaring
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or

On the interval (0, �) the general solution is y � C1y1(x) � C2y2(x).

Note that the final form of y2 in Example 5 matches (20) with C � 1; the series
in the brackets corresponds to the summation in (20) with r2 � 0.

  y2(x) � y1(x) ln x � ��1 �
1
2

x �
1
2

x2 � � � ��.
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REMARKS 

(i) The three different forms of a linear second-order differential equation in (1),
(2), and (3) were used to discuss various theoretical concepts. But on a practical
level, when it comes to actually solving a differential equation using the method
of Frobenius, it is advisable to work with the form of the DE given in (1).
(ii) When the difference of indicial roots r1 � r2 is a positive integer
(r1 	 r2), it sometimes pays to iterate the recurrence relation using the
smaller root r2 first. See Problems 31 and 32 in Exercises 6.3
(iii) Because an indicial root r is a solution of a quadratic equation, it could
be complex. We shall not, however, investigate this case.
(iv) If x � 0 is an irregular singular point, then we might not be able to fin
any solution of the DE of form  y ���

n�0 cnxn�r.

EXERCISES 6.3 Answers to selected odd-numbered problems begin on page ANS-10.

In Problems 1–10 determine the singular points of the given
differential equation. Classify each singular point as regular
or irregular.

1. x3y� � 4x2y� � 3y � 0

2. x(x � 3)2y� � y � 0

3. (x2 � 9)2y� � (x � 3)y� � 2y � 0

4.

5. (x3 � 4x)y� � 2xy� � 6y � 0

6. x2(x � 5)2y� � 4xy� � (x2 � 25)y � 0

7. (x2 � x � 6)y� � (x � 3)y� � (x � 2)y � 0

8. x(x2 � 1)2y� � y � 0

9. x3(x2 � 25)(x � 2)2y� � 3x(x � 2)y� � 7(x � 5)y � 0

10. (x3 � 2x2 � 3x)2y� � x(x � 3)2y� � (x � 1)y � 0

In Problems 11 and 12 put the given differential equation
into form (3) for each regular singular point of the equation.
Identify the functions p(x) and q(x).

11. (x2 � 1)y� � 5(x � 1)y� � (x2 � x)y � 0

12. xy� � (x � 3)y� � 7x2y � 0

y � �
1
x

y� �
1

(x � 1)3 y � 0

In Problems 13 and 14, x � 0 is a regular singular point of the
given differential equation. Use the general form of the indi-
cial equation in (14) to find the indicial roots of the singu-
larity. Without solving, discuss the number of series solutions
you would expect to find using the method of Frobenius

13.

14. xy� � y� � 10y � 0

In Problems 15–24, x � 0 is a regular singular point of
the given differential equation. Show that the indicial roots
of the singularity do not differ by an integer. Use the method
of Frobenius to obtain two linearly independent series
solutions about x � 0. Form the general solution on (0, �).

15. 2xy� � y� � 2y � 0

16. 2xy� � 5y� � xy � 0

17.

18. 2x2y� � xy� � (x2 � 1)y � 0

19. 3xy� � (2 � x)y� � y � 0

20.

21. 2xy� � (3 � 2x)y� � y � 0

x2y � � (x � 2
9)y � 0

4xy� � 1
2 y� � y � 0

x2y � � (5
3 x � x2)y� � 1

3 y � 0

; after multiplying out
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22.

23. 9x2y� � 9x2y� � 2y � 0

24. 2x2y� � 3xy� � (2x � 1)y � 0

In Problems 25–30, x � 0 is a regular singular point of
the given differential equation. Show that the indicial
roots of the singularity differ by an integer. Use the method
of Frobenius to obtain at least one series solution about
x � 0. Use (23) where necessary and a CAS, if instructed, to
fin a second solution. Form the general solution on (0, �).

25. xy� � 2y� � xy � 0

26.

27. xy� � xy� � y � 0 28.

29. xy� � (1 � x)y� � y � 0 30. xy� � y� � y � 0

In Problems 31 and 32, x � 0 is a regular singular point of
the given differential equation. Show that the indicial
roots of the singularity differ by an integer. Use the recur-
rence relation found by the method of Frobenius first with
the larger root r1. How many solutions did you find? Next
use the recurrence relation with the smaller root r2. How
many solutions did you find

31. xy� � (x � 6)y� � 3y � 0

32. x(x � 1)y� � 3y� � 2y � 0

33. (a) The differential equation x4y� � �y � 0 has an
irregular singular point at x � 0. Show that the sub-
stitution t � 1
x yields the DE

which now has a regular singular point at t � 0.
(b) Use the method of this section to find two series

solutions of the second equation in part (a) about the
regular singular point t � 0.

(c) Express each series solution of the original equation
in terms of elementary functions.

Mathematical Model

34. Buckling of a Tapered Column In Example 4 of
Section 5.2 we saw that when a constant vertical
compressive force or load P was applied to a thin
column of uniform cross section, the deflection y(x) was
a solution of the boundary-value problem

(24)

The assumption here is that the column is hinged at both
ends. The column will buckle or deflect only when the
compressive force is a critical load Pn.

EI 
d 2y
dx2 � Py � 0,  y(0) � 0,  y(L) � 0.

d 2y
dt2 �

2
t
 
dy
dt

� �y � 0,

y � �
3
x

y� � 2y � 0

x2y � � xy� � (x2 � 1
4)y � 0

x2y � � xy� � (x2 � 4
9)y � 0 (a) In this problem let us assume that the column is of

length L, is hinged at both ends, has circular cross
sections, and is tapered as shown in Figure 6.3.1(a).
If the column, a truncated cone, has a linear taper
y � cx as shown in cross section in Figure 6.3.1(b),
the moment of inertia of a cross section with respect
to an axis perpendicular to the xy-plane is 
where r � y and y � cx. Hence we can write
I(x) � I0(x
b)4, where Sub-
stituting I(x) into the differential equation in (24),
we see that the deflection in this case is determined
from the BVP

where � � Pb4
EI0. Use the results of Problem 33
to find the critical loads Pn for the tapered column.
Use an appropriate identity to express the buckling
modes yn(x) as a single function.

(b) Use a CAS to plot the graph of the first buckling
mode y1(x) corresponding to the Euler load P1
when b � 11 and a � 1.

x4 
d 2y
dx2 � �y � 0,  y(a) � 0,  y(b) � 0,

I0 � I(b) � 1
4 �(cb)4.

I � 1
4 �r4,

x = a

y

P

x = b

y = cx
b − a = L

L

(a) (b)

x

FIGURE 6.3.1 Tapered column in Problem 34

Discussion Problems

35. Discuss how you would define a regular singular point
for the linear third-order differential equation

36. Each of the differential equations

has an irregular singular point at x � 0. Determine
whether the method of Frobenius yields a series solu-
tion of each differential equation about x � 0. Discuss
and explain your findings

37. We have seen that x � 0 is a regular singular point of
any Cauchy-Euler equation ax2y� � bxy� � cy � 0.
Are the indicial equation (14) for a Cauchy-Euler equa-
tion and its auxiliary equation related? Discuss.

 x3y � � y � 0    and    x2y � � (3x � 1)y� � y � 0

 a3(x)y� � a2(x)y � � a1(x)y� � a0(x)y � 0.
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6.4 SPECIAL FUNCTIONS ● 257

SPECIAL FUNCTIONS

REVIEW MATERIAL
● Sections 6.2 and 6.3 

INTRODUCTION In the Remarks at the end of Section 2.3 we mentioned the branch of mathemat-
ics called special functions. Perhaps a better title for this field of applied mathematics might be
named functions because many of the functions studied bear proper names: Bessel functions,
Legendre functions, Airy functions,  Chebyshev polynomials, Hermite polynomials, Jacobi polyno-
mials, Laguerre polynomials, Gauss’ hypergeometric function, Mathieu functions, and so on.
Historically, special functions were often the by-product of necessity: Someone needed a solution of
a very specialized differential equation that arose from an attempt to solve a physical problem. In
effect, a special function was determined or defined by the differential equation and many properties
of the function could be discerned from the series form of the solution.

In this section we use the methods of Sections 6.2 and 6.3 to find solutions of two differential
equations

(1)

(2)

that arise in advanced studies of applied mathematics, physics, and engineering. They are called,
respectively, Bessel’s equation of order , named after the German mathematician and astronomer
Friedrich Wilhelm Bessel (1784–1846), and Legendre’s equation of order n, named after the
French mathematician Adrien-Marie Legendre (1752–1833). When we solve (1) we shall assume
that whereas in (2) we shall consider only the case when n in a nonnegative integer.� 
 0,

�

(1 � x2)y� � 2xy� � n(n � 1)y � 0

x 2y� � xy� � (x2 � �2)y � 0

6.4

Solution of Bessel’s Equation Because is a regular singular point of
Bessel’s equation, we know that there exists at least one solution of the form

Substituting the last expression into (1) givesy � ��
n�0 cnxn�r.

x � 0

(3)   � c0(r2 � � 2)xr � xr �
�

n�1
  cn[(n � r)2 � � 2]xn � xr �

�

n�0
  cnxn�2.

   � c0(r2 � r � r � � 2)xr � xr �
�

n�1
   cn[(n � r)(n � r � 1) � (n � r) � �2]xn � xr �

�

n�0
 cnxn�2

  x2y � � xy� � (x2 � � 2)y � �
�

n�0
 cn(n � r)(n � r � 1)xn�r � �

�

n�0
 cn(n � r)xn�r � �

�

n�0
 cnxn�r�2 � � 2 �

�

n�0
 cnxn�r

From (3) we see that the indicial equation is r2 � �2 � 0, so the indicial roots are
r1 � � and r2 � ��. When r1 � �, (3) becomes

xn  � cnn(n � 2n)xn � xn � cnxn�2

n�1

�

n�0

�

� xn [(1 � 2n)c1x �  � [(k � 2)(k � 2 � 2n)ck�2 � ck]xk�2] � 0.
k�0

�

� xn [(1 � 2n)c1x � � cnn(n � 2n)xn � � cnxn�2]
n�2

�

n�0

�

k � n � 2 k � n
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Therefore by the usual argument we can write (1 � 2�)c1 � 0 and

or (4)

The choice c1 � 0 in (4) implies that so for k � 0, 2, 4, . . .
we find, after letting k � 2 � 2n, n � 1, 2, 3, . . . , that

(5)

Thus

(6)

It is standard practice to choose c0 to be a specific value, namel ,

where �(1 � �) is the gamma function. See Appendix I. Since this latter function
possesses the convenient property �(1 � �) � ��(�), we can reduce the indicated
product in the denominator of (6) to one term. For example,

Hence we can write (6) as

for n � 0, 1, 2, . . . .

Bessel Functions of the First Kind Using the coefficients c2n just obtained

c2n �
(�1)n

22n�� n!(1 � �)(2 � �) � � � (n � �)�(1 � �)
�

(�1)n

22n�� n!�(1 � � � n)

 �(1 � � � 2) � (2 � �)�(2 � �) � (2 � �)(1 � �)�(1 � �).

 �(1 � � � 1) � (1 � �)�(1 � �)

 c0 �
1

2��(1 � �)
,

 c2n �
(�1)nc0

22nn!(1 � �)(2 � �) � � � (n � �)
,    n � 1, 2, 3, . . . .

�
�

�

c6  � � c4

22 � 3(3 � �)
� � c0

26 � 1 �  2 � 3(1 � �)(2 � �)(3 � �)

c4  � � c2

22 � 2(2 � �)
�

c0

24 � 1 � 2(1 � �)(2 � �)
  

c2  � � c0

22 � 1 � (1 � �)
 

c2n � � c2n�2

22n(n � �)
.

 c3 � c5 � c7 � � � � � 0,

 ck�2 �
�ck

(k � 2)(k � 2 � 2�)
,    k � 0, 1, 2, . . . .

 (k � 2)(k � 2 � 2�)ck�2 � ck � 0
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*When we replace x by |x |, the series given in (7) and (8) converge for 0 � |x | � �. 

and r � �, a series solution of (1) is This solution is usually
denoted by J�(x):

(7)

If � 
 0, the series converges at least on the interval [0, �). Also, for the second
exponent r2 � �� we obtain, in exactly the same manner,

(8)

The functions J�(x) and J��(x) are called Bessel functions of the first kind of order �
and ��, respectively. Depending on the value of �, (8) may contain negative powers
of x and hence converges on (0, �).*

J��(x) � �
�

n�0

  
(�1)n

n!�(1 � � � n)
 �x

2�
2n��

.  

 J�(x) � �
�

n�0

  
(�1)n

n!�(1 � � � n)
 �x

2�
2n��

.

y � ��
n�0 c2n x2n��.
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Now some care must be taken in writing the general solution of (1). When � � 0,
it is apparent that (7) and (8) are the same. If � 	 0 and r1 � r2 � � � (��) � 2�
is not a positive integer, it follows from Case I of Section 6.3 that J�(x) and J��(x) are
linearly independent solutions of (1) on (0, �), and so the general solution on the
interval is y � c1J�(x) � c2J��(x). But we also know from Case II of Section 6.3 that
when r1 � r2 � 2� is a positive integer, a second series solution of (1) may exist. In this
second case we distinguish two possibilities. When � � m � positive integer, J�m(x)
defined by (8) and Jm(x) are not linearly independent solutions. It can be shown that J�m
is a constant multiple of Jm (see Property (i) on page 262). In addition, r1 � r2 � 2�
can be a positive integer when � is half an odd positive integer. It can be shown in this
latter event that J�(x) and J��(x) are linearly independent. In other words, the general
solution of (1) on (0, �) is

(9)

The graphs of y � J0(x) and y � J1(x) are given in Figure 6.4.1.

y � c1J�(x) � c2J��(x),    � � integer.

6.4 SPECIAL FUNCTIONS ● 259

EXAMPLE 1 Bessel’s Equation of Order

By identifying we can see from (9) that the general solution of the
equation on (0, �) is  

Bessel Functions of the Second Kind If � � integer, the function define
by the linear combination

(10)

and the function J�(x) are linearly independent solutions of (1). Thus another form of
the general solution of (1) is y � c1J� (x) � c2Y�(x), provided that � � integer. As

m an integer, (10) has the indeterminate form 0
0. However, it can be shown
by L’Hôpital’s Rule that exists. Moreover, the function

and Jm(x) are linearly independent solutions of x2y� � xy� � (x2 � m2)y � 0. Hence
for any value of � the general solution of (1) on (0, �) can be written as

(11)

Y� (x) is called the Bessel function of the second kind of order �. Figure 6.4.2 shows
the graphs of Y0(x) and Y1(x).

 y � c1J�(x) � c2Y�(x).

 Ym(x) � lim
� :m

 Y�(x)

 lim� :m Y�(x)
� : m,

Y� (x) �
cos ��J�(x) � J��(x)

 sin ��

y � c1J1/2(x) � c2J�1/2(x). x2y � � xy� � (x2 � 1
4)y � 0

� 2 � 1
4 and � � 1

2,

1
2

2 4 6 8
_ 0.4

0.2
0.4
0.6
0.8

1

_ 0.2
x

y

J1

J0

FIGURE 6.4.1 Bessel functions of
the first kind for n � 0, 1, 2, 3, 4
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_2
_ 1.5
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_ 0.5

0.5
x

y

Y0 Y1

FIGURE 6.4.2 Bessel functions of
the second kind for n � 0, 1, 2, 3, 4

EXAMPLE 2 Bessel’s Equation of Order 3

By identifying �2 � 9 and � � 3, we see from (11) that the general solution of the
equation x2y� � xy� � (x2 � 9)y � 0 on (0, �) is y � c1J3(x) � c2Y3(x).

DES Solvable in Terms of Bessel Functions Sometimes it is possible to
transform a differential equation into equation (1) by means of a change of variable.
We can then express the solution of the original equation in terms of Bessel func-
tions. For example, if we let t � �x, � 	 0, in

(12)

then by the Chain Rule,

dy
dx

�
dy
dt

 
dt
dx

� �  dy
dt

    and     
d 2y
dx2 �

d
dt

 �dy
dx�

 dt
dx

� �2 
d 2y
dt2 .

x2y � � xy� � (a2x2 � � 2)y � 0,
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Accordingly, (12) becomes

260 ● CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

� t
��

2
�2  d

2y
dt 2 � � t

���  dy
dt

� (t2 � � 2)y � 0    or    t2  d
2y

dt2 � t 
dy
dt

� (t2 � � 2)y � 0.

The last equation is Bessel’s equation of order � with solution y � c1J�(t) � c2Y�(t). By
resubstituting t � �x in the last expression, we find that the general solution of (12) is

(13)

Equation (12), called the parametric Bessel equation of order �, and its general
solution (13) are very important in the study of certain boundary-value problems
involving partial differential equations that are expressed in cylindrical coordinates.

Modified Bessel Functions Another equation that bears a resemblance to (1)
is the modified Bessel equation of orde �,

(14)

This DE can be solved in the manner just illustrated for (12). This time if we let
where then (14) becomes

Because solutions of the last DE are J�(t) and Y�(t), complex-valued solutions of
(14) are J�(ix) and Y�(ix). A real-valued solution, called the modified Bessel func-
tion of the first kin of order �, is defined in terms of J�(ix):

(15)

See Problem 21 in Exercises 6.4.
Analogous to (10), the modified Bessel function of the second kind of order

� � integer is defined to b

(16)

and for integer � � n,

Because I� and K� are linearly independent on the interval (0, �) for any value of
v, the general solution of (14) on that interval is

(17)

The graphs of and are given in Figure 6.4.3 and
the graphs of and are given in Figure 6.4.4.  Unlike
the Bessel functions of the first and second kinds, the modified Bessel functions 
of the first and second kind are not oscillatory. Figures 6.4.3 and 6.4.4 also illustrate
the fact that the modified Bessel functions and have no
real zeros in the interval Also notice that the modified Bessel functions of
the second kind like the Bessel functions of the second kind become
unbounded as 

A change of variable in (14) gives us the parametric form of the modifie
Bessel equation of order 

The general solution of the last equation on the interval is

y � c1I�(ax) � c2K�(ax).

(0, �)

x2y� � xy� � (a2x2 � n2)y � 0.

�:

x : 0�.
Yn(x)Kn(x)

(0, �).
Kn(x), n � 0, 1, 2, . . .In(x)

y � K2(x)y � K0(x), y � K1(x),
y � I2(x)y � I0(x), y � I1(x),

y � c1I�(x) � c2K� (x).

 Kn(x) � lim
� :n

 K�(x).

 K�(x) �
�

2
 
I�� (x) � I� (x)

sin ��
,

 I�(x) � i�� J� (ix).

 t2 
d 2y
dt2 � t  

dy
dt

� (t2 � � 2)y � 0.

i2 � �1,t � ix,

 x2y � � xy� � (x2 � � 2)y � 0.

y � c1J�(�x) � c2Y�(�x). 

1 2 3

1
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2
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0.5
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y
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I 1 I2

FIGURE 6.4.3 Modified Besse
functions of the first kind for n � 0, 1, 2
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FIGURE 6.4.4 Modified Besse
functions of the second kind for n � 0, 1, 2
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Yet another equation, important because many DEs fit into its form by appro-
priate choices of the parameters, is

(18)

Although we shall not supply the details, the general solution of (18),

(19)

can be found by means of a change in both the independent and the dependent

variables: If p is not an integer, then Yp in (19) can be

replaced by J�p.

z � bxc, y(x) � �z
b�

a/c
w(z).

y � xa�c1Jp(bxc) � c2Yp(bxc)�,

y � �
1 � 2a

x
 y� � �b2c2x2c�2 �

a2 � p2c2

x2 �y � 0,     p 
 0.
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EXAMPLE 3 Using (18)

Find the general solution of xy� � 3y� � 9y � 0 on (0, �).

SOLUTION By writing the given DE as

we can make the following identifications with (18)

The first and third equations imply that a � �1 and With these values the
second and fourth equations are satisfied by taking b � 6 and p � 2. From (19)
we find that the general solution of the given DE on the interval (0, �) is
y � x�1[c1J2(6x1/2) � c2Y2(6x1/2)].

c � 1
2.

1 � 2a � 3,     b2c2 � 9,    2c � 2 � �1,    and     a2 � p2c2 � 0.

 y � �
3
x

 y� �
9
x

 y � 0,

EXAMPLE 4 The Aging Spring Revisited

Recall that in Section 5.1 we saw that one mathematical model for the free undamped
motion of a mass on an aging spring is given by mx� � ke�� tx � 0, � 	 0. We are
now in a position to find the general solution of the equation. It is left as a problem  

to show that the change of variables transforms the differential 
equation of the aging spring into

The last equation is recognized as (1) with � � 0 and where the symbols x
and s play the roles of y and x, respectively. The general solution of the new
equation is x � c1J0(s) � c2Y0(s). If we resubstitute s, then the general solution of
mx� � ke��tx � 0 is seen to be

See Problems 33 and 39 in Exercises 6.4.

The other model that was discussed in Section 5.1 of a spring whose character-
istics change with time was mx� � ktx � 0. By dividing through by m, we see that 

the equation is Airy’s equation y� � �2xy � 0. See Example 5 in

Section 6.2. The general solution of Airy’s differential equation can also be written
in terms of Bessel functions. See Problems 34, 35, and 40 in Exercises 6.4.

 x � �
k
m

tx � 0

 x(t) � c1J0�2
�

 
B

k
m

 e��t / 2� � c2Y0�2
�

 
B

k
m

 e��t / 2�.

 s2  d
2x

ds2 � s  dx
ds

� s2x � 0.

 s �
2
�

 
B

k
m

 e��t / 2
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Properties We list below a few of the more useful properties of Bessel
functions of order m, m � 0, 1, 2, . . .:

(i) (ii)

(iii) (iv)

Note that Property (ii) indicates that Jm(x) is an even function if m is an even
integer and an odd function if m is an odd integer. The graphs of Y0(x) and Y1(x) in
Figure 6.4.2 illustrate Property (iv), namely, Ym(x) is unbounded at the origin. This
last fact is not obvious from (10). The solutions of the Bessel equation of order 0
can be obtained by using the solutions y1(x) in (21) and y2(x) in (22) of Section 6.3.
It can be shown that (21) of Section 6.3 is y1(x) � J0(x), whereas (22) of that
section is

The Bessel function of the second kind of order 0, Y0(x), is then defined to be the

linear combination for x 	 0. That is,

where � � 0.57721566 . . . is Euler’s constant. Because of the presence of the
logarithmic term, it is apparent that Y0(x) is discontinuous at x � 0.

Numerical Values The first five nonnegative zeros of J0(x), J1(x), Y0(x), and
Y1(x) are given in Table 6.4.1. Some additional function values of these four functions
are given in Table 6.4.2.

Y0(x) �
2
�

J0(x)�� �  ln 
x
2� �

2
�

 �
�

k�1
 
(�1)k

(k!)2 �1 �
1
2

� � � � �
1
k��

x
2�

2k
,

 Y0(x) �
2
�

 (� � ln 2)y1(x) �
2
�

 y2(x)

y2(x) � J0(x)ln x � �
�

k�1
 
(�1)k

(k!)2
 �1 �

1
2

� � � � �
1
k��

x
2�

2k
. 

 lim
 x:0�

  Ym (x) � ��. Jm(0) � �0,
1,

m 	 0
m � 0,

Jm(�x) � (�1)mJm(x),J�m(x) � (�1)mJm(x), 
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TABLE 6.4.2 Numerical Values of J0, J1, Y0, and Y1

x J0(x) J1(x) Y0(x) Y1(x)

0 1.0000 0.0000 — —
1 0.7652 0.4401 0.0883 �0.7812
2 0.2239 0.5767 0.5104 �0.1070
3 �0.2601 0.3391 0.3769 0.3247
4 �0.3971 �0.0660 �0.0169 0.3979
5 �0.1776 �0.3276 �0.3085 0.1479
6 0.1506 �0.2767 �0.2882 �0.1750
7 0.3001 �0.0047 �0.0259 �0.3027
8 0.1717 0.2346 0.2235 �0.1581
9 �0.0903 0.2453 0.2499 0.1043

10 �0.2459 0.0435 0.0557 0.2490
11 �0.1712 �0.1768 �0.1688 0.1637
12 0.0477 �0.2234 �0.2252 �0.0571
13 0.2069 �0.0703 �0.0782 �0.2101
14 0.1711 0.1334 0.1272 �0.1666
15 �0.0142 0.2051 0.2055 0.0211

TABLE 6.4.1 Zeros of J0, J1, Y0, and Y1

J0(x) J1(x) Y0(x) Y1(x)

2.4048 0.0000 0.8936 2.1971
5.5201 3.8317 3.9577 5.4297
8.6537 7.0156 7.0861 8.5960

11.7915 10.1735 10.2223 11.7492
14.9309 13.3237 13.3611 14.8974

Differential Recurrence Relation Recurrence formulas that relate Bessel
functions of different orders are important in theory and in applications. In the next
example we derive a differential recurrence relation.
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EXAMPLE 5 Derivation Using the Series Definitio

Derive the formula 

SOLUTION It follows from (7) that

The result in Example 5 can be written in an alternative form. Dividing
by x gives

This last expression is recognized as a linear first-order differential equation in J�(x).
Multiplying both sides of the equality by the integrating factor x�� then yields

(20)

It can be shown in a similar manner that

(21)

See Problem 27 in Exercises 6.4. The differential recurrence relations (20) and
(21) are also valid for the Bessel function of the second kind Y� (x). Observe that
when � � 0, it follows from (20) that

(22)

An application of these results is given in Problem 39 of Exercises 6.4.

Bessel Functions of Half-Integral Order When the order is half an odd in-
teger, that is, Bessel functions of the first and second kinds can be
expressed in terms of the elementary functions and powers of x. Let’s
consider the case when From (7)

J1/2(x) � �
�

n�0
  

(�1)n

n!�(1 � 1
2 � n) �

x
2�

2n�1/2
. 

 � � 1
2.

cosx,sinx,
 
1

2, 

3
2, 


5
2, . . . ,

J�0(x) � �J1(x)    and     Y �0(x) � �Y1(x).

 
d

dx
 [x�J�(x)] � x�J� �1(x).

 
d

dx
 [x��J�(x)] � �x��J��1(x).

  J�n(x) �
�

x
 Jn(x) � �Jn�1(x).

xJ�� (x) � �J� (x) � �xJ��1(x)

xJv(x) � �  (  )2n��
�

n�0

�

k � n � 1

(�1)n(2n � �)–––––––––––––––
n! (1 � � � n)

x–
2

L

� �J�(x) � x �  (  )2n���1

n�1

� (�1)n
–––––––––––––––––––––
(n � 1)! (1 � � � n)

x–
2

L

� � �  (  )2n��

n�0

� (�1)n
–––––––––––––––
n! (1 � � � n)

x–
2

L � 2 �  (  )2n��

n�0

� (�1)nn–––––––––––––––
n! (1 � � � n)

x–
2

L

� �J�(x) � x  � � �J�(x) � xJ��1(x).  (  )2k���1

k�0

� (�1)k
–––––––––––––––
k! (2 � � � k)

x–
2

L

xJ�� (x) � �J�(x) � xJ��1(x).
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In view of the property �(1 � �) � ��(�) and the fact that the values
of for n � 0, n � 1, n � 2, and n � 3 are, respectively,

In general,

Hence

From (2) of Section 6.1 you should recognize that the infinite series in the last line is
the Maclaurin series for and so we have shown that

(23)

We leave it as an exercise to show that

(24)

See Figure 6.4.5 and Problems 31, 32, and 38 in Exercises 6.4.
If n is an integer, then is half an odd integer. Because 

and we see from (10) that 
For we have, in turn, 

and In view of (23) and (24) these  results are the same as

(25)

and (26)

Spherical Bessel Functions Bessel functions of half-integral order are used
to define two more important functions:

and (27)

The function is called the spherical Bessel function of the first kind and 
is the spherical Bessel function of the second kind. For example, for the
expressions in (27) become 

and . y0(x) �
B

p

2x
Y1>2(x) � �

B

p

2x
 
B

2
px

 cosx � �
cosx

x

 j0(x) �
B

p

2x
J1>2(x) �

B

p

2x
 
B

2
px

 sinx �
sinx

x

n � 0
yn(x)jn(x)

yn(x) �
B

p

2x
Yn�1>2(x).jn(x) �

B

p

2xJn�1>2(x)

Y�1>2(x) �
B

2
px

 sin x.

Y1>2(x) � �
B

2
px

 cosx

Y�1>2(x) � J1>2(x).
Y1>2(x) � �J�1>2(x)n � 0 and  n � �1J�(n�1>2)(x).(�1)n�1

Yn�1>2(x) �sin(n � 1
2)p� cosnp� (�1)n,

cos(n � 1
2) p � 0n � n � 1

2

J�1/2(x) �
B

2
�x cos x.

J1/2(x) �
B

2
�x sin x.

sin x,

J1/2(x) ��
�

n�0
  

(�1)n

n!
(2n � 1)!

22n�1n!
 1�

�x
2�

2n�1/2
�

B

2
�x   �

�

n�0
  

(�1)n

(2n � 1)!
x2n�1.

�(1 � 1
2 � n) �

(2n � 1)!
22n�1n!

 1� .

�( 9
2) � �(1 � 7

2) � 7
2 �( 7

2) �
7 � 5

26 � 2!
 1� �

7 � 6 � 5!
26 � 6 � 2!

 1� �
7!

273!
 1�.

�( 7
2) � �(1 � 5

2) � 5
2 �( 5

2) �
5 � 3

23  1� �
5 � 4 � 3 � 2 � 1

234 � 2
 1� �

5!
252!

 1�

�( 5
2) � �(1 � 3

2) � 3
2 �( 3

2) �
3
22 1�

�(3
2) � �(1 � 1

2) � 1
2 �( 1

2) � 1
2 1�

�(1 � 1
2 � n)

�(1
2) � 1�
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It is apparent from (27) and Figure 6.4.2 for the spherical Bessel of the second
kind becomes unbounded as .

Spherical Bessel functions arise in the solution of a special partial differential
equation expressed in spherical coordinates. See Problem 54 in Exercises 6.4 and
Problem 13 in Exercises 13.3.

x : 0�yn(x)
n 
 0
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Solution of Legendre’s Equation Since x � 0 is an ordinary point of
Legendre’s equation (2), we substitute the series shift summation in-
dices, and combine series to get

y � ��
k�0 ckxk ,

 � �
�

j�2
 [( j � 2)( j � 1)cj�2 � (n � j)(n � j � 1)cj]x j � 0

 (1 � x2)y � � 2xy� � n(n � 1)y � [n(n � 1)c0 � 2c2] � [(n � 1)(n � 2)c1 � 6c3]x

which implies that

or

(28)

If we let j take on the values 2, 3, 4, . . . , the recurrence relation (28) yields

and so on. Thus for at least we obtain two linearly independent power series
solutions:

(29)

Notice that if n is an even integer, the first series terminates, whereas y2(x) is an
infinite series. For example, if n � 4, then

Similarly, when n is an odd integer, the series for y2(x) terminates with xn; that is,
when n is a nonnegative integer, we obtain an nth-degree polynomial solution of
Legendre’s equation.

y1(x) � c0�1 �
4 � 5

2!
 x2 �

2 � 4 � 5 � 7
4!

 x4� � c0�1 � 10x2 �
35
3

 x4�.

�
(n � 5)(n � 3)(n � 1)(n � 2)(n � 4)(n � 6)

7!
 x7 � � � ��.

y2(x) � c1�x �
(n � 1)(n � 2)

3!
 x3 �

(n � 3)(n � 1)(n � 2)(n � 4)
5!

 x5

�
(n � 4)(n � 2)n(n � 1)(n � 3)(n � 5)

6!
 x6 � � � ��

y1(x) � c0�1 �
n(n � 1)

2!
 x2 �

(n � 2)n(n � 1)(n � 3)
4!

 x4

� x � � 1

c7 � � (n � 5)(n � 6)
7 � 6

 c5 � � (n � 5)(n � 3)(n � 1)(n � 2)(n � 4)(n � 6)
7!

 c1

c6 � � (n � 4)(n � 5)
6 � 5

 c4 � � (n � 4)(n � 2)n(n � 1)(n � 3)(n � 5)
6!

 c0 

c5 � � (n � 3)(n � 4)
5 � 4

 c3 �
(n � 3)(n � 1)(n � 2)(n � 4)

5!
 c1

c4 � � (n � 2)(n � 3)
4 � 3

 c2 �
(n � 2)n(n � 1)(n � 3)

4!
 c0 

cj�2 � � (n � j )(n � j � 1)
( j � 2)( j � 1)

 cj ,    j � 2, 3, 4, . . . .

c3 � � (n � 1)(n � 2)
3!

 c1

c2 � � n(n � 1)
2!

 c0

 ( j � 2)( j � 1)cj�2 � (n � j)(n � j � 1)cj � 0
 (n � 1)(n � 2)c1 � 6c3 � 0

 n(n � 1)c0 � 2c2 � 0
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266 ● CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

Because we know that a constant multiple of a solution of Legendre’s equation
is also a solution, it is traditional to choose specific values for c0 or c1, depending on
whether n is an even or odd positive integer, respectively. For n � 0 we choose
c0 � 1, and for n � 2, 4, 6, . . .

whereas for n � 1 we choose c1 � 1, and for n � 3, 5, 7, . . .

For example, when n � 4, we have

Legendre Polynomials These specific nth-degree polynomial solutions are
called Legendre polynomials and are denoted by Pn(x). From the series for y1(x)
and y2(x) and from the above choices of c0 and c1 we find that the first several
Legendre polynomials are

(30)

Remember, P0(x), P1(x), P2(x), P3(x), . . . are, in turn, particular solutions of the
differential equations

(31)

The graphs, on the interval [�1, 1], of the six Legendre polynomials in (30) are
given in Figure 6.4.6.

Properties You are encouraged to verify the following properties using the
Legendre polynomials in (30).

(i)
(ii) (iii)

(iv) (v)

Property (i) indicates, as is apparent in Figure 6.4.6, that Pn(x) is an even or odd
function according to whether n is even or odd.

Recurrence Relation Recurrence relations that relate Legendre polynomials
of different degrees are also important in some aspects of their applications. We state,
without proof, the three-term recurrence relation

(32)

which is valid for k � 1, 2, 3, . . . . In (30) we listed the first six Legendre polynomials.
If, say, we wish to find P6(x), we can use (32) with k � 5. This relation expresses P6(x)
in terms of the known P4(x) and P5(x). See Problem 45 in Exercises 6.4.

(k � 1)Pk�1(x) � (2k � 1)xPk(x) � kPk�1(x) � 0,

P�n(0) � 0,  n even Pn(0) � 0,  n odd

Pn(�1) � (�1)n Pn(1) � 1

Pn(�x) � (�1)nPn(x)

�
�

�
�
�

�

n � 0:
n � 1:
n � 2:
n � 3:

  (1 � x2)y � � 2xy� � 0,
 (1 � x2)y � � 2xy� � 2y � 0,
 (1 � x2)y � � 2xy� � 6y � 0,
 (1 � x2)y � � 2xy� � 12y � 0,

P0(x) � 1,           P1(x) � x,

P2(x) �
1
2
 (3x2 � 1),         P3(x) �

1
2
 (5x3 � 3x),

P4(x) �
1
8
 (35x4 � 30x2 � 3),    P5(x) �

1
8
 (63x5 � 70x3 � 15x).

y1(x) � (�1)4/2 1 � 3
2 � 4

 �1 � 10x2 �
35
3

 x4� �
1
8
 (35x4 � 30x2 � 3).

c1 � (�1)(n�1) /2 1 � 3 � � � n
2 � 4 � � � (n � 1)

.

c0 � (�1)n /2 1 � 3 � � � (n � 1)
2 � 4 � � � n

,

x

y

1-1
-1

-0.5

0.5

1

-0.5 0.5

P 1 

P 0 

P 2 

FIGURE 6.4.6 Legendre polynomials
for n � 0, 1, 2, 3, 4, 5
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Another formula, although not a recurrence relation, can generate the Legendre
polynomials by differentiation. Rodrigues’ formula for these polynomials is

(33)

See Problem 48 in Exercises 6.4.

Pn(x) �
1

2nn!
  

dn

dxn  (x2 � 1)n,    n � 0, 1, 2, . . . .
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REMARKS

Although we have assumed that the parameter n in Legendre’s differential equa-
tion (1 � x2)y� � 2xy� � n(n � 1)y � 0, represented a nonnegative integer, in
a more general setting n can represent any real number. Any solution of
Legendre’s equation is called a Legendre function. If n is not a nonnegative
integer, then both Legendre functions y1(x) and y2(x) given in (29) are infinit
series convergent on the open interval (�1, 1) and divergent (unbounded) at
x � 
1. If n is a nonnegative integer, then as we have just seen one of the
Legendre functions in (29) is a polynomial and the other is an infinite series
convergent for �1 � x � 1. You should be aware of the fact that Legendre’s
equation possesses solutions that are bounded on the closed interval [�1, 1]
only in the case when n � 0, 1, 2, . . . . More to the point, the only Legendre
functions that are bounded on the closed interval [�1, 1] are the Legendre poly-
nomials Pn(x) or constant multiples of these polynomials. See Problem 47 in
Exercises 6.4 and Problem 24 in Chapter 6 in Review.

EXERCISES 6.4 Answers to selected odd-numbered problems begin on page ANS-11.

Bessel’s Equation

In Problems 1–6 use (1) to find the general solution of the
given differential equation on (0, �).

1.

2. x2y� � xy� � (x2 � 1)y � 0

3. 4x2y� � 4xy� � (4x2 � 25)y � 0

4. 16x2y� � 16xy� � (16x2 � 1)y � 0

5. xy� � y� � xy � 0

6.

In Problems 7–10 use (12) to find the general solution of the
given differential equation on (0, �).

7. x2y� � xy� � (9x2 � 4)y � 0

8. x2y � � xy� � �36x2 � 1
4�y � 0

d
dx

 [xy�] � �x �
4
x�y � 0

x2y � � xy� � �x2 � 1
9�y � 0

9.

10. x2y� � xy� � (2x2 � 64)y � 0

In Problems 11 and 12 use the indicated change of variable
to find the general solution of the given differential equation
on (0, �).

11. x2y� � 2xy� � �2x2y � 0; y � x�1/2v(x)

12.

In Problems 13–20 use (18) to find the general solution of
the given differential equation on (0, �).

13. xy� � 2y� � 4y � 0

14. xy� � 3y� � xy � 0

15. xy� � y� � xy � 0

16. xy� � 5y� � xy � 0

17. x2y� � (x2 � 2)y � 0

18. 4x2y� � (16x2 � 1)y � 0

x2y � � (�2x2 � � 2 � 1
4)y � 0;  y � 1x v(x)

x2y � � xy� � �25x2 � 4
9�y � 0
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268 ● CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

19. xy� � 3y� � x3y � 0

20. 9x2y� � 9xy� � (x6 � 36)y � 0

21. Use the series in (7) to verify that I� (x) � i�� J� (ix) is a
real function.

22. Assume that b in equation (18) can be pure imaginary,
that is, b � �i, � 	 0, i2 � �1. Use this assumption to
express the general solution of the given differential
equation in terms the modified Bessel functions In
and Kn.

(a) y� � x2y � 0
(b) xy� � y� � 7x3y � 0

In Problems 23–26 first use (18) to express the general solu-
tion of the given differential equation in terms of Bessel func-
tions. Then use (23) and (24) to express the general solution in
terms of elementary functions.

23. y� � y � 0

24. x2y� � 4xy� � (x2 � 2)y � 0

25. 16x2y� � 32xy� � (x4 � 12)y � 0

26. 4x2y� � 4xy� � (16x2 � 3)y � 0

27. (a) Proceed as in Example 5 to show that

xJ��(x) � ��J�(x) � xJ��1(x).

[Hint: Write 2n � � � 2(n � �) � �.]

(b) Use the result in part (a) to derive (21).

28. Use the formula obtained in Example 5 along with
part (a) of Problem 27 to derive the recurrence relation

2�J� (x) � xJ��1(x) � xJ��1(x).

In Problems 29 and 30 use (20) or (21) to obtain the given
result.

29. 30. J�0 (x) � J�1(x) � �J1(x)

31. Proceed as on page 264 to derive the elementary form of
J�1/2(x) given in (24).

32. Use the recurrence relation in Problem 28 along with
(23) and (24) to express J3/2(x), J�3/2(x), J5/2(x) and
J�5/2(x) in terms of sin x, cos x, and powers of x.

33. Use the change of variables to show

that the differential equation of the aging spring 
mx� � ke��tx � 0, � 	 0, becomes

s2  d
2x

ds2 � s 
dx
ds

� s2x � 0.

s �
2
�

 
B

k
m

 e�� t / 2

�x

0
 rJ0(r)  dr � xJ1(x)

34. Show that is a solution of Airy’s
differential equation y� � �2xy � 0, x 	 0, whenever
w is a solution of Bessel’s equation of order that
is, t 	 0. [Hint: After
differentiating, substituting, and simplifying, then let

]
35. (a) Use the result of Problem 34 to express the general

solution of Airy’s differential equation for x 	 0 in
terms of Bessel functions.

(b) Verify the results in part (a) using (18).

36. Use the Table 6.4.1 to find the first three positive eigen-
values and corresponding eigenfunctions of the 
boundary-value problem

[Hint: By identifying � � �2, the DE is the parametric
Bessel equation of order zero.]

37. (a) Use (18) to show that the general solution of the
differential equation xy� � �y � 0 on the interval
(0, �) is

(b) Verify by direct substitution that 
is a particular solution of the DE in the case � � 1.

Computer Lab Assignments

38. Use a CAS to graph J3/2(x), J�3/2(x), J5/2(x), and
J�5/2(x).

39. (a) Use the general solution given in Example 4 to
solve the IVP

Also use and along
with Table 6.4.1 or a CAS to evaluate coefficients

(b) Use a CAS to graph the solution obtained in part (a)
for 0 � t � �.

40. (a) Use the general solution obtained in Problem 35 to
solve the IVP

Use a CAS to evaluate coefficients
(b) Use a CAS to graph the solution obtained in part (a)

for 0 � t � 200.

41. Column Bending Under Its Own Weight A uniform
thin column of length L, positioned vertically with one

4x � � tx � 0,  x(0.1) � 1,  x�(0.1) � �1
2.

Y�0(x) � �Y1(x)J�0(x) � �J1(x)

4x � � e�0.1tx � 0,  x(0) � 1,  x�(0) � �1
2.

y � 1xJ1(21x)

y � c11xJ1(21�x) � c21xY1(21�x).

y(x), y�(x) bounded as x : 0�, y(2) � 0.

xy � � y� � �xy � 0,

t � 2
3 �x3 /2.

t2w � � tw� � (t2 � 1
9)w � 0,

1
3,

y � x1 /2w(2
3 �x3 /2)
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6.4 SPECIAL FUNCTIONS ● 269

end embedded in the ground, will deflect, or bend away,
from the vertical under the influence of its own weight
when its length or height exceeds a certain critical value.
It can be shown that the angular deflection �(x) of the
column from the vertical at a point P(x) is a solution of
the boundary-value problem:

where E is Young’s modulus, I is the cross-sectional
moment of inertia, � is the constant linear density, and x
is the distance along the column measured from its base.
See Figure 6.4.7. The column will bend only for those
values of L for which the boundary-value problem has a
nontrivial solution.
(a) Restate the boundary-value problem by making the

change of variables t � L � x. Then use the results
of a problem earlier in this exercise set to express
the general solution of the differential equation in
terms of Bessel functions.

(b) Use the general solution found in part (a) to find a
solution of the BVP and an equation which define
the critical length L, that is, the smallest value of
L for which the column will start to bend.

(c) With the aid of a CAS, find the critical length L
of a solid steel rod of radius r � 0.05 in., 
�g � 0.28 A lb/in., E � 2.6 � 107 lb/in.2, A � 	r2,
and I � 1

4 �r4.

EI  d
2�

dx2 � �g(L � x)� � 0,  �(0) � 0, ��(L) � 0,

Use the information in Problem 37 to find a solu-
tion of

if it is known that is not zero at x � 0.
(b) Use Table 6.4.1 to find the Euler load P1 for the

column.
(c) Use a CAS to graph the first buckling mode y1(x)

corresponding to the Euler load P1. For simplicity
assume that c1 � 1 and L � 1.

43. Pendulum of Varying Length For the simple pendu-
lum described on page 220 of Section 5.3, suppose that
the rod holding the mass m at one end is replaced by a
flexible wire or string and that the wire is strung over a
pulley at the point of support O in Figure 5.3.3. In this
manner, while it is in motion in a vertical plane, the
mass m can be raised or lowered. In other words, the
length l(t) of the pendulum varies with time. Under
the same assumptions leading to equation (6) in Sec-
tion 5.3, it can be shown* that the differential equation
for the displacement angle � is now

(a) If l increases at constant rate v and if l (0) � l0,
show that a linearization of the foregoing DE is

(34)

(b) Make the change of variables x � (l0 � vt)
v and
show that (34) becomes

(c) Use part (b) and (18) to express the general solution
of equation (34) in terms of Bessel functions.

(d) Use the general solution obtained in part (c) to solve
the initial-value problem consisting of equation (34)
and the initial conditions �(0) � �0, ��(0) � 0.
[Hints: To simplify calculations, use a further

change of variable 

Also, recall that (20) holds for both J1(u) and Y1(u).
Finally, the identity

will be helpful.]

� 2
�u

J1(u)Y2(u) � J2(u)Y1(u) �

u �
2
v
 1g(l0 � vt) � 2

B

g
v
 x1/ 2.

d 2�

dx 2 �
2
x
 
d�

dx
�

g
vx

� � 0.

(l0 � vt)�� � 2v�� � g� � 0.

l�� � 2l��� � g sin � � 0.

1xY1(21�x)

M x
L

 
d 2y
dx2 � Py � 0,  y(0) � 0,  y(L) � 0

x = 0

x

θ

P(x)

ground

FIGURE 6.4.7 Beam in Problem 41

42. Buckling of a Thin Vertical Column In Example 4
of Section 5.2 we saw that when a constant vertical
compressive force, or load, P was applied to a thin
column of uniform cross section and hinged at both
ends, the deflection y(x) is a solution of the BVP:

(a) If the bending stiffness factor EI is proportional
to x, then EI(x) � kx, where k is a constant of
proportionality. If EI(L) � kL � M is the maximum
stiffness factor, then k � M
L and so EI(x) � Mx
L.

EI  d
2y

dx2 � Py � 0,  y(0) � 0,  y(L) � 0.

*See Mathematical Methods in Physical Sciences, Mary Boas, John Wiley
& Sons, Inc., 1966. Also see the article by Borelli, Coleman, and Hobson
in Mathematics Magazine, vol. 58, no. 2, March 1985.

(problem continues on page 270)
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270 ● CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

(e) Use a CAS to graph the solution �(t) of the
IVP in part (d) when l0 � 1 ft, �0 � radian,
and Experiment with the graph using dif-
ferent time intervals such as [0, 10], [0, 30],
and so on.

(f) What do the graphs indicate about the displacement
angle �(t) as the length l of the wire increases with
time?

Legendre’s Equation

44. (a) Use the explicit solutions y1(x) and y2(x) of
Legendre’s equation given in (29) and the appropri-
ate choice of c0 and c1 to find the Legendre polyno-
mials P6(x) and P7(x).

(b) Write the differential equations for which P6(x) and
P7(x) are particular solutions.

45. Use the recurrence relation (32) and P0(x) � 1, P1(x) � x,
to generate the next six Legendre polynomials.

46. Show that the differential equation

can be transformed into Legendre’s equation by means
of the substitution x � cos �.

47. Find the first three positive values of � for which the
problem

has nontrivial solutions.

Computer Lab Assignments

48. For purposes of this problem ignore the list of Legendre
polynomials given on page 266 and the graphs given
in Figure 6.4.3. Use Rodrigues’ formula (33) to generate
the Legendre polynomials P1(x), P2(x), . . . , P7(x). Use a
CAS to carry out the differentiations and simplifications

49. Use a CAS to graph P1(x), P2(x), . . . , P7(x) on the
interval [�1, 1].

50. Use a root-findin application to fin the zeros of
P1(x), P2(x), . . . , P7 (x). If the Legendre polynomials
are built-in functions of your CAS, fin zeros of
Legendre polynomials of higher degree. Form a con-
jecture about the location of the zeros of any Legendre
polynomial Pn(x), and then investigate to see whether
it is true.

Miscellaneous Differential Equations

51. The differential equation

y� � 2xy� � 2ay � 0

y(0) � 0,  y(x), y�(x) bounded on [�1,1]
(1 � x2)y � � 2xy� � �y � 0,

sin �  
d 2y
d� 2 � cos �  

dy
d�

� n(n � 1)(sin �)y � 0

v � 1
60 ft/s.

1
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is known as Hermite’s equation of order � after the
French mathematician Charles Hermite (1822–1901).
Show that the general solution of the equation is

where  

are power series solutions centered at the ordinary 
point 0.

52. (a) When is a nonnegative integer, Hermite’s
differential equation always possesses a polynomial
solution of degree n. Use given in Problem 51,
to find polynomial solutions for and

Then use to find polynomial solutions
for and 

(b) A Hermite polynomial is defined to be the
nth degree polynomial solution of Hermite’s equa-
tion multiplied by an appropriate constant so that
the coefficient of in is Use the polyno-
mial solutions in part (a) to show that the first six
Hermite polynomials are

53. The differential equation

,

where is a parameter, is known as Chebyshev’s
equation after the Russian mathematician Pafnuty
Chebyshev (1821–1894). When is a nonnega-
tive integer, Chebyshev’s differential equation always
possesses a polynomial solution of degree n. Find a
fifth degree polynomial solution of this differential
equation.

54. If n is an integer, use the substitution 
to show that the general solution of the differential
equation

on the interval is 
where are the spherical Bessel func-
tions of the first and second kind defined in (27

jn(ax) and  yn(ax)
R(x) � c1 jn(ax) � c2 yn(ax),(0, �)

x2R� � 2xR� � [a2x2 � n(n � 1)]R � 0

R(x) � (ax)�1>2Z(x)

a � n

a

(1 � x2)y� � xy� � a2y � 0

H5(x) � 32x5 � 160x3 � 120x.

H4(x) � 16x4 � 48x2 � 12

H3(x) � 8x3 � 12x

H2(x) � 4x2 � 2

H1(x) � 2x

H0(x) � 1

2n.Hn(x)xn

Hn(x)
n � 5.n � 1, n � 3,

y2(x)n � 4.
n � 0, n � 2,

y1(x),

a � n

 y2(x) � x � �
�

k�1
(�1)k 

2k(a�1)(a�3) . . . (a� 2k�1)
(2k � 1)!

x2k�1

 y1(x) � 1 � �
�

k�1
(�1)k 

2ka(a � 2) . . . (a� 2k � 2)
(2k)!

x 2k

y(x) � c0y1(x) � c1y2(x),
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